SGDinference: Inference with Stochastic Gradient Descent
Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms. 
    The inference procedure handles cross-sectional data sequentially: 
    (i) updating the parameter estimate with each incoming "new observation", 
    (ii) aggregating it as a Polyak-Ruppert average, and 
    (iii) computing an asymptotically pivotal statistic for inference through random scaling. 
    The methodology used in the 'SGDinference' package is described in detail in the following papers: 
    (i) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2022) <doi:10.1609/aaai.v36i7.20701> "Fast and robust online inference with stochastic gradient descent via random scaling".
    (ii) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2023) <doi:10.48550/arXiv.2209.14502> "Fast Inference for Quantile Regression with Tens of Millions of Observations". 
| Version: | 0.1.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | stats, Rcpp (≥ 1.0.5) | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), lmtest (≥ 0.9), sandwich (≥ 3.0), microbenchmark (≥ 1.4), conquer (≥ 1.3.3) | 
| Published: | 2023-11-16 | 
| DOI: | 10.32614/CRAN.package.SGDinference | 
| Author: | Sokbae Lee [aut],
  Yuan Liao [aut],
  Myung Hwan Seo [aut],
  Youngki Shin [aut, cre] | 
| Maintainer: | Youngki Shin  <shiny11 at mcmaster.ca> | 
| BugReports: | https://github.com/SGDinference-Lab/SGDinference/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/SGDinference-Lab/SGDinference/ | 
| NeedsCompilation: | yes | 
| Materials: | README, NEWS | 
| CRAN checks: | SGDinference results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SGDinference
to link to this page.