argminCS: Argmin Inference over a Discrete Candidate Set

Provides methods to construct frequentist confidence sets with valid marginal coverage for identifying the population-level argmin or argmax based on IID data. For instance, given an n by p loss matrix—where n is the sample size and p is the number of models—the CS.argmin() method produces a discrete confidence set that contains the model with the minimal (best) expected risk with desired probability. The argmin.HT() method helps check if a specific model should be included in such a confidence set. The main implemented method is proposed by Tianyu Zhang, Hao Lee and Jing Lei (2024) "Winners with confidence: Discrete argmin inference with an application to model selection".

Version: 1.1.0
Imports: BSDA, glue, LDATS, MASS, methods, Rdpack, stats, withr
Published: 2025-07-14
DOI: 10.32614/CRAN.package.argminCS
Author: Tianyu Zhang [aut], Hao Lee [aut, cre, cph], Jing Lei [aut]
Maintainer: Hao Lee <haolee at andrew.cmu.edu>
License: MIT + file LICENSE
URL: https://github.com/xu3cl4/argminCS
NeedsCompilation: no
Materials: README
CRAN checks: argminCS results

Documentation:

Reference manual: argminCS.pdf

Downloads:

Package source: argminCS_1.1.0.tar.gz
Windows binaries: r-devel: argminCS_1.1.0.zip, r-release: not available, r-oldrel: argminCS_1.1.0.zip
macOS binaries: r-release (arm64): argminCS_1.1.0.tgz, r-oldrel (arm64): argminCS_1.1.0.tgz, r-release (x86_64): argminCS_1.1.0.tgz, r-oldrel (x86_64): argminCS_1.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=argminCS to link to this page.