## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) test1 <- Spectrum(blobs,showpca=TRUE,fontsize=8,dotsize=2) ## ------------------------------------------------------------------------ names(test1) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) RNAseq <- brain[[1]] test2 <- Spectrum(RNAseq,fontsize=8,dotsize=2) pca(test2$similarity_matrix,labels=test2$assignments,axistextsize=8, legendtextsize=8,dotsize=2) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) RNAseq <- brain[[1]] test3 <- Spectrum(RNAseq,showres=FALSE,runrange=TRUE,krangemax=10) ## ------------------------------------------------------------------------ head(test3[[2]]$assignments) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) test4 <- Spectrum(brain,fontsize=8,dotsize=2) kernel_pca(test4$similarity_matrix,labels=test4$assignments, axistextsize=8,legendtextsize=8,dotsize=1.5) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) brain1 <- brain[[1]] brain2 <- brain[[2]] brain3 <- brain[[3]] brain1 <- brain1[,-5:-10] brain_m <- list(brain1,brain2,brain3) test4 <- Spectrum(brain_m,missing=TRUE,fontsize=8,dotsize=2) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) test5 <- Spectrum(circles,showpca=TRUE,method=2,fontsize=8,dotsize=2) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) test6 <- Spectrum(spirals,showpca=TRUE,method=2,tunekernel=TRUE,fontsize=8,dotsize=2) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) test7 <- Spectrum(blobs,FASP=TRUE,FASPk=300,fontsize=8,dotsize=2) ## ------------------------------------------------------------------------ names(test7) ## ------------------------------------------------------------------------ head(test7[[1]]) ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) s <- sigma_finder(blobs) s1 <- ng_kernel(blobs,sigma=s) e1 <- estimate_k(s1,showplots=FALSE) r <- cluster_similarity(s1,k=8,clusteralg='GMM') ## ----fig.width=4.5,fig.height=3------------------------------------------ library(Spectrum) s1 <- CNN_kernel(blobs) s2 <- CNN_kernel(blobs) klist <- list(s1,s2) x <- integrate_similarity_matrices(klist) e1 <- estimate_k(x,showplots=FALSE) r <- cluster_similarity(x,k=8,clusteralg='GMM') ## ------------------------------------------------------------------------ ## 1. run my clustering algorithm yielding assignments in vector, e.g. 1,2,2,1,2,2... ## 2. reorder data according to assignments ind <- sort(as.vector(test2$assignments),index.return=TRUE) datax <- RNAseq[,ind$ix] ## order the original data #annonx <- meta[ind$ix,] ## order the meta data #annonx$cluster <- ind$x ## add the cluster to the meta data ## 3. do heatmap # insert your favourite heatmap function