## ---- echo = FALSE------------------------------------------------------- #knitr::opts_chunk$set(collapse = TRUE, comment = "#>") knitr::opts_chunk$set(fig.width = 6, fig.height = 4.5) ## ---- warning = FALSE, message = FALSE----------------------------------- library("SimMultiCorrData") library("printr") H_stcum <- matrix(1, nrow = 4, ncol = ncol(Headrick.dist)) for (i in 1:ncol(H_params)) { if (is.na(H_params[2, i])) { params <- H_params[1, i] } else { params <- as.numeric(H_params[, i]) } H_stcum[, i] <- round(calc_theory(Dist = colnames(H_params)[i], params = params)[3:6], 10) } colnames(H_stcum) <- colnames(Headrick.dist) rownames(H_stcum) <- c("skew", "skurtosis", "fifth", "sixth") round(H_stcum[, 1:6], 5) round(H_stcum[, 7:12], 5) round(H_stcum[, 13:18], 5) round(H_stcum[, 19:22], 5) ## ---- warning = FALSE, message = FALSE----------------------------------- Six <- list(NULL, seq(1.7, 1.8, 0.01), seq(0.5, 2, 0.5), seq(25.1, 25.2, 0.01), seq(0.1, 0.3, 0.01), NULL, NULL, seq(0.5, 2, 0.5), NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, seq(0.01, 0.05, 0.01), seq(0.15, 0.2, 0.01), seq(0.5, 2, 0.5), NULL, seq(0.5, 2, 0.5), seq(0.5, 2, 0.5)) H_consol <- list() start.time <- Sys.time() for (i in 1:ncol(H_stcum)) { skurtsH <- ifelse(colnames(H_stcum)[i] == "Triangular", -0.5856216, H_stcum[2, i]) H_consol[[i]] <- find_constants(method = "Polynomial", skews = H_stcum[1, i], skurts = skurtsH, fifths = H_stcum[3, i], sixths = H_stcum[4, i], Six = Six[[i]]) } stop.time <- Sys.time() Time <- round(difftime(stop.time, start.time, units = "min"), 3) cat("Total computation time:", Time, "minutes \n") H_cons <- matrix(1, nrow = 7, ncol = ncol(Headrick.dist)) valid <- numeric(ncol(Headrick.dist)) for (i in 1:ncol(H_stcum)) { H_cons[1:6, i] <- H_consol[[i]]$constants H_cons[7, i] <- ifelse(is.null(H_consol[[i]]$SixCorr1), NA, H_consol[[i]]$SixCorr1) valid[i] <- H_consol[[i]]$valid } colnames(H_cons) <- colnames(Headrick.dist) rownames(H_cons) <- c("c0", "c1", "c2", "c3", "c4", "c5", "sixcorr") ## ------------------------------------------------------------------------ colnames(H_cons)[valid == FALSE] ## ------------------------------------------------------------------------ round(H_cons[, 1:6], 6) round(H_cons[, 7:12], 6) round(H_cons[, 13:18], 6) round(H_cons[, 19:22], 6) ## ---- warning = FALSE---------------------------------------------------- seed <- 1234 Rey <- matrix(c(1, 0.4, 0.4, 1), 2, 2) # Make sure Rey is within feasible correlation bounds valid <- valid_corr(k_cont = 2, method = "Polynomial", means = rep(0, 2), vars = rep(1, 2), skews = H_stcum[1, c("Logistic", "Laplace")], skurts = H_stcum[2, c("Logistic", "Laplace")], fifths = H_stcum[3, c("Logistic", "Laplace")], sixths = H_stcum[4, c("Logistic", "Laplace")], rho = Rey, seed = seed) A <- rcorrvar(n = 10000, k_cont = 2, method = "Polynomial", means = rep(0, 2), vars = rep(1, 2), skews = H_stcum[1, c("Logistic", "Laplace")], skurts = H_stcum[2, c("Logistic", "Laplace")], fifths = H_stcum[3, c("Logistic", "Laplace")], sixths = H_stcum[4, c("Logistic", "Laplace")], rho = Rey, seed = seed) ## ------------------------------------------------------------------------ cat(paste("The maximum correlation error is ", round(A$maxerr, 5), ".", sep = "")) ## ------------------------------------------------------------------------ Acorr_error = round(A$correlations - Rey, 6) cat(paste("The IQR of correlation errors is [", round(quantile(as.numeric(Acorr_error), 0.25), 5), ", ", round(quantile(as.numeric(Acorr_error), 0.75), 5), "].", sep = "")) ## ---- warning = FALSE---------------------------------------------------- Six <- list(H_cons["sixcorr", "Logistic"], H_cons["sixcorr", "Laplace"]) # Make sure Rey is within feasible correlation bounds valid2 <- valid_corr(k_cont = 2, method = "Polynomial", means = rep(0, 2), vars = rep(1, 2), skews = H_stcum[1, c("Logistic", "Laplace")], skurts = H_stcum[2, c("Logistic", "Laplace")], fifths = H_stcum[3, c("Logistic", "Laplace")], sixths = H_stcum[4, c("Logistic", "Laplace")], Six = Six, rho = Rey, seed = seed) B <- rcorrvar(n = 10000, k_cont = 2, method = "Polynomial", means = rep(0, 2), vars = rep(1, 2), skews = H_stcum[1, c("Logistic", "Laplace")], skurts = H_stcum[2, c("Logistic", "Laplace")], fifths = H_stcum[3, c("Logistic", "Laplace")], sixths = H_stcum[4, c("Logistic", "Laplace")], Six = Six, rho = Rey, seed = seed) ## ------------------------------------------------------------------------ cat(paste("The maximum correlation error is ", round(B$maxerr, 5), ".", sep = "")) ## ------------------------------------------------------------------------ Bcorr_error = round(B$correlations - Rey, 6) cat(paste("The IQR of correlation errors is [", round(quantile(as.numeric(Bcorr_error), 0.25), 5), ", ", round(quantile(as.numeric(Bcorr_error), 0.75), 5), "].", sep = "")) ## ------------------------------------------------------------------------ as.matrix(round(A$summary_targetcont, 5), nrow = 2, ncol = 7, byrow = TRUE) ## ------------------------------------------------------------------------ as.matrix(round(A$summary_continuous[, c("Distribution", "mean", "sd", "skew", "skurtosis", "fifth", "sixth")], 5), nrow = 2, ncol = 7, byrow = TRUE) A$valid.pdf ## ------------------------------------------------------------------------ as.matrix(round(B$summary_continuous[, c("Distribution", "mean", "sd", "skew", "skurtosis", "fifth", "sixth")], 5), nrow = 2, ncol = 7, byrow = TRUE) B$valid.pdf ## ---- warning = FALSE, message = FALSE----------------------------------- plot_sim_pdf_theory(sim_y = A$continuous_variables[, 1], title = "Logistic Pdf", Dist = "Logistic", params = H_params$Logistic) plot_sim_pdf_theory(sim_y = B$continuous_variables[, 1], title = "Corrected Logistic Pdf", Dist = "Logistic", params = H_params$Logistic) ## ---- warning = FALSE, message = FALSE----------------------------------- plot_sim_pdf_theory(sim_y = A$continuous_variables[, 2], title = "Laplace Pdf", Dist = "Laplace", params = H_params$Laplace) plot_sim_pdf_theory(sim_y = B$continuous_variables[, 2], title = "Corrected Laplace Pdf", Dist = "Laplace", params = H_params$Laplace)