Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy').
| Version: | 1.1 | 
| Imports: | fda.usc, KernSmooth | 
| Published: | 2021-05-03 | 
| DOI: | 10.32614/CRAN.package.FiSh | 
| Author: | Fabian Guignard [aut], Mohamed Laib [aut, cre] | 
| Maintainer: | Mohamed Laib <laib.med at gmail.com> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| CRAN checks: | FiSh results | 
| Reference manual: | FiSh.html , FiSh.pdf | 
| Package source: | FiSh_1.1.tar.gz | 
| Windows binaries: | r-devel: FiSh_1.1.zip, r-release: FiSh_1.1.zip, r-oldrel: FiSh_1.1.zip | 
| macOS binaries: | r-release (arm64): FiSh_1.1.tgz, r-oldrel (arm64): FiSh_1.1.tgz, r-release (x86_64): FiSh_1.1.tgz, r-oldrel (x86_64): FiSh_1.1.tgz | 
| Old sources: | FiSh archive | 
Please use the canonical form https://CRAN.R-project.org/package=FiSh to link to this page.