## ----------------------------------------------------------------------------- library(RCT2) data(jd) ## ----------------------------------------------------------------------------- data_LTFC <- data.frame(jd$assigned, jd$pct0, jd$cdd6m, jd$anonale) colnames(data_LTFC) <- c("Z", "A", "Y", "id") test <- CalAPO(data_LTFC) print(CalAPO(data_LTFC)) ## ----------------------------------------------------------------------------- data_perm <- data.frame(jd$assigned, jd$pct0, jd$cdi, jd$anonale) colnames(data_perm) <- c("Z", "A", "Y", "id") CalAPO(data_perm) ## ----------------------------------------------------------------------------- Test2SRE(data_LTFC, effect="MDE", alpha=0.05) ## ----------------------------------------------------------------------------- # calculate variances for permanent contract var.perm <- calpara(data_perm) # calculate variances for long term fixed contract var.LTFC <- calpara(data_LTFC) ## ----------------------------------------------------------------------------- sigma.perm <- var.perm$sigma.tot sigma.LTFC <- var.LTFC$sigma.tot print(sigma.perm) ## ----------------------------------------------------------------------------- ### effect size and assignment mechanism mu <- 0.03 qa <- rep(1/3,3) # calculate sample size for the permanent contract print("Permanent Contract:") print(Calsamplesize(data_LTFC, 0.03, qa, 0.05, 0.2)) # calculate sample size for the long term fixed contract print("Long Term Fixed Contract:") print(Calsamplesize(data_perm, 0.03, qa, alpha=0.05, beta=0.2))