
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

GeDS: An R Package for Regression, Generalized

Additive Models and Functional Gradient Boosting,

based on Geometrically Designed (GeD) Splines

Dimitrina S. Dimitrova
City St George’s,

University of London

Vladimir K. Kaishev
City St George’s,

University of London

Emilio L. Sáenz Guillén
City St George’s,

University of London

Abstract

In recent years, geometrically designed variable knot splines, named GeDS, have
emerged as a promising technique in the domain of spline regression, with Kaishev, Dim-
itrova, Haberman, and Verrall (2016) and Dimitrova, Kaishev, Lattuada, and Verrall
(2023) showcasing their potential. In this paper, we introduce the R package GeDS

that includes the implementation of two significant enhancements of the original GeDS
methodology. The first broadens the applicability of GeDS to encompass generalized ad-
ditive models (GAM), by implementing the local scoring algorithm using GeD splines
as function smoothers. This approach stands as a competitive alternative, complement-
ing existing practices suggested by Hastie and Tibshirani (1990) and Wood (2017), and
implemented in the R packages gam and mgcv, respectively. Secondly, we incorporate
functional gradient boosting (FGB) to estimate the number and location of the spline
knots, as well as the associated regression coefficients. This novel approach allows the fi-
nal boosted fit to be expressed as a single spline model, contrasting with typical gradient
boosting models, which generally lack a straightforward, interpretable representation. We
demonstrate that this technique yields competitive spline fits comparing favorably in both
accuracy and efficiency to the outputs of existing boosting-with-splines procedures pro-
posed by Bühlmann and Yu (2003) and Schmid and Hothorn (2008a), and implemented
in the R package mboost.

The above extensions position GeDS as a versatile tool for additive modeling within
the exponential family, suitable for both regression and classification tasks. The GeDS
methodology, including GAM-GeDS and FGB-GeDS, is implemented in the R package
GeDS available from https://cran.r-project.org/package=GeDS. We illustrate the
capabilities of this package foregrounding the competitiveness of GeDS, and its potential
for applications in the wider contexts of data science and machine learning.

Keywords: Variable-knot spline regression, Gradient Boosting, Generalized Additive Models.

https://doi.org/10.18637/jss.v000.i00
https://cran.r-project.org/package=GeDS

2 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

1. Introduction

Geometrically designed spline (GeDS) regression with variable knots stands as a very com-
petitive alternative to existing methods in the free-knot regression splines literature of recent
years (see, e.g., Kaishev et al. (2016) for a brief review). The GeDS method is based on a
residual-driven (locally-adaptive) knot insertion scheme that produces a piecewise linear spline
fit, over which smoother higher order spline fits are subsequently built applying Schoenberg’s
variation diminishing approximation. GeDS was first introduced for the univariate Normal
case by Kaishev et al. (2016). The authors demonstrate that GeDS estimation overcomes
some major drawbacks of the existing knot optimization methods, namely “knot confound-
ing” and “lethargy” problems (see Zhou and Shen (2001) and Jupp (1978)), without relying
on costly non-linear optimization. It yields highly competitive outcomes utilizing a small
number of knots for various signal-to-noise ratios, and is suitable for both sparse and dense
data. Moreover, this is accomplished at a minimal computational cost, employing a stopping
rule based on a ratio of consecutive deviances.

Dimitrova et al. (2023) have extended the GeDS methodology to the broader realm of gener-
alized non-linear models (GNM)—that include generalized linear models (GLM) as a special
case—in which the response variable may have any distribution from the exponential fam-
ily. The authors conduct a comprehensive numerical examination that demonstrates how
the advantageous features of the Normal GeDS methodology carry over into its extension to
GNM/GLM models, favorably comparing with other existing spline methods. Furthermore,
Dimitrova et al. (2023) introduce a multivariate extension of GeDS, by defining the predictor
component of the GLM to be in the form of a multivariate tensor product spline function.
The GeDS method is implemented in the R package GeDS, available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=GeDS (attracted over
32,000 downloads since released).

Standing out for its efficiency to produce highly competitive fits—namely, its ability to model
intricate functions with minimal parameters (i.e., knots and regression coefficients)—the R

implementation of the canonical GeDS methodology is, however, restricted to a predictor
dimension of up to two covariates. Given this limitation and the complexity involved in ex-
tending tensor product splines beyond two dimensions, we have identified two major strands in
the literature where extending the GeDS methodology and enhancing its software implemen-
tation would be particularly impactful: generalized additive models and functional gradient
boosting.

On the one hand, generalized additive models (GAM; Hastie and Tibshirani (1986, 1990))
provide a flexible statistical modeling technique that extends generalized linear models (GLM)
to allow for the modeling of predictor effects via non-linear smooth functions of the features.
This enables to capture more complex patterns while retaining the interpretability inherent
to GLM. Hastie and Tibshirani’s method to fit GAM employs the local scoring and backfit-
ting algorithms, in conjunction with scatterplot smoothers for the fitting of individual func-
tions. Their approach is implemented in the R package gam (Hastie (2024)), which currently
supports local regression and smoothing splines to fit the models’ smooth functions. This
framework is extended by the R package gamlss (Stasinopoulos and Rigby (2007)), enabling
the modeling of all the parameters of the conditional distribution of the response variable,
and by the R package VGAM (Yee (2010), Yee (2015)), which implements vector general-
ized additive models, capable of concurrently smoothing multiple linear (additive) predictors,

http://CRAN.R-project.org/package=GeDS

Journal of Statistical Software 3

thereby supporting multivariate responses and allowing the joint modeling of several distri-
bution parameters for distributions beyond the exponential family. Wood (2017) proposes
instead a penalized regression spline approach, with automatic smoothness selection. The
latter is implemented in the mgcv R package (Wood (2023)) which extends gam allowing
for more general smoothers, including two-dimensional smoothers for spatial data or tensor
product smoothers for interactions. Other popular software implementations of Hastie and
Tibshirani’s GAM approach include PROC GAM in SAS (see Knafl and Ding (2016)) and the
community-contributed gam module in Stata (see Royston and Ambler (2002)), while Wood’s
approach is also implemented in pyGAM in Python (see Servén and Brummitt (2018)).

On the other hand, functional gradient boosting (FGB) constitutes a pivotal and widely
adopted methodology in machine learning, particularly well-suited for regression and classifi-
cation tasks in high-dimensional data settings. The original boosting procedure emerged from
the field of machine learning and was first proposed by Schapire (1990), who discussed that
“arbitrarily high accuracy could be achieved in an algorithm utilizing ‘weak learners’”. This
embryonic idea laid the basis for the development of the widely recognized Adaptive Boost-
ing (AdaBoost) classification algorithm, introduced by Freund and Schapire (1996, 1997).
Breiman (1998, 1999) later demonstrated that AdaBoost could be interpreted as a gradient
descent algorithm with a particular loss function. This perspective was furthered by Fried-
man, Hastie, and Tibshirani (2000) and Friedman (2001), who tailored the boosting concept
to the field of statistical modeling and developed the first explicit regression gradient boost-
ing algorithms. In the aftermath of these foundational works, numerous statistical boosting
algorithms have been proposed in the academic literature (see, for example, Mayr, Binder,
Gefeller, and Schmid (2014) for an overview). At its core, boosting constitutes an ensemble
machine learning technique aimed at building a single “strong” learner by iteratively combin-
ing multiple simple models (or “weak learners”), each striving to enhance the performance of
the preceding accumulative model. A particularly relevant boosting algorithm is component-
wise (or model-based) gradient boosting (Bühlmann and Yu (2003), Bühlmann and Hothorn
(2007)). The latter was introduced as a competitive alternative to standard estimation tech-
niques for (generalized) additive models, such as backfitting. Unlike traditional methods
for fitting additive models, component-wise boosting inherently performs variable selection,
which makes it especially suitable for high-dimensional problems. This approach has more
recently been extended in the gamboostLSS package (see Hofner, Mayr, and Schmid (2016))
to allow for the simultaneous modeling of multiple distribution parameters, and in the FD-

boost package (see Brockhaus, Rügamer, and Greven (2020)) by implementing boosting in
functional regression settings with scalar and functional responses and covariates.

Trees are the most popular base procedure in boosting, and numerous widely recognized soft-
ware implementations are available—see, e.g., the R package gbm (Ridgeway and Developers
2024), as well as the more recent, highly optimized libraries, XGBoost (Chen and Guestrin
(2016)), LightGBM (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu (2017)) or CatBoost

(Dorogush, Ershov, and Gulin (2018)). Nevertheless, splines have also been frequently con-
sidered. For instance, Bühlmann and Yu (2003) examined the L2Boost algorithm in detail
and determined that L2Boost using smoothing splines as learners achieves optimal minimax
rates of convergence in both regression and classification. The authors present L2Boosting
in conjunction with component-wise cubic smoothing splines as a “practical and efficient”
procedure, particularly when handling high-dimensional predictors. They claim that their
approach outperforms L2Boost with stumps (i.e., a tree with two terminal nodes) and other

4 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

traditional competitors. Schmid and Hothorn (2008a) consider fitting additive regression
models using L2Boost, but with P-splines functions of the predictors instead. These yield
similar prediction errors to smoothing splines, but are more advantageous from a computa-
tional perspective. Boosting using component-wise P-splines is implemented in the mboost R

package (Hothorn, Buehlmann, Kneib, Schmid, and Hofner (2022)).

Both in the case of GAM as well as for boosting, the above mentioned spline-focused designs
require the pre-determination by the user of the number of knots, which are then positioned
equidistantly. In addition, the degree of smoothness of the spline is ruled globally by a
sole data-driven penalty parameter, thereby eliminating the possibility of any local adjust-
ment. Yet, as demonstrated by Dimitrova et al. (2023), there are many applications where
an elevated level of adaptability within the spline predictor component, allowing for local
smoothness regulation, is sought.

In this context, geometrically designed (GeD) variable knot regression splines represent a
compelling alternative. First, we extend GeDS to accommodate the family of generalized
additive spline models, integrating GeD splines as function smoothers at each backfitting
iteration within the local scoring algorithm. Second, we introduce a novel functional gradi-
ent boosting algorithm that employs GeD splines as base-learners. Both GAM-GeDS and
FGB-GeDS propel GeDS into the additive modeling framework within the exponential family
of distributions. On the one hand, GAM-based extensions may be advantageous when the
interpretability of models, visualization of effects, and flexibility in representing diverse rela-
tionships are paramount. On the other hand, FGB-based extensions may be more suited to
scenarios where superior predictive performance and robustness are essential, making it apt
for handling complex, high-dimensional data.

The above extensions result in highly competitive spline fitting that surpasses similar compet-
ing approaches both in accuracy and efficiency. At the same time, they improve the flexibility
and adaptability of the GeDS methodology, thereby broadening the scope of its applicability
to more complex and diverse problem domains.

Another remarkable hallmark is that the ability to express GeDS base-learners as piecewise
polynomial functions enables the representation of the FGB-GeDS model as a single spline
model. This contrasts with typical gradient boosting models—employing, for example, trees
or smoothing splines/P-splines—which generally lack a compact, interpretable representation,
and are often referred to as “black box” models. In addition, FGB-GeDS efficiently addresses
the selection of an optimal number of boosting iterations through a stopping rule based on a
ratio of consecutive deviances, thus avoiding time-consuming techniques like cross-validation.

In this paper we describe the statistical framework underlying the GAM-GeDS and FGB-
GeDS methodologies. Additionally, we introduce the R package GeDS, in which these two
latest extensions are implemented, along with the canonical GeDS technique. We illustrate
the usage of GeDS and highlight its advantages when compared to the approaches from the
gam, mgcv, and mboost packages. The structure of the paper is as follows. In Section 2, we
briefly describe the GeDS methodology. In Section 3, generalized additive models with GeD
splines is presented. In Section 4, we outline the basic notions of functional gradient boosting
for regression and classification, and in Section 5 the FGB-GeDS algorithm is introduced. In
Sections 6, 7 and 8, we thoroughly study the numerical properties of GAM-GeDS and FGB-
GeDS and compare them with the gam and mgcv packages estimators, on the one hand,
and the mboost package estimators, on the other. Finally, in Section 9, we provide some

Journal of Statistical Software 5

conclusions and discuss further possible extensions of the GeDS package and methodology.

2. GeDS estimation method

We start by describing the original univariate Normal GeDS estimation method presented in
Kaishev et al. (2016), which is implemented as NGeDS() in the GeDS R package. Consider a
response variable Y and a sole independent variable X, with X ∈ [a, b], a, b ∈ R, and assume
there is a relationship between X and Y of the form:

Y = f(X) + ϵ (1)

where f(·) is an unknown function and ϵ is a random (normal) error variable with zero mean,
E [ϵ] = 0, and constant variance, E

[
ϵ2

]
= σ2

ϵ . A possible solution to the regression problem
of estimating f(·) based on a sample of observations {Yi, Xi}

N
i=1, is to approximate f with an

n-th order (i.e., degree n− 1) spline function on [a, b].

More specifically, denote by Stκ,n the linear space of all n-th order spline functions defined
on a set of non-decreasing knots tκ,n = {ti}

2n+κ
i=1 , where tn = a, tn+κ+1 = b. We consider

splines with simple knots, except for the n left and right most knots which will be assumed
coalescent, i.e. tκ,n = {t1 = ... = tn < tn+1 < ... < tn+κ < tn+κ+1 = ... = t2n+κ}. By the
Curry-Schoenberg theorem, a spline regression function f ∈ Stκ,n , can be expressed as

f(tκ,n; x) = θ′Nn(x) =
p∑

i=1

θiNi,n(x) (2)

where θ = (θ1, ..., θp)′ is a vector of real valued regression coefficients and Nn(x) =
(
N1,n(x),

..., Np,n(x)
)′

, p = n + κ, are B-splines of order n, defined on tκ,n. It is well known that
∑j

i=j−n+1 Ni,n(t) = 1 for any t ∈ [tj , tj+1), j = n, ..., n + κ and Ni,n(t) = 0 for t /∈ [ti, ti+n].

Thus, for a fixed spline order n and given a sample {Yi, Xi}
N
i=1, the spline regression problem

boils down to estimating the number of (internal) knots κ, their locations tκ,n, and the
regression coefficients θ.

In this regard, geometrically designed splines (GeDS) are introduced as a novel variable knot
spline regression estimation technique. This method is inspired by an innovative geometric
interpretation of parameter estimation in spline regression as akin to pinpointing “control
points”. Indeed, the spline regression function can be regarded as a special case of a parametric
spline curve, characterized by a corresponding “control polygon”. In computer graphics and
geometric design, a control polygon consists of a sequence of connected nodes (control points)
in space, that is used to define and manipulate an object’s shape. By adjusting these control
points, rather than the spline points, we can make localized and precise alterations to the
curve, offering greater control over the spline’s form.

The interpretation of the spline regression function as a parametric spline curve, defined and
shaped by a control polygon, suggests that given n and κ—i.e., the order of the spline and the
number of internal knots—determining the knot positions and regression coefficients of the
spline regression function is tantamount to locating the x and y-coordinates of the vertices of
the control polygon of the parametric spline curve. Therefore, and since the control polygon
itself is a linear spline function, GeDS starts by constructing a control polygon as a linear
spline fit to the data. Due to the shape-preserving and convex hull properties that a spline

6 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

curve holds with respect to its control polygon, the geometric position of this control polygon
defines then the location of the higher order, smoother spline regression functions that are
subsequently built.

The GeDS method unfolds into two phases. In stage A, a least squares linear spline fit to the
data is constructed. This is viewed as the initial position of the control polygon of a higher
order spline regression curve. In stage B, a higher order spline function—designed to reduce
variations and provide a least-squares fit to the data—is used to approximate the fitted poly-
gon from Stage A. Indeed, this roughly coincides with the Schoenberg’s variation-diminishing
spline approximation of the control polygon. In a similar way, designers in Computer Aided
Geometric Design applications construct a control polygon to capture the shape of the curve
underlying some noisy data, and then compute smoother higher order Schoenberg’s variation
diminishing spline curves that closely follow the initial control polygon and hence the desired
shape. Stage A and stage B of GeDS are briefly summarized as follows; for a more detailed
description, see Kaishev et al. (2016).

