## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ---- message=FALSE, warning=FALSE, eval=FALSE-------------------------------- # library(SmCCNet) # set.seed(123) # data("ExampleData") # Y_binary <- ifelse(Y > quantile(Y, 0.5), 1, 0) # # single-omics PLS # result <- fastAutoSmCCNet(X = list(X1), Y = as.factor(Y_binary), # Kfold = 3, # subSampNum = 100, DataType = c('Gene'), # saving_dir = getwd(), EvalMethod = 'auc', # summarization = 'NetSHy', # CutHeight = 1 - 0.1^10, ncomp_pls = 5) # # single-omics CCA # result <- fastAutoSmCCNet(X = list(X1), Y = Y, Kfold = 3, # preprocess = FALSE, # subSampNum = 50, DataType = c('Gene'), # saving_dir = getwd(), summarization = 'NetSHy', # CutHeight = 1 - 0.1^10) # # multi-omics PLS # result <- fastAutoSmCCNet(X = list(X1,X2), Y = as.factor(Y_binary), # Kfold = 3, subSampNum = 50, # DataType = c('Gene', 'miRNA'), # CutHeight = 1 - 0.1^10, # saving_dir = getwd(), # EvalMethod = 'auc', # summarization = 'NetSHy', # BetweenShrinkage = 5, # ncomp_pls = 3) # # multi-omics CCA # result <- fastAutoSmCCNet(X = list(X1,X2), Y = Y, # K = 3, subSampNum = 50, # DataType = c('Gene', 'miRNA'), # CutHeight = 1 - 0.1^10, # saving_dir = getwd(), # summarization = 'NetSHy', # BetweenShrinkage = 5)