Implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) <http://jmlr.org/papers/volume17/15-307/15-307.pdf>; minimum normalised cut, Hofmeyr (2017) <doi:10.1109/TPAMI.2016.2609929>; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) <doi:10.1109/SSCI.2015.116>.
| Version: | 0.1.5 | 
| Depends: | R (≥ 2.10.0), rARPACK | 
| Published: | 2020-03-06 | 
| DOI: | 10.32614/CRAN.package.PPCI | 
| Author: | David Hofmeyr [aut, cre] Nicos Pavlidis [aut] | 
| Maintainer: | David Hofmeyr <dhofmeyr at sun.ac.za> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| Citation: | PPCI citation info | 
| CRAN checks: | PPCI results | 
| Reference manual: | PPCI.html , PPCI.pdf | 
| Package source: | PPCI_0.1.5.tar.gz | 
| Windows binaries: | r-devel: PPCI_0.1.5.zip, r-release: PPCI_0.1.5.zip, r-oldrel: PPCI_0.1.5.zip | 
| macOS binaries: | r-release (arm64): PPCI_0.1.5.tgz, r-oldrel (arm64): PPCI_0.1.5.tgz, r-release (x86_64): PPCI_0.1.5.tgz, r-oldrel (x86_64): PPCI_0.1.5.tgz | 
| Old sources: | PPCI archive | 
| Reverse suggests: | FCPS | 
Please use the canonical form https://CRAN.R-project.org/package=PPCI to link to this page.