## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>") ## ---- message=FALSE----------------------------------------------------------- library(tidyverse) library(ggplot2) library(PRDA) ## ---- eval=FALSE, echo = T---------------------------------------------------- # retrospective(effect_size, sample_n1, sample_n2 = NULL, # test_method = c("pearson", "two_sample", "welch", # "paired", "one_sample") # alternative = c("two_sided","less","greater"), # sig_level = .05, ratio_sd = 1, B = 1e4, # tl = -Inf, tu = Inf, B_effect = 1e3, # display_message = TRUE) ## ---- example1---------------------------------------------------------------- set.seed(2020) # set seed to make results reproducible retrospective(effect_size = .25, sample_n1 = 30, test_method = "pearson") ## ---- example2---------------------------------------------------------------- retrospective(effect_size = .35, sample_n1 = 25, sample_n2 = 25, test_method = "paired") ## ---- example3---------------------------------------------------------------- retrospective(effect_size = .35, sample_n1 = 25, sample_n2 = 35, test_method = "two_sample", alternative = "great", sig_level = .10, B = 1e5) ## ---- example4---------------------------------------------------------------- retrospective(effect_size = .35, sample_n1 = 25, sample_n2 = 35, test_method = "welch", ratio_sd = 1.5, alternative = "great", sig_level = .10, B = 1e5) ## ---- example5---------------------------------------------------------------- retrospective(effect_size = function(n) rnorm(n, .3, .1), sample_n1 = 30, test_method = "pearson", tl = .15, tu = .45, B_effect = 1e3, B = 1e3, display_message = TRUE) ## ---- data_plot--------------------------------------------------------------- da_fit <- retrospective(effect_size = function(n) rnorm(n, .3, .1), sample_n1 = 30, test_method = "pearson", tl = .15, tu = .45, B_effect = 1e3, B = 1e3, display_message = FALSE) str(da_fit, max.level = 1) ## ----------------------------------------------------------------------------- data_plot <- da_fit$retrospective_res %>% mutate(effect = da_fit$effect_info$effect_samples) ## ---- fig.dim= c(4, 3), dev='png'--------------------------------------------- ggplot(data_plot)+ geom_histogram(aes(effect, y = ..density..), col = "black", fill = "#00BFC4", alpha = .8, breaks=seq(.15,.45,.02))+ scale_x_continuous(breaks = seq(.1,.5,.05), limits = c(.1,.5))+ labs(x = "Sampled Effects", y = "Density")+ theme_bw() ## ---- fig.dim = c(7.23, 2.5), dev='png'--------------------------------------- data_plot %>% pivot_longer(cols = c("power", "typeM", "typeS"), names_to = "Criteria", values_to = "Value") %>% mutate(Criteria = recode(Criteria, power = "Power", typeM = "Type M", typeS = "Type S")) %>% ggplot(aes(x = Value, y = ..density.., fill = Criteria)) + geom_histogram(col = "black", alpha = .7, bins = 15) + facet_wrap(.~ Criteria, scales = "free") + labs(y = "Density") + theme_bw() + theme(legend.position = "none")