Stage A

Stage A of a GeDS model is dedicated to finding the optimal linear spline fit to the data, i.e.,
the control polygon that best captures the underlying functional shape determined by the
data. In the Normal case, we start with a straight line least-squares (LS) fit to the data. This
fit is then sequentially “broken” into a piecewise linear LS fit, by iteratively introducing knots
at those points where the fit most deviates from the underlying functional shape determined
by the data, according to a bias driven measure that is computed across appropriately defined
clusters of residuals (see Section 3 in Kaishev et al. (2016)). The resulting LS linear spline fit
is denoted by f̂ (δκ,2; α̂p; x) =

∑p
i=1 α̂iNi,2(x) with number of internal knots κ, number of B-

splines p = κ + 2 and knots locations δκ,2 = {δ1 = δ2 < δ3 < ... < δκ+2 < δκ+3 = δκ+4}. The
knot insertion stops when adding more knots does not significantly improve the fit according
to the following residual sum of squares (RSS) criterion:

RSS(κ + q)/RSS(κ) =
N∑

i=1

(
yi − f̂ (δκ+q,2; xi)

)2
/

N∑

j=1

(
yi − f̂ (δκ,2; xi)

)2
≥ ϕexit (3)

where q ≥ 1 and ϕexit ∈ (0, 1) is a certain pre-specified threshold level close to one. If the
inequality in (3) is satisfied, it implies that the fit f̂(δκ,2; α̂p; x) =

∑p
i=1 α̂iNi,2(x) does not

significantly improve if q more knots are added to the model. Therefore, f̂(δκ,2; α̂p; x) is the
selected linear spline model which reproduces the shape of the unknown, underlying function
f . Equation (3) thus serves both as a stopping rule and model selector.

Stage A of Normal GeDS is extended to the more general GNM/GLM context by replacing
LS fitting by Iteratively Reweighted Least Squares (IRLS) fitting and the stopping rule in
(3) by a deviance-based stopping criterion (see Dimitrova et al. (2023)). Hence, analogously,
starting from a straight line fit and adding one knot at a time, we follow the IRLS procedure
to find the linear spline fit f̂(δκ,2; α̂p; x) such that, for q ≥ 1,

D(α̂p+q; κ + q; 2)

D(α̂p; κ; 2)
≥ ϕexit, (4)

which is a direct generalization of (3), based on the deviance D(α̂p+q; κ + q; 2). Testing the
inequality in (4) serves as the stage A model selector: if the number of internal knots κ, is

Journal of Statistical Software 7

such that the inequality in (4) is fulfilled for the first time in the knot addition process, then
it means that f̂(δκ+q,2; α̂p+q; x) does not significantly improve with the inclusion of the last

q additional knots, and therefore, f̂(δκ,2; α̂p; x) is the selected model that captures the shape
of the underlying data at the predictor scale of the GNM/GLM.

Stage B.1.

Given the (final) linear fit f̂ (δκ,2, α̂p; x) from stage A, with κ internal knots, the set of knots
t̄κ−(n−2),n (with κ − (n − 2) internal knots) for each order n = 3, ..., nmax is obtained by
averaging the knots in the set δκ,2 as follows:

t̄i+n = (δi+2 + ... + δi+n)
/

(n− 1), i = 1, ..., κ− (n− 2). (5)

As shown by Kaishev et al. (2016), by choosing the knots t̄κ−(n−2),n according to (5), the

n-th order spline predictor curve f
(
t̄κ−(n−2),n, α̂p; x

)
becomes nearly the Schoenberg vari-

ation diminishing spline (VDS) approximation to the linear fit, f̂ (δκ,2, α̂p; x), from stage

A. Consequently, the linear fit f̂ (δκ,2, α̂p; x) can be viewed as (nearly) the control polygon

of the predictor curve f
(
t̄κ−(n−2),n, α̂p; x

)
. Error bounds for this VDS approximation and

optimality properties of the knots are derived and discussed in Kaishev et al. (2016).

The spline predictor curve f(t̄κ−(n−2),n, α̂p; x) obtained at stage B.1, closely follows the shape

of f̂(δκ,2, α̂p; x) and, thus, of the data. However, it is not formally a maximum likelihood
estimate of the data {Yi, Xi}

N
i=1. To rectify this, stage B.2 treats the B-spline coefficients α̂p

as unknown parameters (now denoted by θp, p = κ + 2,), and re-estimates them in a final
run of the LS/IRLS procedure, while preserving the same set of knots t̄κ−(n−2),n.

Stage B.2

For each fixed order n = 3, ..., nmax, find the maximum likelihood estimates θ̂p of the B-spline

coefficients, θp, of the spline predictor curve f(t̄κ−(n−2),n, θ̂p; x) with knots determined in

stage B.1. Among all fits f̂(t̄κ−(n−2),n, θ̂p; x), of order n = 2, ..., nmax—i.e. including the

linear fit, f̂(δκ,2, α̂p; x) from stage A—choose the one of order n̂, for which the deviance is
minimal. In this way, in addition to the number and location of the internal knots, GeDS also
estimates the degree of the spline. Of course, any of the produced final fits of order n ̸= n̂ can
be used if other features are more desirable, for example, if better smoothness is required.

Package GeDS provides an R implementation of geometrically designed spline (GeDS) regres-
sion. Package GeDS can be installed and loaded in an R session via:

R> install.packages("GeDS")

R> library(GeDS)

The functions implementing GeDS regression are NGeDS() and GGeDS(). On the one hand,
NGeDS() function constructs a geometrically designed (univariate or bivariate) variable knot
spline regression model, for a response having a Normal distribution. The synopsis of this
function is:

NGeDS(formula, data, weights, beta = 0.5, phi = 0.99,

8 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

min.intknots = 0, max.intknots = 500, q = 2, Xextr = NULL, Yextr = NULL,

show.iters = FALSE, stoptype = "RD", higher_order = TRUE,

intknots_init = NULL, fit_init = NULL, only_pred = FALSE)

On the other hand, GGeDS() constructs a geometrically designed (univariate or bivariate)
variable knot spline regression model for the predictor term of a generalized (non-)linear
model, where the response follows a pre-specified distribution from the exponential family.
The synopsis of this function is:

GGeDS(formula, family = gaussian(), data, weights, beta, phi = 0.99,

min.intknots, max.intknots, q = 2L, Xextr = NULL, Yextr = NULL,

show.iters = FALSE, stoptype = "SR", higher_order = TRUE)

A GeDS model is specified using a formula of the form Y ~ f(X) or Z ~ f(X,Y). If needed,
prior weights on observations can be assigned through the weights vector. Arguments beta

and phi are numeric parameters in the interval [0, 1]. While beta tunes the knot placement
in stage A of GeDS—via the aforementioned bias driven measure of appropriately defined
clusters of residuals (see Kaishev et al. (2016) for details on this parameter)—, phi specifies
the threshold for the stopping rule in stage A of GeDS and q is an integer for fine-tuning the
latter rule (see (3) and (4)). Different stopping rules beyond (3) and (4) can be chosen through
stoptype, see the package documentation for details. Xextr and Yextr are numeric vectors
of 2 elements representing the left-most and right-most limits of the intervals embedding
the observations of the first and second (if bivariate GeDS is run) independent variables,
respectively. Finally, in GGeDS(), the family argument determines the link function to be
used in the GNM/GLM.

3. Generalized additive models with GeDS

In this section, we introduce generalized additive models with GeD splines which, as demon-
strated by the examples in Section 7, extend the applicability of GeDS to truly multivariate
settings. Additive models (AM) provide a useful extension of linear models, making them
more flexible while still retaining much of their interpretability (see, e.g., Hastie, Tibshirani,
Friedman, and Friedman (2009)). Specifically, AMs allow for the incorporation of nonlinear
smooth functions of the covariates and, unlike other generalizations (e.g., surface smoothers),
they maintain an additive structure that permits the separate analysis of the predictor effects.
An additive model takes the form

E

[
Y |X1, ..., XP

]
= α +

P∑

j=1

f j(Xj) or Y = α +
P∑

j=1

f j(Xj) + ε (6)

where the error term ε is assumed to have zero mean, E [ε] = 0, constant variance, E
[
ε2

]
= σ2,

and to be independent of the predictor variables X1, ..., XP . It is also implicitly assumed
that E

[
f j

(
Xj

)]
= 0 (which implies E [Y] = α), since otherwise there would be unaccounted

constants in each of the functions f j (see Hastie and Tibshirani (1990)). For simplicity, we
will take f j to be arbitrary univariate functions, although, as shown in Example 7.1, it is also
possible to include functions of two or more dimensions as model components.

Journal of Statistical Software 9

The additive model is a valuable data-analytic tool that, like the linear model, expresses
the response as a sum of functions of individual predictors. This formulation enables the
visualization of each predictor’s contribution to the predicted response after model fitting.
Although the additive model is typically an approximation of the true regression surface, the
goal is for this approximation to be accurate enough to identify significant predictors and
elucidate their effects (see Hastie and Tibshirani (1990)).

Various techniques can be used to estimate additive models. In this context, the backfitting
algorithm provides a flexible alternative, allowing the fitting of an additive model using any
regression-based fitting mechanism. The rationale behind this algorithm is intuitive: if the ad-

ditive model specified in equation (6) is correct then for any k, E
[
Y − α−

∑
j ̸=k f j(Xj)|Xk

]
=

fk(Xk) must hold. This relationship suggests an iterative method for estimating the func-
tions f j , which we present in terms of arbitrary scatterplot smoothers Sj in Algorithm 1 (see
Hastie et al. (2009)).

Algorithm 1 The Backfitting Algorithm for Additive Models

1. Initialize: α̂ = 1

N

∑N

i=1
Yi, f̂ j = 0, ∀j

2. For each base-learner f̂ j , j = 1, ..., P :

f̂ j ← Sj

Yi − α̂−

∑

k ̸=j

f̂k
(
Xk

i

)

N

i=1

f̂ j ← f̂ j −
1

N

N∑

i=1

f̂ j(Xj
i)

3. Repeat Step 2 until

RSS =
N∑

i=1

Yi − α̂−

P∑

j=1

f̂ j(Xj
i)

2

fails to decrease.

Generalized additive models broaden the scope of additive models by allowing the response
variable to be assumed to follow any distribution from the exponential family. This specifically
implies that, in the modeling process, the mean of the response is linked to the predictors
through a general link function, which is associated with the assumed distribution of the
response. In other words, GAMs extend generalized linear models by replacing the linear
predictor, α +

∑
j Xjβj , with α +

∑
j f j(Xj), where the f j represent smooth functions of the

predictor variables Xj . This is analogous to how additive models extend linear regression
models by incorporating non-linear functions of the predictors.

Therefore, in generalized additive models, the response variable Y is assumed to follow a

distribution from the exponential family with mean µ = E

[
Y |X1, ..., XP

]
. The model then

10 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

relates µ to the predictor variables X1, ..., XP via a link function g(·):

g(µ) = α +
P∑

j=1

f j(Xj), E

[
f j(Xj)

]
= 0, j = 1, ..., P (7)

Once the distribution of the response is chosen, an appropriate link function g(·) is selected.
This function determines the way the mean response µ is transformed to the additive predictor
scale, thereby defining the form of the adjusted dependent variable z and the iteration-
specific weights w (see Algorithm 2). Given these quantities, estimation of α and f1, ..., fP

is undertaken through the so-called local scoring algorithm as detailed in Algorithm 2 (see,
e.g., SAS Institute Inc. (2018)). Table 1 displays g(µ), z and w for some common models in
the context of GAM.

Distribution Link Function, g(µ) Adjusted Dependent Variable, z Weights, w

Normal Identity: µ y 1

Binomial(m, µ)/m Logit: log
(

µ
1−µ

)
η + y−µ

µ(1−µ) mµ(1− µ)

Gamma Inverse: 1/µ η − (y − µ)/µ2 µ2

Poisson Log: log(µ) η + (y − µ)/µ µ
Inverse Gaussian Inverse squared: 1/µ2 η − 2(y − µ)/µ3 µ3

Table 1: Link function, g(·), adjusted dependent variable, z and weights, w, for some com-
monly used models.

Algorithm 2 The General Local Scoring Algorithm

1. Initialize: α̂ = g
(

1
N

∑N
i=1 Yi

)
, f̂ j

m = 0, j = 1, ..., P , and m = 0.

2. Iterate: Set m = m + 1 and iterate to form the predictor η̂, the mean µ̂, the weights
w, and the adjusted dependent variable z:

(a) Form the adjusted dependent variable

zi = η̂m−1
i +

(
Yi − µ̂m−1

i

)
·

(
∂η̂

∂µ̂

)m−1

i

,

where η̂m−1
i = α̂ +

∑P
j=1 f̂ j

m−1(Xj
i), µ̂m−1

i = g−1
(
η̂m−1

i

)
and i = 1, ...N .

(b) Form the weights: wi =
(
V m−1

i

)−1
·

[(
∂µ̂
∂η̂

)m−1

i

]2

, where V m−1
i is the variance of

Y at µ̂m−1
i .

(c) Fit an additive model to z by using the backfitting algorithm with weights w to
obtain the estimated functions f̂ j

m(·), j = 1, ...P , and the model η̂m.

3. Until: The empirical deviance
∑N

i=1 dev (Yi, µ̂m
i) fails to decrease.

Some asymptotic theory has been developed for backfitting and local scoring estimators.
Early work by Buja, Hastie, and Tibshirani (1989) established conditions for consistency

Journal of Statistical Software 11

and nondegeneracy, and proved convergence of backfitting for a class of smoothers, including
cubic spline smoothers. Opsomer (2000) extended this by deriving recursive expressions
for the asymptotic bias and variance of backfitting estimators based on local polynomial
regression smoothers, and demonstrates that these estimators achieve the same convergence
rate as univariate local polynomial regression. Additionally, this author provides explicit
expressions for asymptotic bias and variance, along with optimal bandwidth parameters, in
the case of independence between covariates. In the same vein, Kauermann and Opsomer
(2003) showed that the local scoring estimator inherits the asymptotic properties of some
consistent local likelihood estimator for generalized additive models that, provided certain
uniqueness conditions are met, attains the same asymptotic convergence rates as univariate
local polynomial regression estimators.

Our GAM-GeDS implementation involves applying the local scoring algorithm (Algorithm
2), using Normal GeD splines as the function smoothers, Sj , within the backfitting algorithm
(Algorithm 1). The function NGeDSgam, which applies this method, is as follows:

NGeDSgam(formula, family = "gaussian", data, weights = NULL, offset = NULL,

normalize_data = FALSE, min_iterations, max_iterations,

phi_gam_exit = 0.99, q_gam = 2, beta = 0.5, phi = 0.99, internal_knots = 500,

q = 2, higher_order = TRUE)

Now the model is specified using a formula of the type Y~ f(X_1)+f(X_2)+... and data
should be provided as data.frame via the data argument. Data can be standardized be-
fore fitting the model by setting normalize_data = TRUE, and a minimum and maximum
number of local scoring iterations can be set through min_iterations and max_iterations;
phi_gam_exit and q_gam are the tuning parameters for the stopping rule of the local scoring
iterations in Step 3 of Algorithm 2, following (4). Finally, beta, phi, internal_knots and q

are parameters tuning the GeDS function smoothers, f j , at each backfitting iteration.

4. Functional gradient boosting

In this section, we turn our attention to functional gradient boosting, another powerful tech-
nique in statistical learning, with the aim of incorporating GeD splines as base-learners (as
detailed in Section 5). We begin by introducing the fundamental boosting framework, and
then briefly explore its application in the context of regression, classification, and, more gen-
erally, the exponential family.

Friedman (2001) demonstrates that boosting algorithms can be regarded as an empirical risk
optimization technique implementing steepest gradient descent in function space. Consider
the i.i.d. random variables (Y, X) where Y is a one-dimensional response (or output) variable
and X is a P -dimensional vector of explanatory (or input) variables, which we also refer to
as covariates. The objective is to estimate the optimal prediction function

F ∗(·) = arg min
F (·)

E [L(Y, F (X)] (8)

that maps X to Y , where F : RP 7→ R and L(·, ·) : R × R 7→ R
+. In other words, F ∗(·) is

defined to be the population minimizer of a given loss function L(·) over the joint distribution

12 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

of (Y, X) (see Friedman et al. (2000)). To allow for gradient descent optimization of the loss
and ensure convergence to a sole global minimum, L(·) is usually assumed to be differentiable
and convex with respect to F (·).

