## ----setup, include=FALSE, cache=FALSE-------------------------------------------------- library(knitr) # set global chunk options # opts_chunk$set(fig.path='figure/minimal-', fig.align='center', fig.show='hold') options(formatR.arrow=TRUE,width=90) knitr::opts_chunk$set(dpi=100, eval = FALSE) ## ----warning = FALSE, message = FALSE--------------------------------------------------- # library("dplyr") # library("FRK") # library("ggplot2") # library("IDE") # library("sp") # library("spacetime") ## ----echo = FALSE, message=FALSE, warning=FALSE----------------------------------------- # library("ggplot2") # library("gridExtra") ## ----message=FALSE---------------------------------------------------------------------- # SIM1 <- simIDE(T = 10, nobs = 100, k_spat_invariant = 1) ## ----results = 'hide', fig.keep = 'none'------------------------------------------------ # print(SIM1$g_truth) # print(SIM1$g_obs) ## ----message = FALSE-------------------------------------------------------------------- # IDEmodel <- IDE(f = z ~ s1 + s2, # data = SIM1$z_STIDF, # dt = as.difftime(1, units = "days"), # grid_size = 41) ## ----eval = FALSE----------------------------------------------------------------------- # fit_results_sim1 <- fit.IDE(IDEmodel, # parallelType = 1) ## ----results = 'hide', fig.keep = 'none'------------------------------------------------ # show_kernel(fit_results_sim1$IDEmodel) ## --------------------------------------------------------------------------------------- # fit_results_sim1$IDEmodel$get("k") %>% unlist() ## --------------------------------------------------------------------------------------- # fit_results_sim1$IDEmodel$get("betahat") ## --------------------------------------------------------------------------------------- # abs_ev <- eigen(fit_results_sim1$IDEmodel$get("M"))$values %>% abs() # summary(abs_ev) ## --------------------------------------------------------------------------------------- # ST_grid_df <- predict(fit_results_sim1$IDEmodel) ## ----results = 'hide', fig.keep = 'none'------------------------------------------------ # gpred <- ggplot(ST_grid_df) + # Plot the predictions # geom_tile(aes(s1, s2, fill=Ypred)) + # facet_wrap(~t) + # scale_fill_distiller(palette="Spectral", limits = c(-0.1,1.4)) + # coord_fixed(xlim=c(0, 1), ylim = c(0, 1)) # # gpredse <- ggplot(ST_grid_df) + # Plot the prediction s.es # geom_tile(aes(s1, s2, fill=Ypredse)) + # facet_wrap(~t) + # scale_fill_distiller(palette="Spectral") + # coord_fixed(xlim=c(0, 1), ylim = c(0, 1)) ## ----echo = FALSE, fig.keep = 'none', results = 'hide', message = FALSE----------------- # library("gridExtra") # g <- grid.arrange(SIM1$g_truth + scale_x_continuous(breaks = c(0,0.5)) + # scale_fill_distiller(palette = "Spectral", limits = c(0.1,1.4)), # SIM1$g_obs + scale_x_continuous(breaks = c(0,0.5)) + # scale_fill_distiller(palette = "Spectral", limits = c(0.1,1.4)), # gpred + scale_x_continuous(breaks = c(0,0.5)) + # scale_fill_distiller(palette = "Spectral", limits = c(0.1,1.4)), # gpredse + scale_x_continuous(breaks = c(0,0.5)) , # nrow = 2) # ggsave(g, file = "./img/Chapter_5/IDEsimresults.png", width = 12, height = 10, dpi = 300) ## ----echo= FALSE, eval = FALSE---------------------------------------------------------- # s1_pred <- s2_pred <- seq(0,1,length.out = 71) # st_grid <- expand.grid(s1 = s1_pred, # s2 = s2_pred, # date = unique(time(SIM1$z_STIDF))) # pred_grid <- STIDF(sp = SpatialPoints(st_grid[,c("s1","s2")]), # time = st_grid$date, # data = st_grid %>% select(-s1, -s2, -date)) # # ## Predict using prior guesses # ST_grid_df <- predict(fit_results_sim1$IDEmodel, # newdata = pred_grid) %>% # as.data.frame() ## --------------------------------------------------------------------------------------- # SIM2 <- simIDE(T = 15, nobs = 1000, k_spat_invariant = 0) ## ----results = 'hide', fig.keep = 'none'------------------------------------------------ # print(SIM2$g_truth) # print(SIM2$g_obs) ## ----eval = FALSE----------------------------------------------------------------------- # show_kernel(SIM2$IDEmodel, scale = 0.2) ## --------------------------------------------------------------------------------------- # mbasis_1 <- auto_basis(manifold = plane(), # functions on the plane # data = SIM2$z_STIDF, # data # nres = 1, # 1 resolution # type = 'bisquare') # type of functions ## --------------------------------------------------------------------------------------- # kernel_basis <- list(thetam1 = constant_basis(), # thetam2 = constant_basis(), # thetam3 = mbasis_1, # thetam4 = mbasis_1) ## --------------------------------------------------------------------------------------- # IDEmodel <- IDE(f = z ~ s1 + s2 + 1, # data = SIM2$z_STIDF, # dt = as.difftime(1, units = "days"), # grid_size = 41, # kernel_basis = kernel_basis) ## ----eval = FALSE----------------------------------------------------------------------- # fit_results_sim2 <- fit.IDE(IDEmodel, # parallelType = 1, # itermax = 400) ## ----eval = FALSE----------------------------------------------------------------------- # show_kernel(fit_results_sim2$IDEmodel)