## ----setup, echo=FALSE, message=FALSE----------------------------------------- knitr::opts_chunk$set(echo=TRUE, cache=TRUE, collapse=T, comment='#>') library(MetAlyzer) library(SummarizedExperiment) library(ggplot2) library(dplyr) ## ----install_cran, eval=FALSE------------------------------------------------- # install.packages("MetAlyzer") ## ----install_github, eval=FALSE----------------------------------------------- # library(devtools) # install_github("nilsmechtel/MetAlyzer") ## ----initialize_extraction---------------------------------------------------- fpath <- example_extraction_data() metalyzer_se <- MetAlyzer_dataset(file_path = fpath) metalyzer_se ## ----get_meta_data------------------------------------------------------------ meta_data <- colData(metalyzer_se) head(meta_data) ## ----get_metabolites---------------------------------------------------------- metabolites <- rowData(metalyzer_se) head(metabolites) ## ----get_concentration_values------------------------------------------------- concentration_values <- assays(metalyzer_se)$conc_values head(concentration_values, c(5, 5)) ## ----get_quantification_status------------------------------------------------ quantification_status <- assays(metalyzer_se)$quant_status head(quantification_status, c(5, 5)) ## ----get_aggregated_data------------------------------------------------------ aggregated_data <- aggregatedData(metalyzer_se) head(aggregated_data) ## ----filter_metabolites_extraction-------------------------------------------- metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites = "Metabolism Indicators") metalyzer_se ## ----filter_meta_data--------------------------------------------------------- metalyzer_se <- filterMetaData(metalyzer_se, `Sample Description` %in% 1:6) ## ----renameMetaData----------------------------------------------------------- metalyzer_se <- renameMetaData(metalyzer_se, "Extraction_Method" = "Sample Description") meta_data <- colData(metalyzer_se) head(meta_data) ## ----load_replicates---------------------------------------------------------- replicate_meta_data <- example_meta_data() head(replicate_meta_data) ## ----updateMetaData----------------------------------------------------------- metalyzer_se <- updateMetaData( metalyzer_se, Date = Sys.Date(), Replicate = replicate_meta_data$Replicate ) meta_data <- colData(metalyzer_se) head(meta_data) ## ----calculateCV-------------------------------------------------------------- metalyzer_se <- calculate_cv( metalyzer_se, groups = c("Tissue", "Extraction_Method", "Metabolite"), cv_thresholds = c(0.1, 0.2, 0.3), na.rm = TRUE ) aggregated_data <- aggregatedData(metalyzer_se) %>% select(c(Extraction_Method, Metabolite, Mean, SD, CV, CV_thresh)) head(aggregated_data) ## ----calculateANOVA----------------------------------------------------------- metalyzer_se <- calculate_anova( metalyzer_se, categorical = "Extraction_Method", groups = c("Tissue", "Metabolite"), impute_perc_of_min = 0.2, impute_NA = TRUE ) aggregated_data <- aggregatedData(metalyzer_se) %>% select(c(Extraction_Method, Metabolite, imputed_Conc, log2_Conc, ANOVA_n, ANOVA_Group)) head(aggregated_data) ## ----imputation_results------------------------------------------------------- cat("Number of zero values before imputation:", sum(aggregatedData(metalyzer_se)$Concentration == 0, na.rm = TRUE), "\n") cat("Number of zero values after imputation:", sum(aggregatedData(metalyzer_se)$imputed_Conc == 0, na.rm = TRUE), "\n") ## ----initialize_treatment----------------------------------------------------- fpath <- example_mutation_data_xl() metalyzer_se <- MetAlyzer_dataset(file_path = fpath) metalyzer_se ## ----prepare_metabolites_treatment-------------------------------------------- metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites = "Metabolism Indicators") metalyzer_se ## ----show_sample_description-------------------------------------------------- meta_data <- colData(metalyzer_se) meta_data$`Sample Description` ## ----prepare_control_mutant--------------------------------------------------- control_mutant <- factor(colData(metalyzer_se)$`Sample Description`, levels = c("Control", "Mutant")) metalyzer_se <- updateMetaData(metalyzer_se, Control_Mutant = control_mutant) meta_data <- colData(metalyzer_se) meta_data$Control_Mutant ## ----calculate_log2FC--------------------------------------------------------- metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Control_Mutant", impute_perc_of_min = 0.2, impute_NA = TRUE ) ## ----get_log2FC--------------------------------------------------------------- log2FC(metalyzer_se) ## ----plot_log2FC_vulcano, fig.width=7, fig.height=4.5------------------------- log2fc_vulcano <- plot_log2FC( metalyzer_se, hide_labels_for = rownames(rowData(metalyzer_se)), vulcano=TRUE ) log2fc_vulcano ## ----plot_log2FC_scatter, fig.width=9, fig.height=9--------------------------- log2fc_by_class <- plot_log2FC( metalyzer_se, hide_labels_for = rownames(rowData(metalyzer_se)), vulcano=FALSE ) log2fc_by_class ## ----plot_network, fig.width=9, fig.height=9---------------------------------- log2fc_network <- plot_network( metalyzer_se, q_value=0.05, metabolite_text_size=2, connection_width=0.75, pathway_text_size=4, pathway_width=4, scale_colors = c("green", "black", "magenta") ) log2fc_network