## ----setup, echo = FALSE------------------------------------------------------ knitr::opts_chunk$set(collapse = FALSE, comment = "#>", prompt = FALSE, tidy = FALSE, echo = TRUE, message = FALSE, warning = FALSE, # Default figure options: dpi = 100, fig.align = 'center', fig.height = 6.0, fig.width = 6.5, out.width = "580px") ## ----load-pkg-0, echo = FALSE, message = FALSE, results = 'hide'-------------- library(FFTrees) ## ----image-mushrooms, fig.align = "center", out.width = "225px", echo = FALSE---- knitr::include_graphics("../inst/mushrooms.jpg") ## ----data-mushrooms, echo = FALSE--------------------------------------------- # names(mushrooms) # Select subset: mushrooms_sub <- mushrooms[1:6, c(1:6, 18:23)] knitr::kable(head(mushrooms_sub)) ## ----fft-mushrooms-1, message = FALSE, results = 'hide', warning = FALSE------ # Create FFTs from the mushrooms data: set.seed(1) # for replicability of the training / test data split mushrooms_fft <- FFTrees(formula = poisonous ~., data = mushrooms, train.p = .50, # split data into 50:50 training/test subsets main = "Mushrooms", decision.labels = c("Safe", "Poison"), do.comp = FALSE) ## ----fft-mushrooms-1-print---------------------------------------------------- # Print information about the best tree (during training): print(mushrooms_fft) ## ----fft-mushrooms-1-plot-cues, fig.width = 6.0, fig.height = 6.0, out.width = "450px"---- # Plot the cue accuracies of an FFTrees object: plot(mushrooms_fft, what = "cues") ## ----fft-mushrooms-1-plot----------------------------------------------------- # Plot the best FFT (for test data): plot(mushrooms_fft, data = "test") ## ----fft-mushrooms-2-seed, include = FALSE------------------------------------ set.seed(200) ## ----fft-mushrooms-2, message = FALSE, results = 'hide', warning = FALSE------ # Create trees using only the ringtype and ringnum cues: mushrooms_ring_fft <- FFTrees(formula = poisonous ~ ringtype + ringnum, data = mushrooms, train.p = .50, main = "Mushrooms (ring cues)", decision.labels = c("Safe", "Poison"), do.comp = FALSE) ## ----fft-mushrooms-2-plot----------------------------------------------------- # Plotting the best training FFT (for test data): plot(mushrooms_ring_fft, data = "test") ## ----iris-image, fig.align = "center", out.width = "225px", echo = FALSE------ knitr::include_graphics("../inst/virginica.jpg") ## ----iris-fft, message = FALSE, results = 'hide'------------------------------ # Create FFTrees object for iris data: iris_fft <- FFTrees(formula = virginica ~., data = iris.v, main = "Iris", decision.labels = c("Not-Vir", "Vir")) ## ----iris-fft-print, echo = TRUE, eval = FALSE, results = 'hide'-------------- # # Inspect resulting FFTs: # print(iris_fft) # summarize best training tree # plot(iris_fft) # visualize best training tree # summary(iris_fft) # summarize FFTrees object ## ----iris-plot-cues, fig.width = 6.0, fig.height = 6.0, out.width = "450px"---- # Plot cue values: plot(iris_fft, what = "cues") ## ----iris-plot-fft------------------------------------------------------------ # Plot best FFT: plot(iris_fft) ## ----iris-plot-fft-2---------------------------------------------------------- # Plot FFT #2: plot(iris_fft, tree = 2)