## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set(eval = TRUE) ## ----setup-------------------------------------------------------------------- library(GINAX) ## ----------------------------------------------------------------------------- data("Y_poisson") Y_poisson[1:5] ## ----------------------------------------------------------------------------- data("Y_binary") Y_binary[1:5] ## ----------------------------------------------------------------------------- data("SNPs") SNPs[1:5,1:5] ## ----------------------------------------------------------------------------- data("kinship") kinship[1:5,1:5] ## ----------------------------------------------------------------------------- n <- length(Y_poisson) covariance <- list() covariance[[1]] <- kinship covariance[[2]] <- diag(1, nrow = n, ncol = n) ## ----long-example1, eval = FALSE---------------------------------------------- # # This example is computationally intensive and is shown but not evaluated in this vignette. # # You can run it manually in your R session. # output_poisson <- GINAX(Y=Y_poisson, Covariance=covariance, SNPs=SNPs, family="poisson", Z=NULL, offset=log(15),FDR_Nominal = 0.05, maxiterations = 1000, runs_til_stop = 200) # output_poisson ## ----------------------------------------------------------------------------- covariance <- list() covariance[[1]] <- kinship ## ----long-example2, eval = FALSE---------------------------------------------- # # This example is computationally intensive and is shown but not evaluated in this vignette. # # You can run it manually in your R session. # output_binary <- GINAX(Y=Y_binary, Covariance=covariance, SNPs = SNPs, family = "bernoulli", Z=NULL, offset=NULL, FDR_Nominal = 0.05, maxiterations = 2000, runs_til_stop = 400) # output_binary