Given a learning sample of observations (Y1, X1), . . . , (YN , XN), estimation of F ∗(·) is then
undertaken by minimizing the empirical risk via iterative gradient descent in function space,
that is, F̂ ∗(·) = arg minF (·)

1
N

∑N
i=1 L (Yi, F (Xi)). Functional gradient boosting, as given by

Friedman (2001), is presented in Algorithm 3.

Algorithm 3 Functional Gradient Boosting

Given data {Yi, Xi}
N
i=1, a differentiable loss function L (Y, F (X)) and a stopping number of

iterations mstop, the generic FGB algorithm proceeds as follows:

1. Initialize the model with a constant value (initial learner). A common choice is the
empirical risk minimizer: F̂0(·) = arg minc

1
N

∑N
i=1 L(Yi, c), where c is a constant that

minimizes the average loss.

2. For m = 1 to mstop,

i Compute the negative gradient vector:

Ui,m = −
[

∂L(Yi,F (Xi))
∂F (Xi)

]
F (Xi)=F̂m−1(Xi)

i = 1, . . . , N

ii Fit a real-valued base (weak) learner f̂m to the gradient vector Ui,m.

iii Find the step size (shrinkage) parameter νm as

νm = arg minν

∑N
i=1 L

(
Yi, F̂m−1(Xi) + νf̂m(Xi)

)

iv Update the model: F̂m(·) = F̂m−1(·) + νmf̂m(·)

Choosing an appropriate value for the stopping iteration mstop is necessary to prevent FGB
from overfitting the data sample. This can be done by means of an appropriate “stopping
rule”. For example, Mayr, Hofner, and Schmid (2012) propose an “earlier stopping” approach
that depends on AIC-based information criteria, while Bühlmann and Van De Geer (2011)
suggest that mstop can be determined via cross-validation.

Furthermore, the step length parameter ν, acting as a shrinkage factor for the gradient es-
timates at each boosting iteration, must be determined. According to Friedman (2001), the
step length should be obtained by minimizing, at each boosting iteration, the objective func-
tion value (see step 2.iii in Algorithm 3). This methodological choice explains why Friedman’s
approach is often termed as “steepest descent”, which can be seen as a particular variant of
gradient descent. In contrast, Bühlmann and Van De Geer (2011) consider the choice of ν
to be of minor importance as long as it is “small” enough to allow for gradual learning and
reduce the risk of overfitting. All in all, the ν/mstop trade-off is evident: smaller values of ν
give rise to larger optimal mstop-values, and viceversa (see Friedman (2001)).

Finally, a crucial aspect of boosting algorithms is selecting an appropriate base procedure,
often referred to as the base or weak learner, or simply the learner. This choice may be
driven by the goal of improving predictive performance, while also considering the structural
characteristics of the resulting boosting estimator. Indeed, the generic boosting estimator is

Journal of Statistical Software 13

formally expressed as

F̂M (·) = F̂0(·) +
M∑

m=1

νmf̂m(·), (9)

that is, as a sum of base procedure estimates. In consequence, structural properties of the
boosting function estimator are induced by a linear combination of the structural charac-
teristics of the base procedure chosen (see Bühlmann and Van De Geer (2011)). Trees are
the most commonly used base-learners in boosting, although linear models and splines are
also frequently employed. For the study at hand, we will introduce GeD splines as the base
procedure (see Section 5). But first, let us delve a bit deeper into the application of boosting.

4.1. Boosting for regression

For regression problems with continuous response Y ∈ R, the squared-error loss—often re-
ferred to as L2-loss—is the most frequently used loss function:

L (y, F (x)) =
(y − F (x))2

2
. (10)

That is, the previously mentioned L2Boost algorithm basically implements the general FGB
algorithm presented in Algorithm 3 using (10) as loss function. The corresponding population
minimizer of the L2-loss is:

F ∗(x) = E[Y |X = x] (11)

and thus L2Boost leads to classical least squares regression of the mean. Note that, the
squared-error loss aligns with the negative log-likelihood of the Gaussian distribution. Conse-
quently, L2Boosting is particularly suitable when the response follows a Normal distribution,
since, in this case, it is tantamount to maximizing the likelihood of the data. In addition,
L2Boost benefits from a straightforward iterative structure given that the negative gradient
of the squared-error loss is simply the residuals vector. As a result, the algorithm boils down
to re-fitting the residuals from the previous boosting iteration at each new iteration.

If interested in the median of the conditional distribution instead, an alternative loss function
is the L1-loss, L (y, F (x)) = |y−F (x)|, with population minimizer F ∗(x) = median(Y |X = x).
When dealing with limited sample sizes, squared-error loss heavily prioritizes observations
with large absolute residuals, |yi − F (xi)|, during the modeling process. Hence, its effective-
ness drastically reduces when faced with long-tailed error distributions or in the presence
of “outliers”. Absolute loss has been found to be more robust in such situations (see, e.g.,
Karunasingha (2022)).

Finally, if dealing with moderately heavy tails, as a compromise between the L2 and L1 loss,
one may also consider the Huber-loss function. The latter provides strong resistance to gross
outliers while being nearly as efficient as least squares for Gaussian errors (see Hastie et al.
(2009)).

4.2. Boosting for classification

Boosting can be effectively applied in classification scenarios as well. Take the case where
Y ∈ {0, 1} is a binary response variable, and Y |X = x ∼ Bernoulli(p(x)) with p(x) = P (Y =
1|X = x). A common practice in binary classification is to model the posterior probability,

14 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

p(x), of an instance belonging to the positive class, through the log-odds (or logit) function:

F (x) = logit(p(x)) = log

(
p(x)

1− p(x)

)
= β0 +

P∑

j=1

βjx(j),

which relates linearly to the predictor variables X1, . . . , XP . Note that F (x) > 0 implies
p(x) > 1/2, which is somewhat the “standard threshold” for binary classification in case of
equal odds. In consequence, the natural classifier is simply

C(x) =

{
1 if F (x) > 0

0 if F (x) ≤ 0
. (12)

For ease of notation, it is often convenient to encode the response variable by Ỹ = 2Y − 1 ∈
{−1, 1}. A misclassification therefore happens if Ỹ F (X) < 0. The misclassification loss is
thus given by

L(y, F (x)) = 1(ỹF (x) < 0), (13)

whose corresponding population minimizer is equivalent to the Bayes classifier for Ỹ :

F ∗(x) =

{
+1 if p(x) > 1/2

−1 if p(x) ≤ 1/2
, (14)

where the quantity ỹF is the so-called “margin-value”.

Nevertheless, note that the misclassification loss (13) cannot be used for FGB (Algorithm
3), since it is discontinuous and non-convex, both as a function of F as well as a function
of the margin value ỹF . Therefore, gradient descent cannot be implemented neither in the
space of function values nor in the space of margin values (see Friedman (2001)). Hence, for
binary classification problems, it is most usual to use the negative binomial log-likelihood as
loss function. This can be seen as a convex upper approximation of the misclassification loss
(see Bühlmann and Van De Geer (2011)). Given a binary outcome variable Y ∈ {0, 1} with
Y |X = x ∼ Bernoulli(p(x)) and posterior probability p(x) = P (Y = 1|X = x), the negative
binomial log-likelihood of an instance is defined by:

L(y, p(x)) = −[y log(p(x)) + (1− y) log(1− p(x))].

Scaling, this is equivalent to

L (y, F (x)) = log2 (1 + exp (−2ỹF (x))) , (15)

which is a convex and differentiable function in F . The corresponding population minimizer
can be shown to be

F ∗(x) =
1

2
log

(
p(x)

1− p(x)

)
. (16)

4.3. Boosting in the exponential family

Any negative log-likelihood function associated with an exponential family distribution can
serve as a loss function in boosting (see Schmid and Hothorn (2008b)); consequently, FGB

Journal of Statistical Software 15

generalizes to the entire exponential family. For example, for count data with Y ∈ {0, 1, 2, . . .},
we consider Poisson regression, that is, assume Y |X = x ∼ Poisson(λ(x)), and implement
FGB using as loss function:

L(y, F (x)) = −yF (x) + exp(F (x)), where, F ∗(x) = log (λ(x)) . (17)

Table 2 displays the loss function for some common distributions from the exponential family,
along with their corresponding population loss/risk minimizer and negative gradient function.

Distribution Loss function Risk minimizer Negative gradient
of Y |X = x L(y, F (x)) F ∗(x) U = −∂L(y, F (x))/∂F (x)

Normal(µ(x), σ2) (y−F (x))2

2 E[Y |X = x] y − F (x)

Binomial(1, p(x))a log2 (1 + exp(−2ỹF (x)) 1
2 log

(
p(x)

1−p(x)

)
−

(
−2ỹ exp(−2ỹF (x))

log(2)×(1+exp(−2ỹF (x)))

)

Gamma(k(x), θ)b log Γ(k) + kF (x)− k log k arg minF (·) L(y, F (x)) k(1− ye−F (x))

−(k − 1) log y + yke−F (x)

Poisson(λ(x))c −yF (x) + exp(F (x)) log(λ(x)) y − exp(F (x))

Table 2: Loss functions—with their respective population minimizer and negative gradient—for some
commonly used distributions in FGB.

a With logit link function, log(µ

1−µ
) = η.

b Negative Gamma log-likelihood with logarithmic link function, log(µ) = η. Response should be non-negative and
continuous. Note there is no analytical solution for the risk minimizer. The parameter k is initialized to k = 1. Then,
before recomputing the negative gradient at each boosting iteration, it is re-estimated as k = arg mink L(y, F̂m−1(x)).

c Negative Poisson log-likelihood with the natural link function, log(µ) = η.

4.4. Asymptotic properties of boosting

Bühlmann and Yu (2003) study the computationally simple L2Boost algorithm and develop
several theoretical findings related with the usage of cubic smoothing splines as base-learners.
In particular, L2Boost with smoothing splines achieves the minimax rate of convergence
under the squared L2 loss, for one-dimensional function estimation. As noted by Bühlmann
and Hothorn (2007), this result is extended to much more general settings by Yao, Rosasco,
and Caponnetto (2007) and Bissantz, Hohage, Munk, and Ruymgaart (2007). Bühlmann
(2006) demonstrates the consistency of L2Boosting for high-dimensional linear models where
the number of predictors grows exponentially with the sample size, under the assumption
of i.i.d. errors. This result relies on the ℓ1-norm sparsity of the regression coefficients in
the true underlying regression function. More recently, Yousuf and Ng (2021) extend this
by establishing the consistency of L2Boosting with componentwise local constant and linear
estimators as base-learners, specifically for high-dimensional models with locally stationary
predictors and polynomially decaying error tails. A brief review on the asymptotic theory
developed for boosting is included in Section 9.2 of Bühlmann and Hothorn (2007), where
further references can be traced. A more recent study on the asymptotic properties of boosting
is provided by Liang and Sur (2022), where a comprehensive literature review can be found
in Sections 1 and 4.

16 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

4.5. Boosting software implementations

Functional gradient boosting has been extensively implemented across various statistical soft-
ware ecosystems. In R, a prominent and comprehensive implementation is the mboost package
(Hothorn et al. (2022)), which supports flexible base-learner specification, including trees, lin-
ear models, and P-splines. This model-based boosting framework has been extended by the
gamboostLSS and FDboost packages (see Hofner et al. (2016) and Brockhaus et al. (2020),
respectively).

Other widely used R packages include gbm (Ridgeway and Developers (2024)), which closely
follows Friedman’s original algorithm using regression trees, as well as the high-performance
libraries XGBoost, LightGBM and CatBoost, which are also implemented in Python. For
broader machine learning workflows, the package caret (Kuhn and Max (2008)), its successor
tidymodels (Kuhn and Wickham (2020)), or the mlr/mlr3 packages (Bischl, Lang, Kotthoff,
Schiffner, Richter, Studerus, Casalicchio, and Jones (2016), Lang, Binder, Richter, Schratz,
Pfisterer, Coors, Au, Casalicchio, Kotthoff, and Bischl (2019)) provide comprehensive and
widely adopted toolkits in R, as does the scikit-learn library (Pedregosa, Varoquaux, Gram-
fort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos,
Cournapeau, Brucher, Perrot, and Duchesnay (2011)) in Python; all support a variety of
gradient boosting algorithms. In contrast to model-based boosting approaches like mboost,
with interpretable additive model structure, these tree-based methods primarily aim at op-
timizing predictive performance (see, e.g, Brockhaus et al. (2020)). Because FGB-GeDS is
itself a model-based boosting approach, we restrict our empirical comparison to the mboost

implementation.

5. L2Boost Normal GeD spline regression

As discussed in the previous section, boosting algorithms require the specification of a base
procedure (base/weak learner) to fit the gradient vector at each boosting iteration. In this
respect, GeDS constitutes a promising alternative. Gradient boosting, as previously men-
tioned, is a machine learning ensemble technique designed to enhance predictive accuracy by
aggregating the predictions of multiple weak learners. Typically, the final boosted model is
expressed as the cumulative sum of all the sub-models generated across successive boosting
iterations (cf. (9)). This approach, however, entails two major drawbacks: the computational
burden of summing a large number of base-learner fits when evaluating the model and, more
critically, the loss of model interpretability. In contrast, utilizing GeD regression splines as
base-learners allows the (partial) sums of these learners to be condensed into a single, explicit
spline regression model (see Step 3 in Algorithm 4). This represents a significant advantage of
incorporating GeDS into FGB, as it simplifies the evaluation of the final boosted model and
enhances its interpretability. Specifically, we leverage the ability of re-expressing the B-spline
representation of a GeD base-learner into piecewise polynomial form. This allows for the di-
rect summation of polynomial coefficients of the corresponding segments within the boosting
algorithm. Note that such a transformation is not feasible when using, e.g., smoothing splines
as base-learners (cf. Schmid and Hothorn (2008a)), where the number of boosting iterations
required is significantly higher (see Sections 6 and 8).

Journal of Statistical Software 17

5.1. L2-GeDS Boost algorithm

For simplicity, we introduce FGB-GeDS through the L2-GeDS Boost algorithm for fitting a
non-additive (i.e., single base-learner) model. This implements functional gradient boosting
employing the squared-error loss as loss function and a single GeDS base-learner. At each
boosting iteration, the negative gradient vector—which in this context corresponds to the
residuals vector—is fitted using the base procedure encapsulated within the NGeDS() func-
tion from the GeDS package, which constructs a GeD spline regression model for a Normal
response variable.

Algorithm 4 L2-GeDS Boost

Step 1.

1.a. Given data {Yi, Xi}
N
i=1, fit a GeDS linear model, Y ∼ f̂0(X)1, with κ0 internal

knots (initial learner):
F̂0 (∆d0,2; ·) = f̂0 (δκ0,2, α̂p; ·)

where δκ0,2 denotes the set of knots of the linear base-learner GeDS fit (i.e. of order
n = 2) and α̂p is the respective vector of p = κ0 + 2 estimated B-spline coefficients.
We will denote by ∆dm,2 = {ξ1 = ξ2 < ξ3 < ... < ξdm+3 = ξdm+4} the set of knots of
the linear L2-GeDS Boost fit at each boosting iteration, m; this consists of the ordered
distinct knots from the pooled set {δκ0,2 ∪ ... ∪ δκm,2}.

Convert the linear GeDS fit—which has a B-spline representation—into piecewise poly-
nomial form, defined by the distinct knots {δ2 < δ3 < ... < δκ0+2 < δκ0+3} ∈ δκ0,2

and the corresponding polynomial coefficients. Given κ0 internal knots there are κ0 + 1
polynomial pieces/intervals; consequently, this initial linear GeDS fit is characterized by
κ0 + 1 pairs of polynomial coefficients (i.e., intercept and slope) corresponding to each
of these intervals. Set m = 0 and initialize the coefficients of the linear boosted GeDS
model as

(am, bm) = (a†
m, b†

m)

where (a†
m, b†

m) denote, respectively, the intercept and slope vectors of coefficients from
the piecewise polynomial representation of the linear GeDS fit, f̂0 (δκ0,2, α̂p; ·)—i.e., the
base-learner fit in this first step. Conversely, we use (am, bm) to denote the intercept and
slope vectors of coefficients from the piecewise polynomial representation of the linear
L2-GeDS Boost fit, F̂m (∆d0,2; ·), which are updated at each boosting iteration.

