## ----message=FALSE------------------------------------------------------------ library(datasets) data(mtcars) mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual")) fit <- lm(mpg ~ cyl + disp + hp + am, data = mtcars) library(Greg) printCrudeAndAdjustedModel(fit) ## ----------------------------------------------------------------------------- printCrudeAndAdjustedModel(fit, digits = 1, add_references = TRUE, rowname.fn = function(n){ if (n == "disp") return("Displacement (cu.in.)") if (n == "hp") return("Gross horsepower") if (n == "cyl") return("No. cylinders") if (n == "am") return("Transmission") return(n) }) ## ----message=FALSE------------------------------------------------------------ library(Hmisc) label(mtcars$disp) <- "Displacement (cu.in)" label(mtcars$cyl) <- "No. cylinders" label(mtcars$hp) <- "Gross horsepower" label(mtcars$am) <- "Transmission" printCrudeAndAdjustedModel(fit, digits = 1, add_references = TRUE) ## ----styling_with_addHtmlTableStyle------------------------------------------- library(htmlTable) printCrudeAndAdjustedModel(fit, digits = 1, add_references = TRUE) |> # We can also style the output as shown here addHtmlTableStyle(css.rgroup = "") ## ----theming------------------------------------------------------------------ setHtmlTableTheme(css.rgroup = "") ## ----------------------------------------------------------------------------- fit_mpg <- lm(mpg ~ cyl + disp + hp + am, data = mtcars) fit_weight <- lm(wt ~ cyl + disp + hp + am, data = mtcars) p_mpg <- printCrudeAndAdjustedModel(fit_mpg, digits = 1, add_references = TRUE) p_weight <- printCrudeAndAdjustedModel(fit_weight, digits = 1, add_references = TRUE) rbind("Miles per gallon" = p_mpg, "Weight (1000 lbs)" = p_weight) cbind("Miles per gallon" = p_mpg, "Weight (1000 lbs)" = p_weight) ## ----------------------------------------------------------------------------- p_mpg[,1:2] p_mpg[1:2,] ## ----------------------------------------------------------------------------- library("survival") set.seed(10) n <- 500 ds <- data.frame( ftime = rexp(n), fstatus = sample(0:1, size = n, replace = TRUE), y = rnorm(n = n), x1 = factor(sample(LETTERS[1:4], size = n, replace = TRUE)), x2 = rnorm(n, mean = 3, 2), x3 = rnorm(n, mean = 3, 2), x4 = factor(sample(letters[1:3], size = n, replace = TRUE)), stringsAsFactors = FALSE) library(survival) library(splines) fit <- coxph(Surv(ds$ftime, ds$fstatus == 1) ~ x1 + ns(x2, 4) + x3 + strata(x4), data = ds) printCrudeAndAdjustedModel(fit, add_references = TRUE) ## ----------------------------------------------------------------------------- # Note that the crude is with the strata a <- getCrudeAndAdjustedModelData(fit) a["x3", "Crude"] == exp(coef(coxph(Surv(ds$ftime, ds$fstatus == 1) ~ x3 + strata(x4), data = ds)))