| Type: | Package | 
| Title: | Group Technical Effects | 
| Version: | 1.0.0 | 
| Language: | en-US | 
| Date: | 2025-02-20 | 
| Maintainer: | Yang Zhou <yangz@stu.hit.edu.cn> | 
| Description: | Implementation of the GTE (Group Technical Effects) model for single-cell data. GTE is a quantitative metric to assess batch effects for individual genes in single-cell data. For a single-cell dataset, the user can calculate the GTE value for individual features (such as genes), and then identify the highly batch-sensitive features. Removing these highly batch-sensitive features results in datasets with low batch effects. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| Depends: | R (≥ 4.0.0) | 
| Imports: | stats, Matrix, matrixStats, Rcpp, RcppEigen, dplyr | 
| LinkingTo: | Rcpp (≥ 1.0.8), RcppEigen | 
| RoxygenNote: | 7.2.3 | 
| NeedsCompilation: | yes | 
| URL: | https://github.com/yzhou1999/GTEs, https://yzhou1999.github.io/GTEs/ | 
| BugReports: | https://github.com/yzhou1999/GTEs/issues | 
| Packaged: | 2025-02-26 07:54:16 UTC; server | 
| Author: | Yang Zhou [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2025-02-27 16:50:10 UTC | 
Compute the group technical effects.
Description
Compute the group technical effects.
Usage
Run.GroupTechEffects(X, meta, g_factor, b_factor, do.scale = FALSE)
Arguments
| X | Input data matrix. | 
| meta | Input metadata (data.frame). | 
| g_factor | Group variable (s). | 
| b_factor | Batch variable (s). | 
| do.scale | Whether to perform scaling. | 
Value
A list containing the overall GTE ($OverallTechEffects) and the GTE ($GroupTechEffects) of each subgroup under the group variable.
Examples
# X is a normalized expression matrix with rows as features and columns as cells.
# meta is a data.frame with columns containing metadata such as cell type, batch, etc.
data_file <- system.file("extdata", "example_data.rds", package = "GTEs")
example_data <- readRDS(data_file)
meta_file <- system.file("extdata", "example_meta.rds", package = "GTEs")
example_meta <- readRDS(meta_file)
GTE_ct <- Run.GroupTechEffects(example_data, example_meta,
                               g_factor = "CellType",
                               b_factor = "Batch")
Select highly batch-sensitive genes (HBGs) under a group variable.
Description
Select highly batch-sensitive genes (HBGs) under a group variable.
Usage
Select.HBGs(GTE, bins = 0.1, gte.ratio = 0.95)
Arguments
| GTE | GTE result. | 
| bins | Bins. | 
| gte.ratio | Ratio of selected HBGs to the total GTE. | 
Value
Identified HBGs.
Examples
# GTE is the result of Run.GroupTechEffects function.
data_file <- system.file("extdata", "GTE_ct.rds", package = "GTEs")
GTE_ct <- readRDS(data_file)
HBGs <- Select.HBGs(GTE_ct)
Compute one-hot matrix for given data frame and variable (s)
Description
Compute one-hot matrix for given data frame and variable (s)
Usage
group_onehot(x, ivar)
Arguments
| x | Input data frame. | 
| ivar | Variable (s) for one-hot computation. | 
Scale data matrix
Description
Scale data matrix
Usage
scale_data(
  data.x,
  do.center = TRUE,
  do.scale = TRUE,
  row.means = NULL,
  row.sds = NULL
)
Arguments
| data.x | Input data matrix. | 
| do.center | Whether center the row values. (default TRUE) | 
| do.scale | Whether scale the row values. (default TRUE) | 
| row.means | The provided row means to center. (default NULL) | 
| row.sds | The provided row standard deviations to scale. (default NULL) | 
Select HBGs using GTE vector.
Description
Select HBGs using GTE vector.
Usage
select_hbgs(gte, bins = 0.1, gte.ratio = 0.95, is.sort = TRUE)
Arguments
| gte | Named GTE vector. | 
| bins | Bins. | 
| gte.ratio | Ratio of selected HBGs to overall GTE. | 
| is.sort | Whether to sort genes by GTE from largest to smallest. |