## ----type I error------------------------------------------------------------- library(RABR) library(parallel) library(doParallel) RABR.null.fit = RABRcontinuous(MeanVec = c(0, 0, 0, 0), SdVec = c(1, 1, 1, 1), M = 60, N = 120, R = c(3, 4, 2, 1), Nitt = 10^4, Alpha = 0.025, Ncluster = 2, Seed = 12345, MultiMethod = "dunnett") ## Probability of rejecting each elementary hypothesis without multiplicity adjustment print(RABR.null.fit$ProbUnadj) ## Probability of rejecting each elementary null hypothesis with multiplicity adjustment print(RABR.null.fit$ProbAdj) ## Probability of rejecting at least one elementary null hypothesis with multiplicity adjustment print(RABR.null.fit$ProbAdjOverall) ## ----power-------------------------------------------------------------------- RABR.alter.fit = RABRcontinuous(MeanVec = c(0.43, 0.48, 0.63, 1.2), SdVec = c(1, 1, 1, 1), M = 60, N = 120, R = c(9, 9, 1, 1), Nitt = 10^3, Alpha = 0.025, Ncluster = 2, Seed = 12345, MultiMethod = "dunnett") ## Probability of selecting (if unadjusted p-value is the smallest among all active treatment groups) AND confirming (if the adjusted p-value is smaller than the significance level) the efficacy of each active treatment group. print(RABR.alter.fit$ProbAdjSelected) ## ASN Average sample size of placebo and selected treatment groups (S1, S2, S3). print(RABR.alter.fit$ASN) ## ----sensitivity-------------------------------------------------------------- output.mat = matrix(NA, nrow = 5, ncol = 10) colnames(output.mat) = c("M", "R", "Prob_D1", "Prob_D2", "Prob_D3", "Prob_ALO", "ASN_PBO", "ASN_S1", "ASN_S2", "ASN_S3") output.mat = data.frame(output.mat) for (scen.ind in 1:5){ if (scen.ind==1){M.cand = 40; R.cand = c(8, 8, 3, 1)} if (scen.ind==2){M.cand = 60; R.cand = c(9, 9, 1, 1)} if (scen.ind==3){M.cand = 24; R.cand = c(9, 9, 5, 1)} if (scen.ind==4){M.cand = 40; R.cand = c(16, 16, 7, 1)} if (scen.ind==5){M.cand = 40; R.cand = c(4, 4, 1, 1)} RABR.sen.fit = RABRcontinuous(MeanVec = c(0.43, 0.48, 0.63, 1.2), SdVec = c(1, 1, 1, 1), M = M.cand, N = 120, R = R.cand, Nitt = 10^3, Alpha = 0.025, Ncluster = 2, Seed = 12345, MultiMethod = "dunnett") output.mat$M[scen.ind] = M.cand output.mat$R[scen.ind] = paste0("(", paste0(R.cand,collapse = ","), ")") output.mat[scen.ind, c("Prob_D1", "Prob_D2", "Prob_D3")] = RABR.sen.fit$ProbAdjSelected output.mat$Prob_ALO[scen.ind] = RABR.sen.fit$ProbAdjOverall output.mat[scen.ind, c("ASN_PBO", "ASN_S1", "ASN_S2", "ASN_S3")] = RABR.sen.fit$ASN } print(output.mat)