1.b. Compute the negative gradient vector of the loss function and evaluate it at
F̂m (∆dm,2; Xi). For the L2 loss, this corresponds to the residuals vector:

Ui,m+1 = −

[
∂L(Yi, F (Xi))

∂F (Xi)

]

F (Xi)=F̂m(·)

= Yi − F̂m (∆dm,2; Xi) = ri,m+1, (18)

with i = 1, ..., N .

1For simplicity, we present the algorithm in terms of univariate surface smoothers (i.e., X ∈ R
N×1), although

NGeDS()/GGeDS() also support bivariate spline regression (i.e., X may also lie in R
N×2).

18 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Step 2. Increase m by one: m← m+1. Fit a linear GeDS model with κm internal knots,
δκm,2, to the residuals, {ri,m}

N
i=1. Convert the fitted GeDS learner from its B-spline rep-

resentation to piecewise polynomial form. Extract the breakpoints, {δ2 < ... < δκm+3},
from δκm,2, and identify the corresponding polynomial coefficients. We denote the inter-

vals defined by these breakpoints as IGeDS =
{
IGeDS

j = [δj+1, δj+2), j = 1, .., κm + 1
}

.

Step 3. Let Im−1 =
{
Im−1

i = [ξi+1, ξi+2), i = 1, .., dm−1 + 1
}

, dm−1 + 1 ≤
∑m−1

l=0 (κl +

1), be the collection of intervals corresponding to the piecewise representation of the
linear L2-GeDS Boost fit at the (m − 1)th iteration. Recompute each of the pairs of

coefficients (a
(k)
m , b

(k)
m) of the boosted model as,

{
a

(k)
m = a

(i)
m−1 + ν × a†(j)

m

b
(k)
m = b

(i)
m−1 + ν × b†(j)

m

if Im−1
i ∩ IGeDS

j ̸= ∅

where 0 < ν ≤ 1 is a real valued step length/shrinkage factor2. Note that, at each
iteration, (a†

m, b†
m) will have dimensions (κm+1)×2, while (am, bm) will have dimensions

(dm + 1)× 2. So, in other words, update the model as:

F̂m (∆dm,2; ·) = F̂m−1
(
∆dm−1,2; ·

)
+ ν × f̂m (δκm,2, α̂p; ·)

where ∆dm,2 is obtained from the ordered distinct knots in the pooled set of knots{
∆dm−1,2 ∪ δκm,2

}
. See Appendix A for a detailed algorithm.

Step 4. Recompute the residuals, as specified in (18), with respect to the model
F̂m (∆dm,2; ·). Let qboost ≥ 1 be some predefined integer. If m < qboost go back to step
2, otherwise calculate the ratio:

ϕboost = RSS(m)/RSS(m− qboost)

with RSS(m) =
∑N

i=1 r2
i,m being the residual sum of squares.

Step 5. Repeat iteratively steps 2 − 4 until ϕboost ≥ ϕexit
boost, where ϕexit

boost ∈ (0, 1)
is some threshold level chosen to be close to 1. Note that it is not guaranteed that
RSS(m) <RSS(m − 1), hence ϕboost could be greater than 1. The ratio ϕboost will
be close to 1 if no (or very little) improvement has been achieved in the last qboost

consecutive boosting iterations, meaning that the corresponding values of the RSS have
stabilized. And it will be greater than 1 if the model is worsening as the boosting
iterations continue.

Step 6. Since ϕboost may be greater than 1 we set the final model to be the one that,
among the last qboost models, minimizes the empirical residual sum of squares:

F̂ ∗
(
∆dm∗ ,2; ·

)
= arg min

F̂l(∆dl,2;·)

N∑

i=1

(
Yi − F̂l(∆dl,2; Xi)

)2
, l = m− qboost, ..., m.

2As suggested by Bühlmann and Van De Geer (2011), we assume a constant ν.

Journal of Statistical Software 19

where m∗ represents the boosting iteration corresponding to the final linear L2-GeDS
Boost fit.

Step 7. Consider the final linear fit F̂ ∗
(
∆dm∗ ,2; ·

)
obtained in step 6. This has dm∗

internal knots, with locations given by ∆dm∗ ,2. We compute the higher-order fits,
specifically for n = 3 and n = 4, by first calculating the knot placement τ̄ ∗,n

3. This is
defined as:

τi+n = (∆i+2 + ... + ∆i+n)
/

(n− 1), i = 1, ..., dm∗ − (n− 2) (19)

And second, we find the least squares fit F̂ ∗
(
τ̄ ∗,n, θ̂; ·

)
that solves

min
θ

∑

1≤i≤N

(Yi − F ∗ (τ̄ ∗,n, θ; Xi))
2 .

Hence, in the same spirit as the canonical GeDS method, in addition to the final linear fit,
final quadratic and cubic fits are also obtained.

If ϕboost ≥ ϕexit
boost, the performance of F̂m (∆dm,2; ·) does not significantly improve (and may

even worsen) with qboost additional iterations. Consequently, the iterations are stopped, and
F̂ ∗

(
∆dm∗ ,2; ·

)
is selected as the linear model that adequately captures the “shape” of the

unknown underlying function F . Quadratic and cubic fits are then computed using the
boosted knot vector ∆dm,2, correspondingly transformed by the so-called averaging knot loca-
tion method described in Kaishev et al. (2016) and formalized in (19). Maximum likelihood
coefficients for these fits are subsequently estimated. Note that, in the linear FGB-GeDS
fit, both knots and coefficients are estimated during the boosting process. In contrast, for
higher-order fits, the FGB iterations serve exclusively to select the knot vector.

The FGB-GeDS method offers flexible control over the strength of the base-learners. In
particular, the suggested approach—implemented in the function NGeDSboost(), presented
in Section 5.2—is as follows: start with a weak GeDS initial learner (i.e., up to 2 maximum
internal knots) and then perform a few boosting iterations using GeDS learners operating at
their full potential (i.e., without fixing a maximum number of knots); that is, pre-define the
maximum number of internal knots for the initial learner, κmax

0 , and then, at each boosting
iteration, allow for the strength of the base-learner—i.e., the number of knots κm of the
learner f̂m (δκm,2, α̂p; ·)—to be automatically regulated by the GeDS method. This can be
tuned using the GeDS parameters (ϕ, β, q) presented in Section 2, and discussed in further
detail in Kaishev et al. (2016).

Note that, on the one hand, the optimal number of boosting iterations is automatically deter-
mined by a stopping rule, consisting of a ratio of deviances of consecutive models (c.f. Step 4
in Algorithm 4. On the other hand, the strength of the GeDS base-learner at each boosting
iteration is automatically regulated by the GeDS technique itself, and thus it is usually not
necessary to use the shrinkage parameter ν to regulate the strength of the base-learner at each
boosting iteration (i.e., ν = 1), though in certain cases it may provide additional flexibility
(see Examples 8.1 and 8.3).

3The choice of the knots τ̄ ∗,n, according to Kaishev et al. (2016), ensures that the nth order spline predictor

curve F̂ ∗ (τ̄ ∗,n; ·) becomes nearly the VDS approximation to F̂ ∗
(
∆d

m
∗ ,2; ·

)
.

20 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

5.2. Component-wise L2-GeDS boosting

Boosting algorithms can also be regarded as stagewise techniques for fitting additive models
(see Friedman et al. (2000)). In particular, Bühlmann and Yu (2003) introduce component-
wise (or model-based) boosting, a variant of gradient boosting to construct additive models by
selectively incorporating predefined base-learners, each involving one or multiple features. At
each iteration, the model is updated in a component-wise fashion: each single base-learner of
the additive model is independently fitted and the algorithm identifies and updates solely the
base-learner whose update reduces the loss function the most (see Potts, Bergherr, Reinke,
and Griesbach (2023)). This method inherently performs variable selection by incorporating
one base-learner at a time into the ensemble, allowing the same or different learners to be
added across iterations.

Let us formally present component-wise gradient boosting as follows. Consider the random
sample of i.i.d random variables, {Yi, Xi}

N
i=1, where Y1, ..., YN are one-dimensional response

vectors and X1, ..., XN are P -dimensional vectors of covariates. Given this data sample and
a pre-chosen set of K univariate or multivariate base-learners (i.e. K ≤ P), the objective is
to estimate F ∗ as:

F̂ ∗ = F̂0 + F̂ ∗
1 + ... + F̂ ∗

K with F̂ ∗
j = ν ×

m∗∑

i=1

f j
i 1

(
f̂i = f̂ j

i

)
, j = 1, ..., K (20)

where m∗ stands for the boosting iteration where the optimal final fit F̂ ∗ is achieved; f̂i

denotes the optimal learner selected at the ith boosting iteration, according to some pre-
established criterion. Each function estimate F̂j is then the cumulative sum of the estimates

f j
i for each iteration where the corresponding base-learner, j, was selected to update the

model F̂ , i.e., for each iteration where f̂i = f̂ j
i . Algorithm 5 describes our implementation of

component-wise gradient boosting using the L2 loss function and GeD splines as base-learners.

Algorithm 5 Component-wise L2-GeDS Boost

Step 1.

1.a. Consider the sample {Yi, Xi}
N
i=1 where each Yi is a one-dimensional response and

each Xi is a vector of P features. Consider also a collection of K base-learners (this can
be either univariate or bivariate). For simplicity, let us consider the case where there is
exactly one (GeDS) base-learner per predictor variable, i.e., K = P . Fit a linear GeDS
model Y ∼ f̂ j

0 (Xj) with κj
0 internal knots for each of the K components, j = 1, ..., K.

Set F̂0 to be the base-learner fit that minimizes the sum of squared residuals, that is:

F̂0 (∆d0,2; ·) = arg min
f̂

j
0

j=1,...,K

N∑

i=1

(
Yi − f̂ j

0 (δ
κ

j
0
,2

; α̂pj ; Xj
i)

)2

Initialize m = 0.

Journal of Statistical Software 21

1.b. Compute the negative gradient vector of the L2 loss function (i.e. the residuals):

ri,m+1 = Yi − F̂m(Xi), i = 1, ..., N

Step 2. Increase m by one: m← m + 1. Fit each of the K base-learners (linear GeDS
models) to the residuals vector. Select the fit that minimizes the RSS:

f̂m = arg min
f̂

j
m(·)

N∑

i=1

(ri,m − f̂ j
m(δ

κ
j
m,2

; α̂pj ; Xj
i))2

Step 3. Update the current estimate as

F̂m (∆dm,2; ·) = F̂m−1
(
∆dm−1,2; ·

)
+ ν × f̂m

where 0 < ν ≤ 1 is a real valued step length/shrinkage factor. The fit of the base-
learner that “best” fitted the residuals vector should be updated in the piecewise manner
discussed in step 3 of Algorithm 4.

Step 4. Recompute the residuals. Let qboost ≥ 1 be some prefixed integer. If m < qboost

go back to step 2, otherwise calculate the ratio:

ϕboost = RSS(m)/RSS(m− qboost)

Step 5. Repeat iteratively steps 2-5 until ϕboost ≥ ϕexit
boost, where ϕexit

boost ∈ (0, 1), and is
chosen to be close to 1.

Step 6. Since ϕboost may be greater than 1 we set the final model to be the one that
minimizes the empirical residual sum of squares:

F̂ ∗
(
∆dm∗ ,2; ·

)
= arg min

F̂l(∆dl,2;·)

N∑

i=1

(
Yi − F̂l(∆dl,2; Xi)

)2
, l = m− qboost, ..., m.

Step 7. Step 6 yields a final linear fit, F̂ ∗
(
∆dm∗ ,2; ·

)
, that, for each of the K base-

learners, has dj
m∗ , dj

m∗ ≤
∑m∗

j

i=0 κj
i , internal knots with knots locations ∆

j
dm∗ ,2, where

m∗
j =

∑m∗

m=0 1f̂m=f̂
j
m

. We compute the higher order fits (quadratic and cubic) calculat-

ing for each base-learner the knot placement τ̄
j
∗,n defined as:

τ j
i+n = (∆j

i+2 + ... + ∆j
i+n)

/
(n− 1), i = 1, ..., dj

m∗ − (n− 2).

and finding the least squares fit F̂ ∗
(
τ̄ ∗,n, θ̂; ·

)
that solves

min
θ

∑

1≤i≤N

(Yi − F ∗ (τ̄ ∗,n, θ; Xi))
2 where τ̄ ∗,n = ∪K

j=1τ̄ j
∗,n.

22 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

The function NGeDSboost() in the GeDS package implements functional gradient boosting
with GeD splines, following Algorithm 4, when the model provided has a single base-learner.
If an additive model is provided instead, it implements component-wise functional gradi-
ent boosting with GeD splines, following Algorithm 5. The synopsis of this function is the
following:

NGeDSboost(formula, data, weights = NULL, normalize_data = FALSE,

family = mboost::Gaussian(), link = NULL,

initial_learner = TRUE, int.knots_init = 2L,

min_iterations, max_iterations, shrinkage = 1,

phi_boost_exit = 0.99, q_boost = 2L,

beta = 0.5, phi = 0.99, int.knots_boost = 500L, q = 2L,

higher_order = TRUE, boosting_with_memory = FALSE)

The model is specified using a formula of the type Y~ f(X_1)+f(X_2)+... and the data
sample to be fitted should be provided as data.frame via the data argument. Data can be
standardized before fitting by setting normalize_data = TRUE, and a maximum and mini-
mum number of boosting iterations can be set through max_iterations and min_iterations.
phi_boost_exit and q_boost are the tuning parameters of the boosting iterations stopping
rule (Step 4 in Algorithm 4/5). The base-learner(s) can be tuned by the GeDS parameters
beta, phi and q. The maximum number of internal knots of the initial learner κmax

0 is set via
int.knots_init, and the maximum number of internal knots of the base-learner(s) at each
boosting iteration κmax

m can be set via int.knots_boost.

6. Numerical examples – non-additive models

In this section, we introduce the use of the GeDS package for fitting non-additive univariate
spline models. For this purpose, we consider the canonical and boosted GeDS methods,
which have been presented in Sections 2 and 5, respectively. These methods are implemented
by the NGeDS()/GGeDS() and NGeDSboost() functions. We begin with a simulated data
example that we will use to illustrate the FGB-GeDS fitting process detailed in Algorithm
4. Following this, we provide some additional examples to conduct a comparative analysis
between the GeDS models and the boosting with P-splines implementation from the mboost

package.

A wide range of other spline-based alternatives have been proposed for estimating the lin-
ear predictor in generalized linear and nonlinear models, and have already been thoroughly
compared to GeDS in the univariate (non-additive) case by Dimitrova et al. (2023). These in-
clude Semi-parametric Models (SPM) by Eilers and Marx (1996) available in SemiPar (Wand
(2018)); Generalized Smoothing Spline (GSS) ANOVA models introduced by Wahba, Wang,
Gu, Klein, and Klein (1995) and implemented in gss (Gu (2014)); and Generalized Additive
Models (Wood (2017)), implemented in mgcv (Wood (2023)) and considered in the additive
case in Section 7.

Beyond R, generic spline regression functionality is also available in other programming envi-
ronments. In Python, the statsmodels package (Seabold and Perktold (2010)), in combination
with patsy (Smith, Wardrop, and Capretto (2024)) or its recommended successor formulaic

(Wardrop (2024)), provides an implementation of spline regression, allowing for the inclusion

Journal of Statistical Software 23

of spline terms in linear models, generalized linear models, and generalized additive models
(currently in “experimental status”), via bs() for B-splines, cr() for natural cubic splines,
cc() for cyclic cubic splines, and te() for tensor-product splines. In Stata (LLC (2025)), re-
gression splines are implemented via the makespline() command, which supports B-splines
(bspline()), piecewise polynomial splines (piecewise()), restricted (natural) cubic splines
(rcs()) and linear splines (linear()) for use in standard regression models. However, inte-
rior knot selection in these Python and Stata functions is based on quantiles of the data (or
uniform) and is the same as in mgcv.

