## ---- echo = FALSE------------------------------------------------------------ knitr::opts_chunk$set(message = FALSE, cache = FALSE,eval=FALSE) ## ---- eval=FALSE-------------------------------------------------------------- # # not in CRAN yet (need to test it further) # #install.packages('GetQuandlData') # # # from github # devtools::install_github('msperlin/GetQuandlData') ## ---- eval=FALSE-------------------------------------------------------------- # library(GetQuandlData) # # my_id <- c('Inflation USA' = 'RATEINF/INFLATION_USA') # my_api <- readLines('YOURAPIHERE') # you need your own API (get it at https://www.quandl.com/sign-up-modal?defaultModal=showSignUp>) # first_date <- '2000-01-01' # last_date <- Sys.Date() # # df <- get_Quandl_series(id_in = my_id, # api_key = my_api, # first_date = first_date, # last_date = last_date, # cache_folder = tempdir()) # # dplyr::glimpse(df) ## ----eval=FALSE--------------------------------------------------------------- # p <- ggplot(df, aes(x = ref_date, y = value/100)) + # geom_col() + # labs(y = 'Inflation (%)', # x = '', # title = 'Inflation in the US') + # scale_y_continuous(labels = scales::percent) # # p ## ---- message=TRUE, eval=FALSE------------------------------------------------ # library(GetQuandlData) # # db_id <- 'RATEINF' # my_api <- readLines('YOURAPIHERE') # you need your own API # # df <- get_database_info(db_id, my_api) # # head(df) ## ----------------------------------------------------------------------------- # idx <- stringr::str_detect(df$name, 'Inflation YOY') # # df_series <- df[idx, ] ## ----------------------------------------------------------------------------- # my_id <- df_series$quandl_code # names(my_id) <- df_series$name # first_date <- '2010-01-01' # last_date <- Sys.Date() # # df_inflation <- get_Quandl_series(id_in = my_id, # api_key = my_api, # first_date = first_date, # last_date = last_date, # cache_folder = tempdir()) # # glimpse(df_inflation) ## ----------------------------------------------------------------------------- # p <- ggplot(df_inflation, aes(x = ref_date, y = value/100)) + # geom_col() + # labs(y = 'Inflation (%)', # x = '', # title = 'Inflation in the World', # subtitle = paste0(first_date, ' to ', last_date)) + # scale_y_continuous(labels = scales::percent) + # facet_wrap(~series_name) # # p