## ----------------------------------------------------------------------------- library(Umpire) ## ----seed--------------------------------------------------------------------- set.seed(84503) ## ----------------------------------------------------------------------------- ce <- ClinicalEngine(20, 4, isWeighted = TRUE) summary(ce) ## ----nrow--------------------------------------------------------------------- nrow(ce) nComponents(ce) ## ----------------------------------------------------------------------------- dset <- rand(ce, 300) ## ----------------------------------------------------------------------------- class(dset) names(dset) summary(dset$clinical) ## ----------------------------------------------------------------------------- class(dset$data) dim(dset$data) ## ----------------------------------------------------------------------------- cnm <- ClinicalNoiseModel(nrow(ce@localenv$eng), shape = 1.02, scale = 0.05) summary(cnm) noisy <- blur(cnm, dset$data) ## ----------------------------------------------------------------------------- dt <- makeDataTypes(dset$data, pCont = 1/3, pBin = 1/3, pCat = 1/3, pNominal = 0.5, range = 3:9, inputRowsAreFeatures = TRUE) names(dt) ## ----------------------------------------------------------------------------- class(dt$binned) dim(dt$binned) summary(dt$binned) ## ----------------------------------------------------------------------------- dt$cutpoints[[1]] dt$cutpoints[[5]] ## ----------------------------------------------------------------------------- cp <- dt$cutpoints type <- sapply(cp, function(X) { X$Type }) table(type) ## ----------------------------------------------------------------------------- mte <- MixedTypeEngine(ce, noise = cnm, cutpoints = dt$cutpoints) summary(mte) ## ----------------------------------------------------------------------------- dset2 <- rand(mte, 20) class(dset2) summary(dset2$data) summary(dset2$clinical) ## ----------------------------------------------------------------------------- dset3 <- rand(mte, 25, keepall = TRUE) class(dset3) names(dset3) ## ----raw---------------------------------------------------------------------- dim(dset3$raw) summary(t(dset3$raw)) dim(t(dset3$noisy)) summary(dset3$noisy) ## ----fig.cap="Raw and noisy data."-------------------------------------------- plot(dset3$raw[5,], dset3$noisy[5,], xlab = "Raw", ylab = "Noisy", pch=16) ## ----fig.cap = "Noisy and binned data."--------------------------------------- dim(dset3$binned) summary(dset3$binned) plot(dset3$binned[,5], dset3$noisy[5,], xlab = "Binned", ylab = "Noisy")