6.1. FGB-GeDS fitting process

Example 6.1 We assume the “true” linear predictor to be η = f1(x), where,

f1(x) = 40
x

1 + 100x2
+ 4, x ∈ [−2, 2] (21)

we then generate random samples, {Xi, Yi}
N
i=1 with corresponding Normal, Poisson and

Gamma distributed response variable, Y , and uniformly distributed explanatory variable,
X, i.e., Yi ∼ N(µi, σ) with σ = 0.2, µi = ηi = f1(Xi); Yi ∼ Poisson(µi) with µi = exp{ηi}
and ηi = f1(Xi); Yi ∼ Gamma(µi, φ) with φ = 0.1, µi = exp{ηi} and ηi = f1(Xi); and
Xi ∼ U [−2, 2], i = 1, ..., N , where N is the sample size. In particular, we set N = 500. The
R implementation of this example is as follows:

R> # Example 6.1

R> # Generate a data sample for the response variable Y

R> # and the covariate X

R> set.seed(123)

R> N <- 500

R> f_1 <- function(x) (10*x/(1+100*x^2))*4+4

R> X <- sort(runif(N, min = -2, max = 2))

R> # Normal

R> means <- f_1(X)

R> # Add (Normal) noise to the mean of Y

R> Y <- rnorm(N, means, sd = 0.2)

R> # Poisson and Gamma

R> means <- exp(f_1(X))

R> # Generate Poisson distributed Y according to the mean model

R> Y <- rpois(N, means)

R> # Generate Gamma distributed Y according to the mean model

R> Y <- rgamma(N, shape = means, rate = 0.1)

Figure 1 illustrates the fitting stages for the Normal version of example 6.1 of an FGB-GeDS
model with κmax

0 = 2, that is, with an NGeDS() fit using (at most) two internal knots as the
initial learner. In the left column, the linear fit of the model to the data at each boosting
iteration is depicted, starting with the initial NGeDS() fit with (at most) two internal knots.
Above each plot, the corresponding vector of internal knots, ∆dm,2, of each fit is displayed. On

24 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

the right, the NGeDS() base-learner fit to the recomputed residuals at each boosting iteration
is presented; the internal knots fitted at the corresponding iteration are displayed at the top
of each plot. The final plot displays the linear fit, alongside the quadratic and cubic fits. The
quadratic and cubic fits are obtained by first relocating the knots, using Equation (19), to
ensure the predictor curve becomes nearly the VDS approximation to the linear fit, and then
re-estimating the B-spline coefficients via least squares, as described in Step 7 of Algorithm
4.

Figure 1: (Left) Linear NGeDSboost() fit over the data at each boosting iteration. (Right)
NGeDS() fit (i.e. base-learner fit) to the recomputed residuals at each boosting iteration. The
last plot depicts the final linear fit together with the higher order fits (quadratic and cubic).

Journal of Statistical Software 25

Figure 1 is obtained by running the following code snippet:

R > Gmodboost <- NGeDSboost(Y ~ f(X), data = data)

R> par(mfrow=c(4,2))

R> visualize_boosting(Gmodboost, 0:Gmodboost$iters, final_fits = TRUE)

6.2. Further examples and model comparison

Bühlmann and Yu (2003) empirically demonstrate the competitiveness of L2Boosting with
componentwise smoothing splines compared to conventional estimation methods, like back-
fitting or boosting with trees. Schmid and Hothorn (2008a) replace smoothing spline base-
learners by P-spline base-learners, which yield approximately the same performance results
but are more advantageous from a computational perspective.

The choice of two main boosting parameters is discussed in Bühlmann and Hothorn (2007),
Schmid and Hothorn (2008a) and Bühlmann and Van De Geer (2011), namely, the stopping
boosting iteration, mstop, and the step length factor (shrinkage rate), ν. On the one hand,
selecting an appropriate mstop value is crucial to prevent data overfitting. These authors
recommend using an early-stopping strategy to maximize prediction accuracy. The latter may
rely on cross-validation techniques or, less preferably, AIC-based methods, since these tend
to overshoot the optimal mstop (see Hastie (2007), Hofner, Mayr, Robinzonov, and Schmid
(2014), or Mayr et al. (2012)). On the other hand, the choice of the step length/shrinkage
parameter ν is considered to be relatively less critical for the predictive performance of a
boosting algorithm, provided it is set to a small value (e.g., ν = 0.01 or ν = 0.1; see Bühlmann
and Hothorn (2007)).

However, as Schmid and Hothorn (2008b) suggest, cross-validation can be computationally
expensive and time-consuming, especially with large datasets and complex models. In ad-
dition, particularly in the case of small datasets, the results from cross-validation can sig-
nificantly vary depending on the number of folds and the method of partitioning the data,
potentially leading to inconsistent determination of the optimal mstop. Overall, determining
mstop via cross-validation inherently constitutes an ex-post approach, and thus may lead to
analytical incongruences. In light of these challenges, the stopping rule presented in Step 4
of Algorithm 4 emerges as a robust and coherent method, effectively circumventing the latter
drawbacks. Additionally, under the default FGB-GeDS approach presented in Section 5.1, the
strength/weakness of the base-learner(s) at each boosting iteration is automatically regulated
by the GeDS technique itself. Therefore, adjusting the step length/shrinkage parameter ν is
not necessary in most occasions.

As follows we compare the performance of FGB-GeDS with the canonical GeDS method and
with the boosting with P-splines procedure proposed by Schmid and Hothorn (2008a) and
implemented in the R package mboost4. First, we consider two simulated examples: 6.1,
which we have just introduced, and 6.2, introduced as follows. Second, we consider a real
data application in 6.3.

Example 6.2 - Doppler function. We assume that the “true” linear predictor, η = f2(x),

4Note that bns() (penalized natural splines) and bss() (smoothing splines) are deprecated (and no longer
available) in mboost. Instead, mboost suggests using bbs() (P-spline base-learners), which results in “qualita-
tively the same models but is computationally much more attractive”.

26 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

where

f2(x) = 5
√

x(1− x) sin
2π(1 + 0.05)

(x + 0.05)
, x ∈ [0, 1] (22)

is the well-known Doppler function used by a number of authors such as Kaishev et al. (2016),
Yang and Hong (2017) or Dimitrova et al. (2023). We simulate random samples, {Xi, Yi}

N
i=1,

with Yi ∼ N(µi = f2(Xi), σ = 0.2) and Xi = (i− 1)/N , i = 1, ..., N , N = 400.

R> # Example 6.2 - Doppler function

R> # Generate a data sample for the response variable

R> # Y and the single covariate X

R> set.seed(123)

R> N <- 400

R> f_2 <- function(x) {

+ 5 * sqrt(x * (1-x)) * sin(2 * pi * (1 + 0.05) / (x + 0.05))

+ }

R> X <- (1:N - 1) / N

R> # Specify a model for the mean of Y to include only a component

R> # non-linear in X, defined by the function f_2

R> means <- f_2(X)

R> # Add (Normal) noise to the mean of Y

R> Y <- rnorm(N, means, sd = 0.2)

We now compare the performance of NGeDS()/GGeDS(), NGeDSboost() and mboost() for
examples 6.1 and 6.2. Before proceeding, let us review the parameters used in each model.

The parameters of NGeDS()/GGeDS() and NGeDSboost() for these two examples were chosen
as follows. The value of β (one of the tuning parameters of stage A of GeDS) is set to 0.5 in
example 6.1, and to 0.6 in example 6.2. These are within the range of recommended values for
β in the case of “wiggly underlying functions and high signal-to-noise ratio data” by Kaishev
et al. (2016). In particular, β = 0.5 means that, when determining the location of a new knot,
the within-cluster mean residual value and the cluster range are considered equally important,
while β = 0.6 implies that a slightly higher weight is put on the within-cluster mean residual
value (c.f. Kaishev et al. (2016)). The tuning parameters for the stopping rule in stage A
of GeDS, ϕexit and q, are set to their default values of 0.99 and 2, respectively. Regarding
the specific parameters of NGeDSboost(), these are set to default, except for the shrinkage
rate, ν, which is modified for the Poisson and Gamma examples. Therefore, ϕexit

boost = 0.99
and qboost = 2, for both examples; also, initial_learner = TRUE and int.knots_init = 2,
which means that the FGB algorithm is run utilizing a GeDS initial learner with a maximum
of 2 internal knots. In the Poisson and Gamma versions of Example 6.1, the shrinkage
rates are set to ν = 0.005 and ν = 0.1, respectively. These values are chosen to account
for the sensitivity of the logarithmic link function associated with these distributions. The
lower shrinkage rate prevents overly large updates resulting from the exponential scale of the
response for these distributions, hence ensuring stable updates at each boosting iteration. For
the Normal version of example 6.1 and for example 6.2, the shrinkage is left at its default
value, i.e., ν = 1.

The function mboost() is run utilizing a cubic smooth P-spline as the base-learner. Two
alternatives for this model are considered. First, we run an mboost() model in which both
the number of knots and the degrees of freedom (d.f.) of the base learner are pre-tuned to

Journal of Statistical Software 27

minimize the median mean squared error (MSE) relative to the corresponding true functions,
based on the fits to 10 simulated data samples. Second, for the sake of comparability, we
also consider an alternative scenario in which only the d.f. are tuned, while the number
of knots in the P-spline is fixed to match the median number across the simulations used
by NGeDSboost() in each example. Following the recommendations in the mboost package
documentation, we set the shrinkage rate to 0.1. For the Poisson example, however, we
adjusted it to 0.05, as we did in NGeDSboost(), which improves performance compared to the
default rate of 0.1. We also increased mstop to 10, 000 boosting iterations. This adjustment
resulted in better outcomes for these examples than the default setting of mstop = 100.

The models are tested for examples 6.1 and 6.2, by fitting 100 different simulated data sets.
The R structure of the models compared is the following:

R> NGeDS(Y ~ f(X), beta)

R> GGeDS(Y ~ f(X), family, beta)

R> NGeDSboost(Y ~ f(X), data, family, shrinkage, beta)

R> mboost(Y ~ bbs(X, knots, degree = 3, df), data, family,

+ control = boost_control(mstop = 10000, nu))

In the normal version of 6.1 and in example 6.2, fits are compared according to their MSE with

respect to the true generating function, defined as

{∑N
i=1

(
f(Xi)− f̂(Xi)

)2
} /

N. Similarly,

for the Poisson and Gamma versions of 6.1, we assess the fits using the corresponding Poisson
and Gamma mean deviance relative to the true generating function.

Table 3 displays the median MSE/mean deviance, median number of boosting iterations, me-
dian number of internal knots and median fitting time, for each of the models. Both NGeDS()

and NGeDSboost() demonstrate high accuracy when considering the median MSEs/mean de-
viances obtained for each example. NGeDSboost() exhibits a slightly lower error compared
to NGeDS(), with only a minor increase in computation time. The first implementation of
mboost() that was considered fails to surpass the accuracy levels of the GeDS models, even
after exhaustively tuning the number of knots and the degrees of freedom of the P-spline.
In addition, GeDS models require a lower number of internal knots to achieve the median
MSEs/mean deviances obtained, and fewer boosting iterations in the case of FGB-GeDS,
hence demonstrating greater parametric efficiency. The accuracy of mboost() falls dramat-
ically when setting the number of knots to be equal to the median number of knots of the
final FGB-GeDS fits and only tuning the degrees of freedom.

In Figure 2, boxplots for the Normal, Poisson and Gamma version of example 6.1 are depicted.
For ease of comparison, only the cubic GeDS and cubic FGB-GeDS models are included,
which were the best-performing ones. As it can be observed, NGeDSboost() indeed boosts
the performance of the already highly competitive canonical GeDS for example 6.1, showcasing
notably higher resistance to outliers. The performance of mboost(), when tuning both number
of knots and d.f., is fairly good for the Normal and Poisson case, though not better than FGB-
GeDS. In the Gamma case, despite extensive tuning, mboost() still exhibits relatively high
MSE values and an unstable performance, as evidenced by the wide interquartile range and
long whiskers in the boxplot. Across all cases of example 6.1, the MSEs/mean deviances for
mboost() are substantially higher when the number of knots is set to the median obtained

28 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Type MSE/Mean Dev. Boosting iter. Internal knots Time (sec.)

Example 6.1
Normal

NGeDS()

Linear 0.002778 10 0.05
Quadratic 0.001688

Cubic 0.001612

NGeDSboost()

Linear 0.002625 3 12 0.10
Quadratic 0.001372

Cubic 0.001330

mboost()
Tuned d.f. & knots 0.003239 10,000 42 2.55

Tuned d.f. 0.052443 10,000 12 1.24

Poisson

NGeDS()

Linear 0.093810 14 0.14
Quadratic 0.052546

Cubic 0.050612

NGeDSboost()

Linear 2.552950 4 18 0.14
Quadratic 0.054026

Cubic 0.048233

mboost()
Tuned d.f. & knots 0.091897 10,000 42 3.96

Tuned d.f. 1.417826 10,000 18 3.03

Gamma

NGeDS()

Linear 0.002384 13 0.13
Quadratic 0.001600

Cubic 0.003488

NGeDSboost()

Linear 0.066134 2 16 0.16
Quadratic 0.001323

Cubic 0.001708

mboost()
Tuned d.f. & knots 0.031448 10,000 81 6.97

Tuned d.f. 0.027155 10,000 16 7.94

Example 6.2

NGeDS()

Linear 0.021976 36 0.13
Quadratic 0.021682

Cubic 0.037467

NGeDSboost()

Linear 0.022273 3 39 0.17
Quadratic 0.022743

Cubic 0.040790

mboost()
Tuned d.f. & knots 0.053956 10,000 92 1.33

Tuned d.f. 0.147766 10,000 39 2.36

Table 3: Median mean squared error/mean deviance, number of internal knots and computa-
tion time for NGeDS(), NGeDSboost() and mboost() for the fits over 100 simulated datasets
for examples 6.1 and 6.2.

for NGeDSboost(), with tuning applied only to the d.f.

For more detailed insight on example 6.2, Figure 3 presents the fits on the first simulated
dataset. It can be observed that mboost() tends to overfit the data for the case where both
the number of knots and the d.f. are tuned. Additionally, it fails to capture the origin of the
Doppler function when the number of knots is fixed to the median used by NGeDSboost()

and only the d.f. are tuned. In contrast, with a similar number of knots, the GeDS models
provide a fairly good fit across the entire function range.

Next, a real data application is considered.

Example 6.3. - BaFe2As2. Real data example with N = 1, 151 from a superconductivity
study of Barium-Ferrum-Arsenide (BaFe2As2) through a neutron diffraction experiment, car-

Journal of Statistical Software 29

Figure 2: Cubic NGeDS(), cubic NGeDSboost() and mboost() fits over 100 different simulated
datasets of example 6.1. The original function, f1(x), is depicted in black on the top left
corner.

ried out by Kimber, Kreyssig, Zhang, Jeschke, Valentí, Yokaichiya, Colombier, Yan, Hansen,
Chatterji, McQueeney, Canfield, Goldman, and Argyriou (2009) and considered by Kaishev
et al. (2016) and Dimitrova et al. (2023). Important information about the structural prop-
erties of the BaFe2As2 compound is retrieved by analyzing the position, height and width of

30 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Figure 3: Quadratic NGeDS() and NGeDSboost() fits, and mboost() fits over a simulated
dataset of example 6.2 - Doppler function. The original function, f2(x), is depicted in black.
The dotted vertical lines denote the locations of the knots.

the peaks in the data. For further details on this example see Kaishev et al. (2016).

R> # Example 6.3. - BaFe2As2

R> data('BaFe2As2')

R> data = BaFe2As2

R> Y <- data$intensity

R> X <- data$angle

R> data <- data.frame(X,Y)

For example 6.3, we set β = 0.6, ϕ = 0.995 and q = 3, and keep the defaults for the rest
of parameters. Given that the primary objective here is to efficiently capture the signal
in the data without overfitting, we fix the number of knots in mboost() to match that of
NGeDSboost() and tune only the d.f. Since the optimal GeDS and FGB-GeDS fit in this case
is linear, the degree of the P-spline was also tuned; however, the default setting degree=3

still yielded the best result for mboost().

The models are compared according to their empirical MSE in Table 4, and plots are presented

Journal of Statistical Software 31

in Figure 4. mboost fails to effectively capture the intensity peaks in the BaFe2As2 dataset;
this contrasts with the GeDS models which clearly allow for a more accurate estimation of
the structural parameters of this material.

Type MSE Boosting iter. Internal knots Time (sec.)

