## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message=FALSE, warning=FALSE-------------------------------------- library(ROCnGO) library(dplyr) ## ----warning=FALSE------------------------------------------------------------ # Create a small subset of iris with 5 random flowers of each species iris_subset <- as_tibble(iris) %>% group_by(Species) %>% slice_sample(n = 5) %>% ungroup() iris_subset ## ----warning=FALSE------------------------------------------------------------ # Check levels in Species levels(iris_subset$Species) # Summarize dataset classifiers iris_results <- summarize_dataset( iris_subset, response = Species, ratio = "tpr", threshold = 0.9 ) iris_results$data ## ----warning=FALSE------------------------------------------------------------ # Summarize dataset classifiers with virginica species as D=1 virginica_results <- summarize_dataset( iris_subset, response = Species, ratio = "tpr", threshold = 0.9, .condition = "virginica" ) virginica_results$data ## ----warning=FALSE------------------------------------------------------------ # Create new variables to evaluate "virginica" species classifiers iris_subset <- iris_subset %>% mutate( Species_int = ifelse(Species == "virginica", 2L, 1L), Species_fct = factor( ifelse(Species == "virginica", 1, 0), levels = c(0, 1) ) ) # Check new variables iris_subset[, c("Species", "Species_int", "Species_fct")] ## ----warning=FALSE------------------------------------------------------------ # Select predictors predictors <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width") # Check performance of virginica classifiers with .condition = 2 int_results <- summarize_dataset( iris_subset, predictors = predictors, response = Species_int, ratio = "tpr", threshold = 0.9, .condition = 2 ) int_results$data # Check performance of virginica classifiers with factor fct_results <- summarize_dataset( iris_subset, predictors = predictors, response = Species_fct, ratio = "tpr", threshold = 0.9 ) fct_results$data