PRTree: Probabilistic Regression Trees

Implementation of Probabilistic Regression Trees (PRTree), providing functions for model fitting and prediction, with specific adaptations to handle missing values. The main computations are implemented in 'Fortran' for high efficiency. The package is based on the PRTree methodology described in Alkhoury et al. (2020), "Smooth and Consistent Probabilistic Regression Trees" <https://proceedings.neurips.cc/paper_files/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf>. Details on the treatment of missing data and implementation aspects are presented in Prass, T.S.; Neimaier, A.S.; Pumi, G. (2025), "Handling Missing Data in Probabilistic Regression Trees: Methods and Implementation in R" <doi:10.48550/arXiv.2510.03634>.

Version: 1.0.0
Depends: R (≥ 4.3.0)
Published: 2025-10-09
DOI: 10.32614/CRAN.package.PRTree
Author: Alisson Silva Neimaier ORCID iD [aut], Taiane Schaedler Prass ORCID iD [aut, ths, cre]
Maintainer: Taiane Schaedler Prass <taianeprass at gmail.com>
License: GPL (≥ 3)
NeedsCompilation: yes
CRAN checks: PRTree results

Documentation:

Reference manual: PRTree.html , PRTree.pdf

Downloads:

Package source: PRTree_1.0.0.tar.gz
Windows binaries: r-devel: PRTree_0.1.3.zip, r-release: PRTree_1.0.0.zip, r-oldrel: PRTree_1.0.0.zip
macOS binaries: r-release (arm64): PRTree_0.1.3.tgz, r-oldrel (arm64): PRTree_1.0.0.tgz, r-release (x86_64): PRTree_1.0.0.tgz, r-oldrel (x86_64): PRTree_1.0.0.tgz
Old sources: PRTree archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PRTree to link to this page.