Example 6.3

NGeDS()

Linear 59,385.34 282 9.86
Quadratic 70,817.56

Cubic 103,247.37

NGeDSboost()

Linear 59,370.17 3 284 9.07
Quadratic 70,655.68

Cubic 103,079.00

mboost() Tuned d.f. & knots 1,563,342.22 10,000 284 2.26

Table 4: Empirical mean squared error, number of internal knots and computation time for
NGeDS(), NGeDSboost() and mboost() for the fits on the real data example 6.3.

Figure 4: Linear NGeDS(), linear NGeDSboost() and mboost() fits over example 6.3 -
BaFe2As2. The original data is depicted in black.

7. Numerical examples – generalized additive models

The two main packages in R for fitting generalized additive models are gam (Hastie (2024))
and mgcv (Wood (2023)). On the one hand, gam follows the theory outlined in the seminal
work of Hastie and Tibshirani (1990). On the other hand, mgcv, by Simon Wood, is a pack-
age for estimating penalized generalized linear models—which include generalized additive
models as a special case—and therefore generalizes Hastie and Tibshirani’s approach. While
gam employs backfitting and local scoring algorithms for combining smooth functions of the
predictors, mgcv utilizes basis function expansions of the predictor functions, each with an
associated penalty controlling function smoothness. Estimation is then carried out by penal-
ized regression methods, and the appropriate degree of smoothness for the fj is estimated
from data using cross validation or marginal likelihood maximization (Wood (2017)).

32 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Both SAS and Stata offer implementations of GAM based on the original procedure of Hastie
and Tibshirani. PROC GAM in SAS offers univariate and bivariate thin-plate spline as well
as local-regression smoothers, whereas Stata’s gam add-on fits univariate cubic smoothing
splines. In Python, pyGAM (Servén and Brummitt (2018)) fits generalized additive models
via penalized iteratively reweighted least squares based on penalized splines with automatic
smoothness selection, closely mirroring the approach of mgcv. Since these implementations
broadly adhere to the same methodological principles as gam and mgcv, we do no include
them in the comparisons.

We compare the performance of the NGeDSgam() function—which implements Hastie and
Tibshirani’s approach using normal GeD splines, NGeDS(), as smoothers—with gam and mgcv,
which respectively use smoothing splines and thin plate regression splines, both denoted by
s(). This comparison is based on examples extracted from these packages. Given the more
dispersed nature of the data in this examples, the parametrization of NGeDSgam() focused on
avoiding overfitting by relaxing the stopping rule for the function smoothers (through lower
values of ϕ and q).

7.1. Examples from gam package

Example 7.1 - airquality. The first example is based on the airquality dataset, which is
available from base R. This presents daily air quality measurements in New York, from May
1, 1973, to September 30, 1973, and includes the following four variables:

• Ozone: Mean concentration of ozone, measured in parts per billion, recorded between
1:00 PM and 3:00 PM at Roosevelt Island.

• Solar.R: Solar radiation, expressed in Langleys, within the frequency band of 4,000 to
7,700 Angstroms. The data was collected between 8:00 AM and 12:00 PM at Central
Park.

• Wind: Average of the wind speeds measured at 7:00 AM and 10:00 AM, reported in
miles per hour, at LaGuardia Airport.

• Temp: Maximum daily temperature, in degrees Fahrenheit, at LaGuardia Airport.

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data). See Chambers (1983) for further
reference.

We follow the implementation of this example as presented in Hastie (2024) and correspond-
ingly adapt it for mgcv and GeDS. Note this is time series data. Thus, to compare the
performance of the models, these are trained on earlier data and tested on more recent data,
in order to simulate realistic forecasting scenarios. A sequence of train/test split ratios ranging
from 60% to 90%, in 1% increments, is considered. The R code utilized is as follows:

R> # Example 7.1

R> library(gam)

R> data(airquality)

R> airquality <- na.omit(airquality)

R> airquality$Ozone <- airquality$Ozone^(1/3)

Journal of Statistical Software 33

R> airquality <- airquality[order(airquality$Month, airquality$Day),]

R> trainIndex <- round(nrow(airquality) * ratio)

R> train <- airquality[1:trainIndex,]

R> test <- airquality[(trainIndex + 1):nrow(airquality),]

R> library(gam)

R> mod_gam <- gam(Ozone ~ lo(Solar.R) + lo(Wind,Temp), data = train)

R> detach(package:gam, unload = TRUE)

R> library(mgcv)

R> mod_mgcv <- gam(Ozone ~ s(Solar.R) + s(Wind,Temp), data = train)

R> detach(package:mgcv, unload = TRUE)

R> library(GeDS)

R> Gmodgam <- NGeDSgam(Ozone ~ f(Solar.R) + f(Wind, Temp), data = train,

+ phi = 0.7)

Note that in NGeDSgam(), a value of phi = 0.7 (i.e., lower than the default 0.99) is set to
avoid overfitting. The training and test MSEs are plotted in Figure 5, where it can be seen
that the linear NGeDSgam() consistently outperforms the other models on the test set.

Figure 5: Train (on the left) and test (on the right) MSE across various train/test sample
splitting ratios for Example 7.1. Models compared are gam, mgcv and linear NGeDSgam().

Examples 7.2 and 7.3 - Kyphosis. The third and fourth examples from the gam package
are based on the kyphosis dataset. This dataset presents the outcomes of corrective spinal
surgery (specifically, “laminectomies”) performed on children to correct a condition known as
“kyphosis” (a spinal deformation; see Hastie and Tibshirani (1990) for details). It comprises
81 observations and includes the following four variables:

• Kyphosis: A response factor with levels “absent” or “present”, indicating whether
kyphosis was present after the operation.

34 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

• Age: The age of the child in months, represented as a numeric vector.

• Number: The number of vertebrae involved in the operation, also a numeric vector.

• Start: The number of the first (topmost) vertebra operated on, also a numeric vector.

The objective is to determine the presence of kyphosis using the information provided by the
features. In example 7.2 the covariates considered are Number and Age, while in 7.3, Age and
Start are considered instead. The models are compared according to the test MSE and differ-
ent train/test splitting ratios were considered: 65%/35%, 70%/30% and 75%/25%. Besides,
100 different splits are simulated for each train/test splitting ratio. The R implementation of
these examples is as follows:

R> # Example 7.2

R> set.seed(123)

R> n <- nrow(kyphosis)

R> trainIndex <- sample(1:n, size = floor(training_ratio * n))

R> train <- kyphosis[trainIndex,]

R> test <- kyphosis[-trainIndex,]

R> library(gam)

R> mod_gam <- gam(Kyphosis ~ Number + s(Age,4), family = binomial,

+ data = train)

R> detach(package:gam, unload = TRUE)

R> library(mgcv)

R> mod_mgcv <- gam(Kyphosis ~ Number + s(Age), family = binomial, data = train)

R> detach(package:mgcv, unload=TRUE)

R> library(GeDS)

R> Gmodgam <- NGeDSgam(Kyphosis ~ Number + f(Age), data = train,

+ family = binomial, phi = 0.7)

R> # Example 7.3

R> kyphosis <- subset(kyphosis, Number > 2)

R> set.seed(123)

R> n <- nrow(kyphosis)

R> trainIndex <- sample(1:n, size = floor(training_ratio * n))

R> train <- kyphosis[trainIndex,]

R> test <- kyphosis[-trainIndex,]

R> library(gam)

R> mod_gam <- gam(Kyphosis ~ poly(Age,2) + s(Start), family = binomial,

+ data = train)

R> detach(package:gam, unload = TRUE)

R> library(mgcv)

R> mod_mgcv <- gam(Kyphosis ~ s(Age) + s(Start), family = binomial,

Journal of Statistical Software 35

+ data = train)

R> library(GeDS)

R> Gmodgam <- NGeDSgam(Kyphosis ~ f(Age) + f(Start), data = train,

+ family = binomial, q_gam = 1, phi = 0.7),

Again, to avoid overfitting we define a “weaker” function smoother through phi = 0.7 and
relax the local-scoring stopping rule setting q_gam = 1, for both for 7.2 and 7.3. Figure 6
shows boxplots of the binomial deviance on the test set, illustrating the more stable perfor-
mance of linear NGeDSgam compared to gam and mgcv, as evidenced by its tighter interquartile
range across the different train/test splitting ratios considered.

7.2. Examples from mgcv package

We now consider two examples based on datasets generated with the gamSim() function from
the mgcv package. The aim of this function is to simulate data that allows to illustrate
the use of the mgcv::gam() function. First, in 7.4, we explore an example from Gu and
Wahba (1991) that involves four uniform covariate terms. The true function is defined by
f(x) = 2× sin(π × x0) + exp(2x1) + 0.2x11

2 (10(1− x2))6 + 10(10x2)3(1− x2)10. However, we
consider y = f(x) + ϵ, where ϵ ∼ N (0, σ2

ϵ), to be the observed response variable and also
include a noise predictor, x3, as part of the covariates of the model. Second, in 7.5, instead
of having sin(π× x0), a factor variable x0 that comprises four categories is included, and the
cases with and without the noise predictor x3 are considered. Consistent with our previous
criteria, the MSEs are calculated with respect to the true function. For each example, 100
different datasets were simulated.

Example 7.4 - Gu and Wahba 4 covariate term example.

R> set.seed(123)

R> f_x0x1x2 <- function(x0,x1,x2) {

R> f0 <- function(x0) 2 * sin(pi * x0)

R> f1 <- function(x1) exp(2 * x1)

R> f2 <- function(x2) {

R> 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 * x2)^3 * (1 - x2)^10

R> }

R> f <- f0(x0) + f1(x1) + f2(x2)

R> return(f)

R> }

R> library(mgcv)

R> data <- gamSim(eg = 1, n = 400, dist = "normal", scale = 0.2)

R> f <- f_x0x1x2(x0 = data$x0, x1 = data$x1, x2 = data$x2)

R> detach(package:mgcv, unload=TRUE)

R> library(gam)

R> gam_mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = data)

R> detach(package:gam, unload = TRUE)

R> library(mgcv)

36 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

(a) Example 7.2.

(b) Example 7.3.

Figure 6: Test binomial mean deviance for 100 simulated train/test data sets from Examples
7.2 and 7.3, for different train/test splitting ratios (65/45%, 70/30% and 75/25%). Models
compared are gam, mgcv and linear NGeDSgam().

R> mod_mgcv <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = data)

R> detach(package:mgcv, unload = TRUE)

R> library(GeDS)

R> Gmodgam <- NGeDSgam(y ~ f(x0) + f(x1) + f(x2) + f(x3), data = data)

Journal of Statistical Software 37

Example 7.5 - An additive example plus a factor variable.

R> set.seed(123)

R> f_x0x1x2_factor <- function(x0,x1,x2) {

R> f0 <- function(x0) 2 * as.numeric(x0)

R> f1 <- function(x1) exp(2 * x1)

R> f2 <- function(x2) {

R> 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 * x2)^3 * (1 - x2)^10

R> }

R> f <- f0(x0) + f1(x1) + f2(x2)

R> return(f)

R> }

R> library(mgcv)

R> data = gamSim(eg = 5, n = 200, dist = "normal", scale = 0.2)

R> f <- f_x0x1x2_factor(x0 = data$x0, x1 = data$x1, x2 = data$x2)

R> detach(package:mgcv, unload=TRUE)

R> library(gam)

R> gam_mod_1 <- gam(y ~ x0 + s(x1) + s(x2) + s(x3), data = data)

R> gam_mod_2 <- gam(y ~ x0 + s(x1) + s(x2), data = data)

R> detach(package:gam, unload = TRUE)

R> library(mgcv)

R> mod_mgcv1 <- gam(y ~ x0 + s(x1) + s(x2) + s(x3), data = data)

R> mod_mgcv2 <- gam(y ~ x0 + s(x1) + s(x2), data = data)

R> detach(package:mgcv, unload = TRUE)

R> library(GeDS)

R> Gmodgam_1 <- NGeDSgam(y ~ x0 + f(x1) + f(x2) + f(x3), data = data)

R> Gmodgam_2 <- NGeDSgam(y ~ x0 + f(x1) + f(x2), data = data)

For the three examples—7.4, 7.5.1 and 7.5.2—, NGeDSgam() was run with its default param-
eters. Figure 8 presents boxplots of the MSEs obtained based on 100 simulations for each
example. To facilitate a closer comparison between mgcv and NGeDSgam(), gam was excluded
due to its consistently poor performance. By a significant margin, both quadratic and cubic
NGeDSgam() show superior accuracy. Figure 7 illustrates the partial fits for one of these sim-
ulations using mgcv::gam(), and using quadratic GeDS-GAM. While both models effectively
recover f(x0) and f(x1), GeDS-GAM outperforms in capturing the more intricate structure
of f(x2), which suggests that the accuracy difference observed in the boxplots may stem from
GeDS-GAM’s better handling more complex structures.

8. Numerical examples – component-wise boosted models

Bühlmann and Yu (2003) demonstrate that their L2Boosting approach competes effectively
with standard estimation techniques for fitting additive models, such as backfitting, and
can even surpass their performance. We now present two examples included in the mboost

documentation (Hothorn et al. (2022)) and observe how, after some parameter adjustment,
NGeDSboost() performs on par with, or even better than, mboost. Additionally, we present a

38 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Figure 7: Partial mgcv::gam() and quadratic GeDS-GAM fits on each of the component
functions, f(x0), f(x1) and f(x2), that additively form f(x), based on a simulated data
sample from Example 7.4. The dotted vertical lines in the plots below denote the locations
of the knots in the GAM-GeDS fit.

high-dimensional binary classification problem included in Bühlmann (2006) and Bühlmann
and Hothorn (2007).

Example 8.1 - Bodyfat. The first example is based on bodyfat dataset (Garcia, Wag-
ner, Hothorn, Koebnick, Zunft, and Trippo (2005)) which collects observations of body fat,
age and eight different anthropometric measurements for 71 German women. The goal is
to accurately predict women’s body fat using the available anthropometric measurements,

Journal of Statistical Software 39

Figure 8: Boxplots of the MSE for mgcv, and for quadratic and cubic NGeDSgam() fits based on
100 simulations from Examples 7.4 and 7.5. MSE is calculated with respect to the simulated
data without noise, i.e., the true generating function.

since direct measurements are frequently too expensive. The model specification presented in
mboost documentation utilizes a combination of a linear base-learner bols(age), a stump-
based base-learner btree(hipcirc, waistcirc) (hip and waist circumference, respectively),
and a P-spline learner bbs(kneebreadth) (breadth of the knee). The response variable,
DEXfat, corresponds to Dual X-Ray Absorptiometry (DXA) body fat measurements.

R> # Example 8.1 - Bodyfat

R> library(mboost)

R> data("bodyfat", package = "TH.data")

R> n <- nrow(bodyfat)

R> set.seed(123)

R> # Create a random sample of row indices for the training set

R> trainIndex <- sample(1:n, size = floor(ratio * n))

R> # Subset the data into training and test sets

R> train <- bodyfat[trainIndex,]

R> test <- bodyfat[-trainIndex,]

R> ### model conditional expectation of DEXfat given

R> mod_mboost <- mboost(DEXfat ~

+ bols(age) + ### a linear function of age

+ btree(hipcirc, waistcirc) + ### a smooth non-linear interaction of

+ ### hip and waist circumference

+ bbs(kneebreadth), ### a smooth function of kneebreadth

+ data = train, control = boost_control(mstop = 1000, nu = 0.1))

40 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

R> library(GeDS)

R> Gmodboost <- NGeDSboost(formula = DEXfat ~ age + f(hipcirc, waistcirc) +

+ f(kneebreadth), data = train, initial_learner = FALSE, shrinkage = 0.6,

+ phi = 0.9, q = 1, higher_order = FALSE)

Figure 9: Example 8.1. Test MSE for 100 simulated train/test data splits for different
train/test splitting ratios (65/45%, 70/30% and 75/25%). Models compared are mboost()

and linear NGeDSboost() models.

By setting initial_learner = FALSE in NGeDSboost() the corresponding empirical risk
minimizer is utilized as initial learner, instead of a GeD spline fit. The strength of the
NGeDS() base-learners at each boosting iteration is diminished setting phi = 0.9, q = 1, and
shrinkage = 0.6; higher_order = FALSE, since only the linear NGeDSboost() fit is used,
and hence there is no need of computing the quadratic and cubic fits. The performance of the
models is compared based on the test MSE for different train/test splitting ratios: 65/35%,
70/30%, and 75/25%. For each splitting ratio, 100 different splits are simulated. Under the
suggested parametrization, linear NGeDSboost() performs slightly better than mboost() for
each of the train/test splits.

