## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- realistic_stomach_data_path <- system.file("extdata", "realistic_stomach_data.csv", package = "EcoDiet") realistic_stomach_data <- read.csv(realistic_stomach_data_path) knitr::kable(realistic_stomach_data) ## ----------------------------------------------------------------------------- realistic_biotracer_data_path <- system.file("extdata", "realistic_biotracer_data.csv", package = "EcoDiet") realistic_biotracer_data <- read.csv(realistic_biotracer_data_path) knitr::kable(realistic_biotracer_data[c(1:3, 31:33, 61:63), ]) ## ---- fig.height = 5, fig.width = 8------------------------------------------- library(EcoDiet) plot_data(biotracer_data = realistic_biotracer_data, stomach_data = realistic_stomach_data) ## ----------------------------------------------------------------------------- literature_configuration <- FALSE data <- preprocess_data(biotracer_data = realistic_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, stomach_data = realistic_stomach_data) ## ---- fig.height = 5, fig.width = 8------------------------------------------- plot_prior(data, literature_configuration) ## ---- fig.height = 5, fig.width = 8------------------------------------------- plot_prior(data, literature_configuration, pred = "Pout") ## ----------------------------------------------------------------------------- filename <- "mymodel.txt" write_model(file.name = filename, literature_configuration = literature_configuration, print.model = F) mcmc_output <- run_model(filename, data, run_param="test") ## ---- eval = FALSE------------------------------------------------------------ # mcmc_output <- run_model(filename, data, run_param="normal", parallelize = T) ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data) ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data, pred = "Pout") ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data, pred = "Pout", # variable = "PI", prey = c("Bivalves", "Worms")) ## ----------------------------------------------------------------------------- literature_configuration <- TRUE ## ----------------------------------------------------------------------------- realistic_literature_diets_path <- system.file("extdata", "realistic_literature_diets.csv", package = "EcoDiet") realistic_literature_diets <- read.csv(realistic_literature_diets_path) knitr::kable(realistic_literature_diets) ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = realistic_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, stomach_data = realistic_stomach_data, literature_diets = realistic_literature_diets, nb_literature = 12, literature_slope = 0.5) ## ---- fig.height = 5, fig.width = 8------------------------------------------- plot_prior(data, literature_configuration) ## ---- fig.height = 5, fig.width = 8------------------------------------------- plot_prior(data, literature_configuration, pred = "Pout") ## ----------------------------------------------------------------------------- filename <- "mymodel_literature.txt" write_model(file.name = filename, literature_configuration = literature_configuration, print.model = F) mcmc_output <- run_model(filename, data, run_param="test") ## ---- eval = FALSE------------------------------------------------------------ # mcmc_output <- run_model(filename, data, run_param=list(nb_iter=100000, nb_burnin=50000, nb_thin=50, nb_adapt=50000), parallelize = T) ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data) ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data, pred = "Pout") ## ---- eval = FALSE------------------------------------------------------------ # plot_results(mcmc_output, data, pred = "Pout", save = TRUE, save_path = ".") ## ---- eval = FALSE------------------------------------------------------------ # reshape_mcmc(mcmc_output, data)