## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(MicroMoB) library(ggplot2) library(data.table) library(parallel) ## ----------------------------------------------------------------------------- p <- l <- 1 tmax <- 1e2 M <- 120 pB <- 0.8 pQ <- 0.95 PsiB <- 0.5 PsiQ <- 0.85 B <- (M - (M*pQ*(1-PsiQ))) / ((pB*PsiB) - (pQ*(1-PsiQ)) + 1) Q <- (M*pB*PsiB) / ((pB*PsiB) - (pQ*(1-PsiQ)) + 1) lambda <- B - (pB*(1-PsiB)*B) - (pQ*PsiQ*Q) nu <- 25 eggs <- nu * PsiQ * Q # static pars molt <- 0.1 surv <- 0.9 # solve L L <- lambda * ((1/molt) - 1) + eggs K <- - (lambda * L) / (lambda - L*molt*surv) ## ----------------------------------------------------------------------------- # deterministic run mod <- make_MicroMoB(tmax = tmax, p = p, l = l) setup_aqua_BH(model = mod, stochastic = FALSE, molt = molt, surv = surv, K = K, L = L) setup_mosquito_BQ(model = mod, stochastic = FALSE, eip = 5, pB = pB, pQ = pQ, psiQ = PsiQ, Psi_bb = matrix(1), Psi_bq = matrix(1), Psi_qb = matrix(1), Psi_qq = matrix(1), nu = nu, M = c(B, Q), Y = matrix(0, nrow = 2, ncol = 6)) out_det <- data.table::CJ(day = 1:tmax, state = c('L', 'A', 'B', 'Q'), value = NaN) out_det <- out_det[c('L', 'A', 'B', 'Q'), on="state"] data.table::setkey(out_det, day) mod$mosquito$q <- 0.3 mod$mosquito$f <- log(1 - PsiB) / -0.3 while (get_tnow(mod) <= tmax) { step_aqua(model = mod) step_mosquitoes(model = mod) out_det[day == get_tnow(mod) & state == 'L', value := mod$aqua$L] out_det[day == get_tnow(mod) & state == 'A', value := mod$aqua$A] out_det[day == get_tnow(mod) & state == 'B', value := mod$mosquito$M[1]] out_det[day == get_tnow(mod) & state == 'Q', value := mod$mosquito$M[2]] mod$global$tnow <- mod$global$tnow + 1L } ## ----------------------------------------------------------------------------- # stochastic runs out_sto <- mclapply(X = 1:10, FUN = function(runid) { mod <- make_MicroMoB(tmax = tmax, p = p, l = l) setup_aqua_BH(model = mod, stochastic = TRUE, molt = molt, surv = surv, K = K, L = L) setup_mosquito_BQ(model = mod, stochastic = TRUE, eip = 5, pB = pB, pQ = pQ, psiQ = PsiQ, Psi_bb = matrix(1), Psi_bq = matrix(1), Psi_qb = matrix(1), Psi_qq = matrix(1), nu = nu, M = c(B, Q), Y = matrix(0, nrow = 2, ncol = 6)) out <- data.table::CJ(day = 1:tmax, state = c('L', 'A', 'B', 'Q'), value = NaN) out <- out[c('L', 'A', 'B', 'Q'), on="state"] data.table::setkey(out, day) mod$mosquito$q <- 0.3 mod$mosquito$f <- log(1 - PsiB) / -0.3 while (get_tnow(mod) <= tmax) { step_aqua(model = mod) step_mosquitoes(model = mod) out[day == get_tnow(mod) & state == 'L', value := mod$aqua$L] out[day == get_tnow(mod) & state == 'A', value := mod$aqua$A] out[day == get_tnow(mod) & state == 'B', value := mod$mosquito$M[1]] out[day == get_tnow(mod) & state == 'Q', value := mod$mosquito$M[2]] mod$global$tnow <- mod$global$tnow + 1L } out[, 'run' := as.integer(runid)] return(out) }) ## ----------------------------------------------------------------------------- out_sto <- data.table::rbindlist(out_sto) ggplot(data = out_sto) + geom_line(aes(x = day, y = value, color = state, group = run), alpha = 0.35) + geom_line(data = out_det, aes(x = day, y = value, color = state)) + facet_wrap(. ~ state, scales = "free")