Example 8.2 - Synthetic data w/4 predictors. The second example consists of a syn-
thetic dataset of 100 observations with four predictors: two are continuous (x1 and x2), one
is binary (x3), and one is multi-categorical (x4). The response variable is y = f(x) + ϵ,
where f(x) = 3 sin(x1) + (x2)2 and ϵ ∼ N (0, σ2

ϵ). Additionally, observation weights are pre-
defined. For the mboost() function, a vector defining the positions of the interior knots is
also provided, and the model specification presented by the package documentation consists
of a combination of P-splines base-learners, bbs(...), and categorical effects, wrapped in
bols(...).

R> # Example 8.2 - Synthetic data w/4 predictors

Journal of Statistical Software 41

R> library(mboost)

R> set.seed(290875)

R> n <- 100

R> x1 <- rnorm(n)

R> x2 <- rnorm(n) + 0.25 * x1

R> x3 <- as.factor(sample(0:1, 100, replace = TRUE))

R> x4 <- gl(4, 25)

R> y <- 3 * sin(x1) + x2^2 + rnorm(n)

R> weights <- drop(rmultinom(1, n, rep.int(1, n) / n))

R> knots.x2 <- quantile(x2, c(0.25, 0.5, 0.75))

R> ### more convenient formula interface

R> mod_mboost <- mboost(y ~ bbs(x1, knots = 20, df = 4) +

bbs(x2, knots = knots.x2, df = 5) +

bols(x3) + bols(x4), weights = weights)

R> library(GeDS)

R> Gmodboost <- NGeDSboost(formula = y ~ f(x1) + f(x2) + x3 + x4,

+ data = data, weights = weights, phi = 0.9)

MSEs are calculated with respect to the true function f(x), i.e. excluding the random normal
noise that is added on y. As shown in the left panel of Figure 10, simply setting a lower phi

to reduce the strength of the GeDS base-learners, both the quadratic and cubic versions of
NGeDSboost() improve the performance of mboost().

Example 8.3. - Breast Cancer Gene Expression. Variable selection is especially im-
portant in high-dimensional situations. Bühlmann (2006) and Bühlmann and Hothorn (2007)
study a binary classification problem involving P = 7, 129 gene expression levels in N = 49
breast cancer tumor samples (data taken from West, Blanchette, Dressman, Huang, Ishida,
Spang, Zuzan, Olson, Marks, and Nevins (2001)). For each observation, a binary response
variable, nodal.y, describes the lymph node status (25 are negative and 24 are positive). The
code implementation by Bühlmann and Hothorn (2007) uses linear models as base-learners
and is as follows:

R> data("Westbc", package = "TH.data")

R> data <- data.frame(Westbc$pheno, t(Westbc$assay))

R> mod_mboost <- glmboost(nodal.y ~ ., data = data,

+ family = Binomial(link = c("logit")),

+ control = boost_control(mstop = 200, center = TRUE))

However, let us note that when trying to run a similar model but using P-splines as base-
learners an error is displayed and the R session is aborted.

R> var_names <- names(data)

R> var_names <- var_names[var_names != "nodal.y"]

R> var_names <- paste0("bbs(", var_names, ",knots = 20, degree = 1,

+ center = FALSE)")

R> formula <- paste("nodal.y ~", paste(var_names, collapse = " + "))

R> mod_mboost <- gamboost(as.formula(formula), data = data,

42 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

+ family = Binomial(link = c("logit")),

+ control = boost_control(mstop = 200, center = TRUE))

Error: C stack usage 15924464 is too close to the limit

This is not the case for NGeDSboost(), using GeD splines base-learners:

R> Gmodboost <- NGeDSboost(formula = nodal.y ~ ., data = data,

+ family = mboost::Binomial(), initial_learner = FALSE, shrinkage = 0.1,

+ phi_boost_exit = 0.95, phi = 0.4, higher_order = FALSE)

Mean binomial test deviance boxplots based on 100 simulated data splits for a train/test split
of 70%/30% are included on the right panel of Figure 10. As observed, linear NGeDSboost(),
while evidently more computationally expensive, clearly outperforms the glmboost() im-
plementation in terms of accuracy. Similar to previous examples, the strength of the GeDS
base-learner is reduced setting shrinkage = 0.1 and phi = 0.4, while a looser stopping rule
is employed by fixing phi_boost_exit = 0.95.

Figure 10: (Left) MSE boxplots for mboost() and NGeDSboost() fits on 100 simulated data
samples of example 8.2. (Right) Boxplots of the mean binomial test deviance for glmboost()

and linear NGeDSboost() fits on 100 simulated data splits of example 8.3, using a training/test
ratio of 70%/30%.

Journal of Statistical Software 43

9. Conclusions

In this paper, the GeDS methodology, introduced by Kaishev et al. (2016) and Dimitrova et al.
(2023), is significantly enhanced through its extension towards the benchmark of generalized
additive models (GAM) and functional gradient boosting (FGB). In addition, the R package
GeDS, which implements these methods, is introduced. The main contributions of this work
are summarized as follows.

Firstly, we develop a new method for functional gradient boosting based on the use of GeD
splines as base-learners. Unlike its competitors, the final boosted fit is explicitly expressed as
a single spline model (i.e., not just as a sum of learners), thereby enhancing the model’s trans-
parency, interpretability and flexibility. Additionally, the number of boosting iterations is con-
trolled by a simple stopping rule, avoiding the complexities associated with cross-validation
or AIC-based techniques. Within the realm of non-additive models, this method not only
outperforms its direct competitors but also enhances the already robust canonical GeDS im-
plementation. Secondly, we have extended the GeDS methodology to the truly multivariate
case in two different ways. On the one hand, through its incorporation into generalized addi-
tive models, by using GeD splines as function smoothers within the local scoring algorithm.
On the other hand, through component-wise gradient boosting.

The GeDS, GAM-GeDS, and FGB-GeDS models offer unparalleled versatility in statistical
fitting, providing simultaneous linear, quadratic, and cubic spline fits. This allows users to
select the degree of the final fit, balancing smoothness and accuracy. Each model can be finely
tuned via two primary parameters, ϕ and β, with the addition of ϕexit

gam in FGB-GAM and
ϕexit

boost and κmax
0 in FGB-GeDS. The three approaches stand out for their efficient and highly

accurate fits, effectively handling both smooth and complex, wiggly univariate functions, as
well as multivariate additive problems, regardless of their dimension. Overall, quadratic and
cubic GeDS models demonstrate a strong ability to accurately fit intricate functions, which
constitutes a significant edge over their competitors. Meanwhile, in sparser data settings and
high-dimensional contexts, linear GeDS is more appropriate.

In conclusion, GeDS methodology—originally developed for the Normal univariate case and
later extended to the GNM framework—successfully extends to the context of generalized
additive models and functional gradient boosting, demonstrating competitive performance in
terms of accuracy and efficiency, along with compelling structural properties when compared
to existing methods.

In ongoing research, two immediate extensions of GeDS have been identified: quantile regres-
sion and varying coefficient models. First, in settings with a continuous response, quantile
regression enables modeling of various conditional quantiles (Koenker (2005)). Second, vary-
ing coefficient models (Hastie and Tibshirani (1993)) allow regression coefficients to vary
systematically and smoothly across multiple dimensions, and thus to deal with, e.g., time
series data.

44 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Computational details

The results in this paper, displayed in Sections 6, 7 and 8, were obtained using R 4.5.0 on a
standard PC (Intel(R) Core(TM) i7-8700 CPU @ 3.00 GHz, 16 GB RAM). Main packages
used are GeDS 0.3.2, mboost 2.9.11, gam 1.22.5 and mgcv 1.9.3. R itself and all packages
used are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.

R-project.org/.

References

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM
(2016). “mlr: Machine Learning in R.” Journal of Machine Learning Research, 17(170),
1–5. URL https://jmlr.org/papers/v17/15-066.html.

Bissantz N, Hohage T, Munk A, Ruymgaart F (2007). “Convergence Rates of General Reg-
ularization Methods for Statistical Inverse Problems and Applications.” SIAM Journal on
Numerical Analysis, 45(6), 2610–2636. doi:10.1137/060651884. https://doi.org/10.

1137/060651884, URL https://doi.org/10.1137/060651884.

Breiman L (1998). “Arcing classifier (with discussion and a rejoinder by the author).” The
Annals of Statistics, 26(3), 801 – 849. doi:10.1214/aos/1024691079. URL https://

doi.org/10.1214/aos/1024691079.

Breiman L (1999). “Prediction Games and Arcing Algorithms.” Neural Computation, 11(7),
1493–1517. ISSN 0899-7667. doi:10.1162/089976699300016106. https://direct.mit.

edu/neco/article-pdf/11/7/1493/814214/089976699300016106.pdf, URL https://

doi.org/10.1162/089976699300016106.

Brockhaus S, Rügamer D, Greven S (2020). “Boosting Functional Regression Models with
FDboost.” Journal of Statistical Software, 94(10), 1–50. doi:10.18637/jss.v094.i10.
URL https://www.jstatsoft.org/index.php/jss/article/view/v094i10.

Bühlmann P (2006). “Boosting for high-dimensional linear models.” The Annals of Statistics,
34(2), 559 – 583. doi:10.1214/009053606000000092. URL https://doi.org/10.1214/

009053606000000092.

Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and Model
Fitting.” Statistical Science, 22(4), 477 – 505. doi:10.1214/07-STS242. URL https:

//doi.org/10.1214/07-STS242.

Bühlmann P, Van De Geer S (2011). Statistics for high-dimensional data: methods, theory
and applications. Springer Science & Business Media.

Buja A, Hastie T, Tibshirani R (1989). “Linear Smoothers and Additive Models.” The Annals
of Statistics, 17(2), 453 – 510. doi:10.1214/aos/1176347115. URL https://doi.org/

10.1214/aos/1176347115.

Bühlmann P, Yu B (2003). “Boosting With the L2 Loss.” Journal of the American Statistical
Association, 98(462), 324–339. doi:10.1198/016214503000125. URL https://doi.org/

10.1198/016214503000125.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://jmlr.org/papers/v17/15-066.html
https://doi.org/10.1137/060651884
https://doi.org/10.1137/060651884
https://doi.org/10.1137/060651884
https://doi.org/10.1137/060651884
https://doi.org/10.1214/aos/1024691079
https://doi.org/10.1214/aos/1024691079
https://doi.org/10.1214/aos/1024691079
https://doi.org/10.1162/089976699300016106
https://direct.mit.edu/neco/article-pdf/11/7/1493/814214/089976699300016106.pdf
https://direct.mit.edu/neco/article-pdf/11/7/1493/814214/089976699300016106.pdf
https://doi.org/10.1162/089976699300016106
https://doi.org/10.1162/089976699300016106
https://doi.org/10.18637/jss.v094.i10
https://www.jstatsoft.org/index.php/jss/article/view/v094i10
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/aos/1176347115
https://doi.org/10.1214/aos/1176347115
https://doi.org/10.1214/aos/1176347115
https://doi.org/10.1198/016214503000125
https://doi.org/10.1198/016214503000125
https://doi.org/10.1198/016214503000125

Journal of Statistical Software 45

Chambers JM (1983). Graphical Methods for Data Analysis. 1 edition. Chapman
and Hall/CRC. doi:10.1201/9781351072304. URL https://doi.org/10.1201/

9781351072304.

Chen T, Guestrin C (2016). “XGBoost: A Scalable Tree Boosting System.” In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, p. 785–794. ACM. doi:10.1145/2939672.2939785. URL http://dx.

doi.org/10.1145/2939672.2939785.

Dimitrova DS, Kaishev VK, Lattuada A, Verrall RJ (2023). “Geometrically de-
signed variable knot splines in generalized (non-)linear models.” Applied Math-
ematics and Computation, 436. ISSN 0096-3003. doi:10.1016/j.amc.2022.

127493. © 2022. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/, URL https://www.

sciencedirect.com/science/article/pii/S0096300322005677.

Dorogush AV, Ershov V, Gulin A (2018). “CatBoost: gradient boosting with categorical
features support.” 1810.11363, URL https://arxiv.org/abs/1810.11363.

Eilers PHC, Marx BD (1996). “Flexible smoothing with B-splines and penalties.” Statistical
Science, 11(2), 89 – 121. doi:10.1214/ss/1038425655. URL https://doi.org/10.1214/

ss/1038425655.

Freund Y, Schapire RE (1996). “Experiments with a New Boosting Algorithm.” In Interna-
tional Conference on Machine Learning.

Freund Y, Schapire RE (1997). “A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting.” Journal of Computer and System Sciences, 55(1), 119–139.
ISSN 0022-0000. doi:10.1006/jcss.1997.1504. URL https://www.sciencedirect.

com/science/article/pii/S002200009791504X.

Friedman J, Hastie T, Tibshirani R (2000). “Additive logistic regression: a statistical view
of boosting (With discussion and a rejoinder by the authors).” The Annals of Statistics,
28(2), 337 – 407. doi:10.1214/aos/1016218223. URL https://doi.org/10.1214/aos/

1016218223.

Friedman JH (2001). “Greedy function approximation: A gradient boosting machine.” The
Annals of Statistics, 29(5), 1189 – 1232. doi:10.1214/aos/1013203451. URL https:

//doi.org/10.1214/aos/1013203451.

Garcia AL, Wagner K, Hothorn T, Koebnick C, Zunft HJF, Trippo U (2005). “Improved
prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths.”
Obesity research, 13(3), 626–634. doi:10.1038/oby.2005.67. URL http://www.ncbi.

nlm.nih.gov/pubmed/15833949.

Gu C (2014). “Smoothing Spline ANOVA Models: R Package gss.” Journal of Statistical
Software, 58(5), 1–25. doi:10.18637/jss.v058.i05. URL https://www.jstatsoft.

org/index.php/jss/article/view/v058i05.

Gu C, Wahba G (1991). “Minimizing GCV/GML Scores with Multiple Smoothing Pa-
rameters via the Newton Method.” SIAM J. Sci. Comput., 12, 383–398. URL https:

//api.semanticscholar.org/CorpusID:5789455.

https://doi.org/10.1201/9781351072304
https://doi.org/10.1201/9781351072304
https://doi.org/10.1201/9781351072304
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.amc.2022.127493
https://doi.org/10.1016/j.amc.2022.127493
https://www.sciencedirect.com/science/article/pii/S0096300322005677
https://www.sciencedirect.com/science/article/pii/S0096300322005677
1810.11363
https://arxiv.org/abs/1810.11363
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1006/jcss.1997.1504
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1038/oby.2005.67
http://www.ncbi.nlm.nih.gov/pubmed/15833949
http://www.ncbi.nlm.nih.gov/pubmed/15833949
https://doi.org/10.18637/jss.v058.i05
https://www.jstatsoft.org/index.php/jss/article/view/v058i05
https://www.jstatsoft.org/index.php/jss/article/view/v058i05
https://api.semanticscholar.org/CorpusID:5789455
https://api.semanticscholar.org/CorpusID:5789455

46 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Hastie T (2007). “Comment: Boosting Algorithms: Regularization, Prediction and Model
Fitting.” Statistical Science, 22(4), 513–515. ISSN 08834237. URL http://www.jstor.

org/stable/27645856.

Hastie T (2024). gam: Generalized Additive Models. R package version 1.22-5, URL https:

//CRAN.R-project.org/package=gam.

Hastie T, Tibshirani R (1986). “Generalized Additive Models.” Statistical Science, 1(3),
297–310. ISSN 08834237. URL http://www.jstor.org/stable/2245459.

Hastie T, Tibshirani R (1990). “Generalized additive models.” Monographs on statistics and
applied probability. Chapman & Hall, 43, 335.

Hastie T, Tibshirani R (1993). “Varying-Coefficient Models.” Journal of the Royal Statistical
Society. Series B (Methodological), 55(4), 757–796. ISSN 00359246. URL http://www.

jstor.org/stable/2345993.

Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009). The elements of statistical learn-
ing: data mining, inference, and prediction, volume 2. Springer.

Hofner B, Mayr A, Robinzonov N, Schmid M (2014). “Model-based boosting in R: a hands-on
tutorial using the R package mboost.” Computational Statistics, 29(1), 3–35.

