## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.align = "center" ) ## ----setup, message=F--------------------------------------------------------- library(VIM) library(magrittr) dataset <- sleep[, c("Dream", "NonD", "BodyWgt", "Span")] # dataset with missings dataset$BodyWgt <- log(dataset$BodyWgt) dataset$Span <- log(dataset$Span) imp_knn <- kNN(dataset) # dataset with imputed values ## ----------------------------------------------------------------------------- aggr(dataset) aggr(imp_knn, delimiter = "_imp") ## ----------------------------------------------------------------------------- # for missing values x <- sleep[, c("Exp", "NonD", "Sleep")] barMiss(x, only.miss = FALSE) # for imputed values x_IMPUTED <- regressionImp(NonD ~ Sleep, data = x) barMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE) ## ----------------------------------------------------------------------------- dataset <- sleep[, c("Span", "NonD","Sleep")] # for missing values scattMiss(dataset[,-3]) # for imputed values imp_regression <- regressionImp(NonD ~ Sleep, dataset) scattMiss(imp_regression[,-3], delimiter = "_imp") ## ----------------------------------------------------------------------------- ## for missing values x <- sleep[, c("Span", "NonD","Sleep")] histMiss(x, only.miss = FALSE) # for imputed values x_IMPUTED <- regressionImp(NonD ~ Sleep, data = x) histMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE) ## ----warning=FALSE------------------------------------------------------------ x <- sleep[, c("Dream", "NonD","Sleep", "BodyWgt")] x$BodyWgt <- log(x$BodyWgt) # for missing values matrixplot(x, sortby="BodyWgt") # for imputed values - multiple variable imputation with regrssionImp() x_IMPUTED <- regressionImp(NonD + Dream ~ Sleep, data = x) matrixplot(x_IMPUTED, delimiter = "_imp", sortby = "BodyWgt") ## ----------------------------------------------------------------------------- dataset <- sleep[, c("Dream", "NonD", "BodyWgt", "Span")] dataset$BodyWgt <- log(dataset$BodyWgt) dataset$Span <- log(dataset$Span) imp_knn <- kNN(dataset, variable = "NonD") dataset[, c("NonD", "Span")] %>% marginplot() imp_knn[, c("NonD", "Span", "NonD_imp")] %>% marginplot(delimiter = "_imp") ## ----warning=FALSE------------------------------------------------------------ ## for missing values x <- sleep[, 2:4] x[, 1] <- log10(x[, 1]) marginmatrix(x) ## for imputed values x_imp <- irmi(sleep[, 2:4]) x_imp[,1] <- log10(x_imp[, 1]) marginmatrix(x_imp, delimiter = "_imp")