## ----packages----------------------------------------------------------------- library(Umpire) library(survival) ## ----sm, fig.width=4, fig.height=4-------------------------------------------- sm <- SurvivalModel(baseHazard = 1/5, # default 1/5 inverse years accrual = 5, # default 5 years followUp = 1, # default 1 years units = 12, unitName = "months") R <- rand(sm, 200) summary(R) ## ----km, fig.cap="Base Kaplan-Meier survival curve."-------------------------- baseModel <- survfit(Surv(LFU, Event) ~ 1, R) plot(baseModel) ## ----cm, fig.cap="Two group survival curves (original).", fig.width=4, fig.height=4---- for (ignore in 1:5) { for (jgnore in 1:4) { cm <- CancerModel("survtester", nPossible=20, nPattern=2, SURV = function(n) rnorm(n, 0, 2), # old default; too large survivalModel = sm) S <- rand(cm, 200) model <- survfit(Surv(LFU, Event) ~ CancerSubType, S) print(model) plot(model) } } ## ----cmnew, fig.cap="Two group survival curves (improved).", fig.width=4, fig.height=4---- for (ignore in 1:5) { for (jgnore in 1:4) { cm <- CancerModel("survtester", nPossible=20, nPattern=2, SURV = function(n) rnorm(n, 0, 0.3), survivalModel = sm) S <- rand(cm, 200) model <- survfit(Surv(LFU, Event) ~ CancerSubType, S) print(model) plot(model) } } ## ----------------------------------------------------------------------------- for (nPos in c(5, 10, 15)) { for (jgnore in 1:4) { cm <- CancerModel("survtester", nPossible=nPos, nPattern=2, SURV = function(n) rnorm(n, 0, 0.3), survivalModel = sm) S <- rand(cm, 200) model <- survfit(Surv(LFU, Event) ~ CancerSubType, S) print(model) plot(model) } } ## ----------------------------------------------------------------------------- sessionInfo()