Hofner B, Mayr A, Schmid M (2016). “gamboostLSS: An R Package for Model Build-
ing and Variable Selection in the GAMLSS Framework.” Journal of Statistical Software,
74(1), 1–31. doi:10.18637/jss.v074.i01. URL https://www.jstatsoft.org/index.

php/jss/article/view/v074i01.

Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B (2022). mboost: Model-Based
Boosting. R package version 2.9-7, URL https://CRAN.R-project.org/package=mboost.

Jupp DLB (1978). “Approximation to Data by Splines with Free Knots.” SIAM Journal on
Numerical Analysis, 15(2), 328–343. doi:10.1137/0715022. https://doi.org/10.1137/

0715022, URL https://doi.org/10.1137/0715022.

Kaishev VK, Dimitrova DS, Haberman S, Verrall RJ (2016). “Geometrically designed, variable
knot regression splines.” Computational Statistics, 31(3), 1079–1105. ISSN 1613-9658. doi:

10.1007/s00180-015-0621-7. URL https://doi.org/10.1007/s00180-015-0621-7.

Karunasingha DSK (2022). “Root mean square error or mean absolute error? Use their ratio
as well.” Information Sciences, 585, 609–629. ISSN 0020-0255. doi:https://doi.org/10.

1016/j.ins.2021.11.036. URL https://www.sciencedirect.com/science/article/

pii/S0020025521011567.

Kauermann G, Opsomer JD (2003). “Local likelihood estimation in generalized additive
models.” Scandinavian Journal of Statistics, 30(2), 317–337.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017).
“LightGBM: A Highly Efficient Gradient Boosting Decision Tree.” In I Guyon,
UV Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, R Garnett

http://www.jstor.org/stable/27645856
http://www.jstor.org/stable/27645856
https://CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=gam
http://www.jstor.org/stable/2245459
http://www.jstor.org/stable/2345993
http://www.jstor.org/stable/2345993
https://doi.org/10.18637/jss.v074.i01
https://www.jstatsoft.org/index.php/jss/article/view/v074i01
https://www.jstatsoft.org/index.php/jss/article/view/v074i01
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1137/0715022
https://doi.org/10.1137/0715022
https://doi.org/10.1137/0715022
https://doi.org/10.1137/0715022
https://doi.org/10.1007/s00180-015-0621-7
https://doi.org/10.1007/s00180-015-0621-7
https://doi.org/10.1007/s00180-015-0621-7
https://doi.org/https://doi.org/10.1016/j.ins.2021.11.036
https://doi.org/https://doi.org/10.1016/j.ins.2021.11.036
https://www.sciencedirect.com/science/article/pii/S0020025521011567
https://www.sciencedirect.com/science/article/pii/S0020025521011567

Journal of Statistical Software 47

(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Kimber SAJ, Kreyssig A, Zhang YZ, Jeschke HO, Valentí R, Yokaichiya F, Colombier E,
Yan J, Hansen TC, Chatterji T, McQueeney RJ, Canfield PC, Goldman AI, Argyriou DN
(2009). “Similarities between structural distortions under pressure and chemical doping in
superconducting BaFe2As2.” Nature Materials, 8(6), 471–475.

Knafl GJ, Ding K (2016). Generalized Additive Modeling in SAS, pp. 315–327. Springer Inter-
national Publishing, Cham. ISBN 978-3-319-33946-7. doi:10.1007/978-3-319-33946-7_

17. URL https://doi.org/10.1007/978-3-319-33946-7_17.

Koenker R (2005). Quantile Regression. Econometric Society Monographs. Cambridge Uni-
versity Press.

Kuhn, Max (2008). “Building Predictive Models in R Using the caret Package.” Journal
of Statistical Software, 28(5), 1–26. doi:10.18637/jss.v028.i05. URL https://www.

jstatsoft.org/index.php/jss/article/view/v028i05.

Kuhn M, Wickham H (2020). Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles. URL https://www.tidymodels.org.

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kot-
thoff L, Bischl B (2019). “mlr3: A modern object-oriented machine learning frame-
work in R.” Journal of Open Source Software. doi:10.21105/joss.01903. URL
https://joss.theoj.org/papers/10.21105/joss.01903.

Liang T, Sur P (2022). “A precise high-dimensional asymptotic theory for boosting and
minimum-ℓ1-norm interpolated classifiers.” The Annals of Statistics, 50(3), 1669 – 1695.
doi:10.1214/22-AOS2170. URL https://doi.org/10.1214/22-AOS2170.

LLC S (2025). Stata 19 Base Reference Manual. College Station, TX.

Mayr A, Binder H, Gefeller O, Schmid M (2014). “The evolution of boosting algorithms. From
machine learning to statistical modelling.” Methods of information in medicine, 53(6), 419–
427. doi:10.3414/ME13-01-0122. URL https://doi.org/10.3414/ME13-01-0122.

Mayr A, Hofner B, Schmid M (2012). “The importance of knowing when to stop. A se-
quential stopping rule for component-wise gradient boosting.” Methods of information
in medicine, 51(2), 178–186. doi:10.3414/ME11-02-0030. URL https://doi.org/10.

3414/ME11-02-0030.

Opsomer JD (2000). “Asymptotic Properties of Backfitting Estimators.” Journal of
Multivariate Analysis, 73(2), 166–179. ISSN 0047-259X. doi:https://doi.org/10.

1006/jmva.1999.1868. URL https://www.sciencedirect.com/science/article/pii/

S0047259X99918687.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “Scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1007/978-3-319-33946-7_17
https://doi.org/10.1007/978-3-319-33946-7_17
https://doi.org/10.1007/978-3-319-33946-7_17
https://doi.org/10.18637/jss.v028.i05
https://www.jstatsoft.org/index.php/jss/article/view/v028i05
https://www.jstatsoft.org/index.php/jss/article/view/v028i05
https://www.tidymodels.org
https://doi.org/10.21105/joss.01903
https://joss.theoj.org/papers/10.21105/joss.01903
https://doi.org/10.1214/22-AOS2170
https://doi.org/10.1214/22-AOS2170
https://doi.org/10.3414/ME13-01-0122
https://doi.org/10.3414/ME13-01-0122
https://doi.org/10.3414/ME11-02-0030
https://doi.org/10.3414/ME11-02-0030
https://doi.org/10.3414/ME11-02-0030
https://doi.org/https://doi.org/10.1006/jmva.1999.1868
https://doi.org/https://doi.org/10.1006/jmva.1999.1868
https://www.sciencedirect.com/science/article/pii/S0047259X99918687
https://www.sciencedirect.com/science/article/pii/S0047259X99918687

48 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

Potts S, Bergherr E, Reinke C, Griesbach C (2023). “Prediction-based Variable Selection for
Component-wise Gradient Boosting.” 2302.13822.

Ridgeway G, Developers G (2024). gbm: Generalized Boosted Regression Models. doi:10.

32614/CRAN.package.gbm. R package version 2.2.2, URL https://CRAN.R-project.org/

package=gbm.

Royston P, Ambler G (2002). “GAM: Stata module for generalised additive models.” Sta-
tistical Software Components, Boston College Department of Economics. URL https:

//ideas.repec.org/c/boc/bocode/s428701.html.

SAS Institute Inc (2018). SAS/STAT® 15.1 User’s Guide. Cary, NC.

Schapire RE (1990). “The strength of weak learnability.” Machine Learning, 5(2), 197–227.

Schmid M, Hothorn T (2008a). “Boosting additive models using component-wise P-Splines.”
Computational Statistics & Data Analysis, 53(2), 298–311. ISSN 0167-9473. doi:

https://doi.org/10.1016/j.csda.2008.09.009. URL https://www.sciencedirect.

com/science/article/pii/S0167947308004416.

Schmid M, Hothorn T (2008b). “Flexible boosting of accelerated failure time models.” BMC
Bioinformatics, 9(1), 269. ISSN 1471-2105. doi:10.1186/1471-2105-9-269. URL https:

//doi.org/10.1186/1471-2105-9-269.

Seabold S, Perktold J (2010). “statsmodels: Econometric and statistical modeling with
python.” In 9th Python in Science Conference.

Servén D, Brummitt C (2018). “pygam: Generalized additive models in python.” Zenodo.

Smith NJ, Wardrop M, Capretto T (2024). patsy: Describing Statistical Models in Python
Using Symbolic Formulas. doi:10.5281/zenodo.592075. Python package version 1.0.1,
URL https://pypi.org/project/patsy/.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1–46. doi:10.18637/jss.

v023.i07. URL https://www.jstatsoft.org/index.php/jss/article/view/v023i07.

Wahba G, Wang Y, Gu C, Klein R, Klein B (1995). “Smoothing spline ANOVA for exponential
families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy
: the 1994 Neyman Memorial Lecture.” The Annals of Statistics, 23(6), 1865 – 1895.
doi:10.1214/aos/1034713638. URL https://doi.org/10.1214/aos/1034713638.

Wand M (2018). SemiPar: Semiparametic Regression. doi:10.32614/CRAN.package.

SemiPar. R package version 1.0-4.2, URL https://CRAN.R-project.org/package=

SemiPar.

Wardrop M (2024). formulaic: A High-Performance Implementation of Wilkinson Formulas
for Python. Python package version 1.1.1, URL https://pypi.org/project/formulaic/.

West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson Jr JA,
Marks JR, Nevins JR (2001). “Predicting the clinical status of human breast cancer by
using gene expression profiles.” Proc Natl Acad Sci U S A, 98(20), 11462–11467.

2302.13822
https://doi.org/10.32614/CRAN.package.gbm
https://doi.org/10.32614/CRAN.package.gbm
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://ideas.repec.org/c/boc/bocode/s428701.html
https://ideas.repec.org/c/boc/bocode/s428701.html
https://doi.org/https://doi.org/10.1016/j.csda.2008.09.009
https://doi.org/https://doi.org/10.1016/j.csda.2008.09.009
https://www.sciencedirect.com/science/article/pii/S0167947308004416
https://www.sciencedirect.com/science/article/pii/S0167947308004416
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.5281/zenodo.592075
https://pypi.org/project/patsy/
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.18637/jss.v023.i07
https://www.jstatsoft.org/index.php/jss/article/view/v023i07
https://doi.org/10.1214/aos/1034713638
https://doi.org/10.1214/aos/1034713638
https://doi.org/10.32614/CRAN.package.SemiPar
https://doi.org/10.32614/CRAN.package.SemiPar
https://CRAN.R-project.org/package=SemiPar
https://CRAN.R-project.org/package=SemiPar
https://pypi.org/project/formulaic/

Journal of Statistical Software 49

Wood S (2017). Generalized Additive Models: An Introduction with R. 2 edition. Chapman
and Hall/CRC. ISBN 9781315370279. URL https://doi.org/10.1201/9781315370279.

Wood SN (2023). mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Es-
timation. R package version 1.9-0, URL https://CRAN.R-project.org/package=mgcv.

Yang L, Hong Y (2017). “Adaptive penalized splines for data smoothing.” Computational
Statistics & Data Analysis, 108, 70–83. ISSN 0167-9473. doi:https://doi.org/10.

1016/j.csda.2016.10.022. URL https://www.sciencedirect.com/science/article/

pii/S0167947316302493.

Yao Y, Rosasco L, Caponnetto A (2007). “On Early Stopping in Gradient Descent Learn-
ing.” Constructive Approximation, 26(2), 289–315. ISSN 1432-0940. doi:10.1007/

s00365-006-0663-2. URL https://doi.org/10.1007/s00365-006-0663-2.

Yee T (2015). Vector Generalized Linear and Additive Models: With an Implementation in
R. Springer. ISBN 978-1-4939-2817-0. doi:10.1007/978-1-4939-2818-7.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10. URL https://www.jstatsoft.

org/index.php/jss/article/view/v032i10.

Yousuf K, Ng S (2021). “Boosting high dimensional predictive regressions with time varying
parameters.” Journal of Econometrics, 224(1), 60–87. ISSN 0304-4076. doi:https://

doi.org/10.1016/j.jeconom.2020.08.003. Annals Issue: PI Day, URL https://www.

sciencedirect.com/science/article/pii/S0304407620302827.

Zhou S, Shen X (2001). “Spatially Adaptive Regression Splines and Accurate Knot Selec-
tion Schemes.” Journal of the American Statistical Association, 96(453), 247–259. ISSN
01621459. URL http://www.jstor.org/stable/2670363.

https://doi.org/10.1201/9781315370279
https://CRAN.R-project.org/package=mgcv
https://doi.org/https://doi.org/10.1016/j.csda.2016.10.022
https://doi.org/https://doi.org/10.1016/j.csda.2016.10.022
https://www.sciencedirect.com/science/article/pii/S0167947316302493
https://www.sciencedirect.com/science/article/pii/S0167947316302493
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1007/978-1-4939-2818-7
https://doi.org/10.18637/jss.v032.i10
https://www.jstatsoft.org/index.php/jss/article/view/v032i10
https://www.jstatsoft.org/index.php/jss/article/view/v032i10
https://doi.org/https://doi.org/10.1016/j.jeconom.2020.08.003
https://doi.org/https://doi.org/10.1016/j.jeconom.2020.08.003
https://www.sciencedirect.com/science/article/pii/S0304407620302827
https://www.sciencedirect.com/science/article/pii/S0304407620302827
http://www.jstor.org/stable/2670363

50 GeDS: An R Package for Regression, GAM and FGB, based on GeD Splines

A. GeDS Boost model update

In Algorithm 4 we have presented the FGB-GeDS procedure using the L2 loss. As mentioned,
one of the main advantages of this technique is the possibility of updating the piecewise
polynomial representation of the univariate base-learner(s) at each boosting iteration. This
allows to express the final boosted model as a single spline model. Step 3 succinctly details
the updating process for the polynomial coefficients of each base-learner. For the sake of
completeness, we provide a detailed algorithm as follows:

Algorithm 6 Linear GeDS Boost fit polynomial coefficients update

Initialize: i = 1; j = 1; ∆dm,2 := ∆dm−1,2; κ = 1
while i + j ≤ dm−1 + 1 + κm + 1 do

a
(k)
m = a

(i)
m−1 + ν × a†(j)

m

b
(k)
m = b

(i)
m−1 + ν × b†(j)

m

κ = κ + 1;
if δj+2 < ξi+2 then

Add δj+2 to ∆dm,2 between ξi+1 and ξi+2;
j ← j + 1;

else if δj+2 > ξi+2 then
i← i + 1;

else
j ← j + 1; i← i + 1;

end if
end while

Affiliation:

Dimitrina S. Dimitrova, Vladimir K. Kaishev and Emilio L. Sáenz Guillén
Faculty of Actuarial Science and Insurance, Bayes Business School, City St George’s,
University of London, 106 Bunhill Row, EC1Y 8TZ London, United Kingdom
E-mail: D.Dimitrova@citystgeorges.ac.uk,
Vladimir.Kaishev.1@citystgeorges.ac.uk

Emilio.Saenz-Guillen@citystgeorges.ac.uk,
URL:
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/

dimitrina-dimitrova,
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/

vladimir-kaishev,
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/students/

emilio-saenz-guillen

Journal of Statistical Software http://www.jstatsoft.org/

published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:D.Dimitrova@citystgeorges.ac.uk
mailto:Vladimir.Kaishev.1@citystgeorges.ac.uk
mailto:Emilio.Saenz-Guillen@citystgeorges.ac.uk
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/dimitrina-dimitrova
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/dimitrina-dimitrova
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/vladimir-kaishev
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/experts/vladimir-kaishev
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/students/emilio-saenz-guillen
https://www.bayes.citystgeorges.ac.uk/faculties-and-research/students/emilio-saenz-guillen
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	GeDS estimation method
	Generalized additive models with GeDS
	Functional gradient boosting
	Boosting for regression
	Boosting for classification
	Boosting in the exponential family
	Asymptotic properties of boosting
	Boosting software implementations

	L2Boost Normal GeD spline regression
	TEXT-GeDS Boost algorithm
	Component-wise TEXT-GeDS boosting

	Numerical examples – non-additive models
	FGB-GeDS fitting process
	Further examples and model comparison

	Numerical examples – generalized additive models
	Examples from gam package
	Examples from mgcv package

	Numerical examples – component-wise boosted models
	Conclusions
	GeDS Boost model update

