## ----include = FALSE---------------------------------------------------------- NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") knitr::opts_chunk$set( collapse = TRUE, eval = TRUE, warning = FALSE, message = FALSE, comment = "#>", echo = FALSE, eval = NOT_CRAN, fig.width = 7, fig.height = 5 ) ## ----message=FALSE, warning=FALSE--------------------------------------------- # library(IncidencePrevalence) # library(visOmopResults) # library(dplyr) # library(ggplot2) # library(stringr) # # cdm <- mockIncidencePrevalence( # sampleSize = 100, # earliestObservationStartDate = as.Date("2010-01-01"), # latestObservationStartDate = as.Date("2010-01-01"), # minDaysToObservationEnd = 364, # maxDaysToObservationEnd = 364, # outPre = 0.1 # ) # # timings <- benchmarkIncidencePrevalence(cdm) # timings |> # glimpse() ## ----------------------------------------------------------------------------- # visOmopTable(timings, # hide = c( # "variable_name", "variable_level", # "strata_name", "strata_level" # ), # groupColumn = "task" # ) ## ----------------------------------------------------------------------------- # test_db <- IncidencePrevalenceBenchmarkResults |> # filter(str_detect(cdm_name, "CPRD", negate = TRUE)) # test_db |> # glimpse() ## ----------------------------------------------------------------------------- # visOmopTable(bind(timings, test_db), # settingsColumn = "package_version", # hide = c( # "variable_name", "variable_level", # "strata_name", "strata_level" # ), # groupColumn = "task" # ) ## ----------------------------------------------------------------------------- # real_db <- IncidencePrevalenceBenchmarkResults |> # filter(str_detect(cdm_name, "CPRD")) # visOmopTable(real_db, # settingsColumn = "package_version", # hide = c( # "variable_name", "variable_level", # "strata_name", "strata_level" # ), # groupColumn = "task" # ) ## ----eval = FALSE------------------------------------------------------------- # library(CDMConnector) # library(IncidencePrevalence) # # cdm <- cdmFromCon("....") # timings <- benchmarkIncidencePrevalence(cdm) # exportSummarisedResult( # timings, # minCellCount = 5, # fileName = "results_{cdm_name}_{date}.csv", # path = getwd() # )