## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", tidy = "styler" ) ## ----message=FALSE------------------------------------------------------------ library(SpatPCA) library(ggplot2) library(dplyr) library(tidyr) library(gifski) base_theme <- theme_classic(base_size = 18, base_family = "Times") ## ----------------------------------------------------------------------------- set.seed(1024) position <- matrix(seq(-5, 5, length = 100)) true_eigen_fn <- exp(-position^2) / norm(exp(-position^2), "F") data.frame(position = position, eigenfunction = true_eigen_fn) %>% ggplot(aes(position, eigenfunction)) + geom_line() + base_theme ## ----------------------------------------------------------------------------- realizations <- rnorm(n = 100, sd = 20) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ## ----animation.hook="gifski"-------------------------------------------------- for (i in 1:100) { plot(x = position, y = realizations[i, ], ylim = c(-10, 10), ylab = "realization") } ## ----------------------------------------------------------------------------- cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn ## ----------------------------------------------------------------------------- data.frame(position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1]) %>% gather(estimate, eigenfunction, -position) %>% ggplot(aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme ## ----------------------------------------------------------------------------- realizations <- rnorm(n = 100, sd = 3) %*% t(true_eigen_fn) + matrix(rnorm(n = 100 * 100), 100, 100) ## ----animation.hook="gifski"-------------------------------------------------- for (i in 1:100) { plot(x = position, y = realizations[i, ], ylim = c(-10, 10), ylab = "realization") } ## ----------------------------------------------------------------------------- cv <- spatpca(x = position, Y = realizations) eigen_est <- cv$eigenfn data.frame(position = position, true = true_eigen_fn, spatpca = eigen_est[, 1], pca = svd(realizations)$v[, 1]) %>% gather(estimate, eigenfunction, -position) %>% ggplot(aes(x = position, y = eigenfunction, color = estimate)) + geom_line() + base_theme