## ----eval=FALSE, warning=FALSE,message=FALSE---------------------------------- # # library(SSLR) # library(tidymodels) ## ----libraries, results="hide", warning=FALSE,message=FALSE------------------- knitr::opts_chunk$set( digits = 3, collapse = TRUE, comment = "#>" ) options(digits = 3) library(SSLR) library(tidymodels) ## ----airquality, results="hide"----------------------------------------------- set.seed(1) data <- airquality #Delete column Solar.R (NAs values) data$Solar.R <- NULL #Train and test data train.index <- sample(nrow(data), round(0.7 * nrow(data))) train <- data[ train.index,] test <- data[-train.index,] cls <- which(colnames(airquality) == "Ozone") #% LABELED labeled.index <- sample(nrow(train), round(0.1 * nrow(train))) train[-labeled.index,cls] <- NA ## ----fit, results="hide"------------------------------------------------------ m <- SSLRDecisionTree(min_samples_split = round(length(labeled.index) * 0.25), w = 0.3) %>% fit(Ozone ~ ., data = train) ## ----metrics------------------------------------------------------------------ predict(m,test)%>% bind_cols(test) %>% metrics(truth = "Ozone", estimate = .pred) ## ----fitrf, results="hide"---------------------------------------------------- m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Ozone ~ ., data = train) ## ----fitcobc, results="hide", eval = FALSE------------------------------------ # m_r <- rand_forest( mode = "regression") %>% # set_engine("ranger") # # m <- coBC(learner = m_r, max.iter = 1) %>% fit(Ozone ~ ., data = train) ## ----fitcoreg, results="hide", eval = FALSE----------------------------------- # #Load kknn # library(kknn) # m_coreg <- COREG(max.iter = 1) %>% fit(Ozone ~ ., data = train)