## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", tidy = FALSE, tidy.opts = list(width.cutoff = 95), fig.width = 6, fig.height = 3, message = FALSE, warning = FALSE, time_it = TRUE, fig.align = "center" ) ## ----echo=FALSE, eval = TRUE-------------------------------------------------- library(OlinkAnalyze) library(dplyr) library(stringr) library(ggplot2) library(kableExtra) ## ----brnrtab, eval=TRUE, message=FALSE, echo = FALSE-------------------------- data.frame(Platform = c("Target 96", paste0("Explore 384: \n", "Cardiometabolic, Inflammation, ", "Neurology, and Oncology"), paste0("Explore 384: \n", "Cardiometabolic II, Inflammation II,", "Neurology II, and Oncology II"), "Explore HT", "Explore 3072 to Explore HT", "Explore 3072 to Reveal"), BridgingSamples = c("8-16", "8-16", "16-24", "16-32", "40-64", "32-48")) |> kbl(booktabs = TRUE, digits = 2, caption = "Recommended number of bridging samples for Olink platforms") |> kable_styling(bootstrap_options = "striped", full_width = FALSE, position = "center", latex_options = "HOLD_position") ## ----fig.cap= fcap, eval = TRUE, echo = FALSE, out.width="50%"---------------- knitr::include_graphics(normalizePath("../man/figures/Bridging_schematic.png"), error = FALSE) fcap <- "Schematic of Between-Product Bridging Workflow" ## ----message=FALSE, eval=FALSE, echo = TRUE----------------------------------- # # Note: Explore 3072 and Reveal files can be CSV or parquet. # data_explore3072 <- read_NPX("~/NPX_Explore3072_location.parquet") # data_reference_product <- read_NPX("~/NPX_ExploreHT_location.parquet") # # Or for reveal data # data_reference_product <- read_NPX("~/NPX_Reveal_location.parquet") ## ----echo=TRUE, eval = FALSE-------------------------------------------------- # data_explore3072_samples <- data_explore3072 |> # dplyr::filter(SampleType == "SAMPLE") |> # dplyr::distinct(SampleID) |> # dplyr::pull() # # data_reference_product_samples <- data_reference_product |> # dplyr::filter(SampleType == "SAMPLE") |> # dplyr::distinct(SampleID) |> # dplyr::pull() # # overlapping_samples <- unique(intersect(data_explore3072_samples, # data_reference_product_samples)) # # Note that if `SampleType` is not is input data: # # stringr::str_detect can be used to exclude control samples based on SampleID. ## ----echo=FALSE--------------------------------------------------------------- try( readRDS(normalizePath("../man/figures/overlapping_samples_table.rds")) |> kableExtra::kbl(booktabs = TRUE, digits = 2, caption = "Overlapping bridging samples") |> kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE, position = "center", latex_options = "HOLD_position") ) ## ----include=FALSE------------------------------------------------------------ f3 <- paste0("PCA plot prior to bridging for Explore 3072 data", " and data from the reference product.", " Bridge samples are indicated by color.", " PCA plots can be helpful in assessing", " if any bridge samples were outliers in one of the platforms.") ## ----eval = FALSE------------------------------------------------------------- # #### Extract bridging samples # # data_explore3072_before_br <- data_explore3072 |> # dplyr::filter(SampleType == "SAMPLE") |> # # Note that if `SampleType` is not is input data, # # stringr::str_detect can be used to exclude control samples # # based on naming convention. # dplyr::mutate(Type = if_else(SampleID %in% overlapping_samples, # paste0("Explore 3072 Bridge"), # paste0("Explore 3072 Sample"))) # # data_reference_product_before_br <- data_reference_product |> # dplyr::filter(SampleType == "SAMPLE") |> # dplyr::mutate(Type = if_else(SampleID %in% overlapping_samples, # paste0("Reference Product Bridge"), # paste0("Reference Product Sample"))) # # ### PCA plot # pca_E3072 <- OlinkAnalyze::olink_pca_plot(df = data_explore3072_before_br, # color_g = "Type", # quiet = TRUE) # pca_EHT <- OlinkAnalyze::olink_pca_plot(df = data_reference_product_before_br, # color_g = "Type", # quiet = TRUE) ## ----echo=FALSE, fig.cap=f3, fig.height= 8, fig.width= 6---------------------- knitr::include_graphics(normalizePath("../man/figures/PCA_btw_product_before.png"), error = FALSE) ## ----eval = FALSE------------------------------------------------------------- # # Find shared samples # npx_ht <- data_reference_product |> # dplyr::mutate(Project = "data1") # npx_3072 <- data_explore3072 |> # dplyr::mutate(Project = "data2") # # # perform between-product bridging without formatting for downstream analysis # npx_br_data <- olink_normalization(df1 = npx_ref_product, # df2 = npx_3072, # overlapping_samples_df1 = # overlapping_samples, # df1_project_nr = "Reference Product", # df2_project_nr = "Explore 3072", # reference_project = "Reference Product", # format = FALSE) # # # perform between-product bridging with formatting for downstream analysis # npx_br_data <- olink_normalization(df1 = npx_ref_product, # df2 = npx_3072, # overlapping_samples_df1 = # overlapping_samples, # df1_project_nr = "Reference Product", # df2_project_nr = "Explore 3072", # reference_project = "Reference Product", # format = TRUE) ## ----echo=FALSE, fig.cap=fcap, out.width="50%"-------------------------------- knitr::include_graphics(normalizePath("../man/figures/assay_bridgeability.jpg"), error = FALSE) fcap <- paste("Criteria to determine the bridging recommendation for an assay.", "The assessment of linearity ensures bridging between signal in both platforms", "or noise in both platforms (but not between signal and noise).", "Similar NPX ranges and sufficient counts provide additional insight into", "an assay's bridgeability.", "Distribution shape is assessed to determine recommended bridging method.", sep = " ") ## ----eval = FALSE------------------------------------------------------------- # # generating olink_bridgeability_plot figures # npx_br_data_bridgeable_plt <- olink_bridgeability_plot( # data = npx_br_data, # median_counts_threshold = 150, # min_count = 10, # bridge_sampleid = overlapping_samples # ) # # npx_br_data_bridgeable_plt[[1]] ## ----message=FALSE, echo = FALSE, out.width = "675px", fig.cap = fcap--------- knitr::include_graphics(normalizePath("../man/figures/bridgeable_plt_MedianCenter.png"), error = FALSE) fcap <- "Visualization of an assay's bridgeability criteria as generated by the olink_bridgeability_plot function." ## ----echo=FALSE--------------------------------------------------------------- try( readRDS(normalizePath("../man/figures/bridging_results.rds")) |> kableExtra::kbl(booktabs = TRUE, digits = 1, caption = "Table 4. First 5 rows of combined datasets after bridging with between-product formatting argument set to FALSE.") |> kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE, font_size = 10, position = "center", latex_options = "HOLD_position") |> kableExtra::scroll_box(width = "100%") ) ## ----echo=FALSE--------------------------------------------------------------- try( readRDS(normalizePath("../man/figures/bridging_results.rds")) |> dplyr::mutate(NPX = case_when( BridgingRecommendation == "MedianCentering" ~ MedianCenteredNPX, BridgingRecommendation == "QuantileSmoothing" ~ QSNormalizedNPX, .default = NPX)) |> dplyr::mutate(SampleID = paste(SampleID, Project, sep = "_")) |> dplyr::mutate(OlinkID = ifelse(!(BridgingRecommendation == "NotBridgeable"), paste(OlinkID, OlinkID_E3072, sep = "_"), OlinkID_E3072)) |> dplyr::select(-c("OlinkID_E3072", "MedianCenteredNPX", "QSNormalizedNPX")) |> kableExtra::kbl(booktabs = TRUE, digits = 1, caption = "Table 5. First 5 rows of combined datasets after bridging with between-product formatting argument set to TRUE.") |> kableExtra::kable_styling(bootstrap_options = "striped", full_width = FALSE, font_size = 10, position = "center", latex_options = "HOLD_position") |> kableExtra::scroll_box(width = "100%") ) ## ----include=FALSE------------------------------------------------------------ f8 <- "Combined PCA of sample controls from both platforms prior to normalization." f9 <- "Combined PCA of bridging samples from both platforms prior to normalization." f10 <- "Combined PCA of sample controls from both platforms after normalization." f11 <- "Combined PCA of bridging samples from both platforms after normalization." ## ----pca_pre_sc, echo=TRUE, eval = FALSE-------------------------------------- # ## Before Bridging # npx_br_data |> # dplyr::filter(SampleType == "SAMPLE_CONTROL") |> # dplyr::mutate(OlinkID = paste0(OlinkID, "_", OlinkID_E3072)) |> # dplyr:::mutate(SampleID = paste0(Project, SampleID)) |> # OlinkAnalyze::olink_pca_plot(color_g = "Project") ## ----pca_pre_sc_fig, echo=FALSE, fig.cap=f8, message=FALSE-------------------- ## Before Bridging knitr::include_graphics(normalizePath("../man/figures/SCs_pre_bridging.png"), error = FALSE) ## ----pca_pre_bridge, echo=TRUE, eval=FALSE------------------------------------ # ## Before Bridging # npx_br_data |> # dplyr::filter(SampleType == "SAMPLE") |> # dplyr::filter(SampleID %in% overlapping_samples) |> # dplyr::mutate(OlinkID = paste0(OlinkID, "_", OlinkID_E3072)) |> # dplyr:::mutate(SampleID = paste0(Project, SampleID)) |> # OlinkAnalyze::olink_pca_plot(color_g = "Project") # # ## ----echo=FALSE, fig.cap=f9--------------------------------------------------- knitr::include_graphics(normalizePath("../man/figures/bridges_pre_bridging.png"), error = FALSE) ## ----eval = FALSE------------------------------------------------------------- # ## After bridging PCA # # ### Keep the data following BridgingRecommendation # npx_after_br_reco <- npx_br_data |> # dplyr::filter(BridgingRecommendation != "NotBridgeable") |> # dplyr::mutate(NPX = case_when( # BridgingRecommendation == "MedianCentering" ~ MedianCenteredNPX, # BridgingRecommendation == "QuantileSmoothing" ~ QSNormalizedNPX, # .default = NPX)) |> # dplyr::filter(AssayType == "assay") |> # dplyr::mutate(OlinkID = paste0(OlinkID, "_", OlinkID_E3072)) # ## ----pca_post_SC, eval=FALSE, echo = TRUE------------------------------------- # # ### Generate unique SampleIDs # npx_after_br_final <- npx_after_br_reco |> # dplyr:::mutate(SampleID = paste0(Project, SampleID)) # # ### PCA plot of the data from SCs # npx_after_br_final |> # dplyr::filter(SampleType == "SAMPLE_CONTROL") |> # OlinkAnalyze::olink_pca_plot(color_g = "Project") # ## ----echo=FALSE, fig.cap=f10-------------------------------------------------- knitr::include_graphics(normalizePath("../man/figures/SCs_post_bridging.png"), error = FALSE) ## ----echo=TRUE, eval = FALSE-------------------------------------------------- # ### PCA plot of the data from bridging samples # npx_after_br_reco |> # dplyr::filter(SampleType == "SAMPLE") |> # dplyr::filter(SampleID %in% overlapping_samples) |> # dplyr:::mutate(SampleID = paste0(Project, SampleID)) |> # OlinkAnalyze::olink_pca_plot(color_g = "Project") ## ----echo=FALSE, fig.cap=f11-------------------------------------------------- knitr::include_graphics(normalizePath("../man/figures/bridges_post_bridging.png"), error = FALSE) ## ----eval = FALSE------------------------------------------------------------- # df <- npx_br_data |> # dplyr::filter(Project == "Explore_3072") |> # arrow::as_arrow_table() # # df$metadata$FileVersion <- "NA" # df$metadata$ExploreVersion <- "NA" # df$metadata$ProjectName <- "NA" # df$metadata$SampleMatrix <- "NA" # df$metadata$DataFileType <- "Olink Analyze Export File" # df$metadata$ProductType <- "Explore3072" # df$metadata$Product <- "Explore3072" # arrow::write_parquet(x = df, sink = "path_to_output.parquet") ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # # npx_after_br_final generated by olink_normalization with format = TRUE # # Option 1: Exclude non-bridgeable assays from both products # npx_recommended <- npx_br_data |> # dplyr::filter(BridgingRecommendation != "NotBridgeable") |> # # # Option 2: Analyze non-bridgeable assays separately # # No further preprocessing needed # npx_recommended <- npx_br_data # # # # # npx_after_br_final generated by olink_normalization with format = FALSE # # Option 1: Exclude non-bridgeable assays from both products # npx_recommended <- npx_br_data |> # dplyr::mutate(NPX_original = NPX) |> # dplyr::filter(BridgingRecommendation != "Not Bridgeable") |> # dplyr::mutate(NPX = case_when( # BridgingRecommendation == "MedianCentering" ~ MedianCenteredNPX, # BridgingRecommendation == "QuantileSmoothing" ~ QSNormalizedNPX, # .default = NPX)) |> # dplyr::mutate(OlinkID_HT = OlinkID) |> # dplyr::mutate(OlinkID = paste0(OlinkID, "_", OlinkID_E3072)) # # # Option 2: Analyze non bridgeable assays separately # npx_recommended <- npx_br_data |> # dplyr::mutate(NPX_original = NPX) |> # dplyr::mutate(NPX = case_when( # BridgingRecommendation == "MedianCentering" ~ MedianCenteredNPX, # BridgingRecommendation == "QuantileSmoothing" ~ QSNormalizedNPX, # .default = NPX)) |> # dplyr::mutate(OlinkID_HT = OlinkID) |> # dplyr::mutate(OlinkID = ifelse(BridgingRecommendation != "NotBridgeable", # paste0(OlinkID, "_", OlinkID_E3072), # # Concatenated OlinkID for bridgeable Assays # ifelse(Project == "Reference Product", # # replace with reference project name as set in function # OlinkID, # OlinkID_E3072)))