## ----echo=FALSE, message=FALSE, warning=FALSE--------------------------------- library(PolicyPortfolios) ## ---- message = FALSE, warning = FALSE---------------------------------------- library(dplyr) library(tidyr) library(ggplot2) ## ---- message = FALSE, warning = FALSE---------------------------------------- library(PolicyPortfolios) data(P.energy) P.energy ## ----------------------------------------------------------------------------- levels(P.energy$Country) unique(P.energy$Year) ## ----------------------------------------------------------------------------- levels(P.energy$Target) levels(P.energy$Instrument) ## ----------------------------------------------------------------------------- data(P.education) levels(P.education$Target) levels(P.education$Instrument) ## ----eval = FALSE, echo = TRUE------------------------------------------------ # spreadsheet <- read.table(...) # d <- pp_clean(spreadsheet, # Sector = "Environmental", # Year.name = "Year.Adopt", # coding.category.name = "Coding.category", # Instrument.name = "Instrument.No.", # Target.name = "Item.No.") # # pp_complete() ## ----eval = FALSE, echo = TRUE------------------------------------------------ # dc <- pp_complete(d, # Instrument.set = full.factor.of.potential.instruments, # Target.set = full.factor.of.potential.targets) ## ----echo = TRUE, eval = FALSE------------------------------------------------ # pp_measures(P.energy) ## ----echo = FALSE, eval = TRUE, size = 'footnotesize'------------------------- knitr::kable(pp_measures(P.energy) %>% slice(1:15)) ## ----------------------------------------------------------------------------- pp_measures(P.energy, id = list(Country = "Borduria", Year = 2010:2021)) ## ---- fig.width = 8, fig.height = 4, fig.cap = 'Temporal evolution of the size of portfolios, by country.'---- pp_measures(P.energy) %>% # Use only a single measure of interest filter(Measure == "Size") %>% # Use only observations with a concrete time period filter(Year > 2022) %>% # Convert the long format into wide, and therefore "Size" becomes a column spread(Measure, value) %>% # Pass this object to "ggplot()" and produce a time series of portfolio "Size" ggplot(aes(x = Year, y = Size, color = Country)) + geom_line() ## ----------------------------------------------------------------------------- pp_measures(P.energy) %>% # Pick the two measures of portfolio diversity filter(Measure %in% c("Div.gs", "Div.sh")) %>% # Use only the last year observation filter(Year == max(Year)) %>% # Select only the relevant variables required to produce the output table select(Country, Measure.label, value) %>% # Transform the long object into wide, so that every Measure is one column spread(Measure.label, value) %>% # Sort by decreasing Shannon diversity arrange(desc(`Diversity (Shannon)`)) ## ----echo = FALSE, eval = TRUE------------------------------------------------ pp_measures(P.energy) %>% select(Measure, Measure.label) %>% unique() %>% knitr::kable() ## ----fig.width = 10, fig.height = 4, fig.cap = 'Visual representation of the Energy portfolio of Borduria in 2025, using the pp_plot() function and defining a specific country and year in a list in the id argument.'---- pp_plot(P.energy, id = list(Country = "Borduria", Year = 2025)) ## ----fig.width = 6, fig.height = 3, fig.cap = 'Visual representation of the Energy portfolio of Borduria in 2025, using the pp_plot() function and defining a specific country and year in a list in the id argument.'---- pp_plot(P.education, id = list(Country = "Borduria", Year = 2030), spacing = TRUE, subtitle = FALSE, caption = NULL) ## ----eval = FALSE, echo = TRUE------------------------------------------------ # pp_report(P.energy) ## ----------------------------------------------------------------------------- A <- pp_array(P.energy) # Get the dimensions: # 3 is Country # 1 is Sector # 11 is Year # 15 is Instrument # 25 is Target dim(A)