## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(EcoDiet) ## ---- eval = FALSE------------------------------------------------------------ # example_stomach_data <- read.csv("./data/my_stomach_data.csv") # example_biotracer_data <- read.csv("./data/my_biotracer_data.csv") ## ----------------------------------------------------------------------------- example_stomach_data <- read.csv(system.file("extdata", "example_stomach_data.csv", package = "EcoDiet")) knitr::kable(example_stomach_data) ## ----------------------------------------------------------------------------- example_biotracer_data <- read.csv(system.file("extdata", "example_biotracer_data.csv", package = "EcoDiet")) knitr::kable(example_biotracer_data) ## ---- eval = FALSE------------------------------------------------------------ # trophic_discrimination_factor = c(0.8, 3.4) ## ----------------------------------------------------------------------------- literature_configuration <- FALSE ## ----------------------------------------------------------------------------- data <- preprocess_data(stomach_data = example_stomach_data, biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration ) ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, stomach_data = example_stomach_data, rescale_stomach = TRUE) ## ----------------------------------------------------------------------------- topology <- 1 * (data$o > 0) print(topology) ## ----------------------------------------------------------------------------- topology["small", "huge"] <- 1 print(topology) ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, topology = topology, stomach_data = example_stomach_data) ## ----------------------------------------------------------------------------- literature_configuration <- TRUE ## ----------------------------------------------------------------------------- example_literature_diets_path <- system.file("extdata", "example_literature_diets.csv", package = "EcoDiet") example_literature_diets <- read.csv(example_literature_diets_path) knitr::kable(example_literature_diets) ## ----------------------------------------------------------------------------- nb_literature = 10 ## ----------------------------------------------------------------------------- literature_slope = 0.5 ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, stomach_data = example_stomach_data, literature_diets = example_literature_diets, nb_literature = 10, literature_slope = 0.5) ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, stomach_data = example_stomach_data, rescale_stomach = TRUE, literature_diets = example_literature_diets, nb_literature = 10, literature_slope = 0.5) ## ----------------------------------------------------------------------------- topology <- 1 * ((data$o > 0) | (data$alpha_lit > 0)) print(topology) ## ----------------------------------------------------------------------------- topology["small", "huge"] <- 1 print(topology) ## ----------------------------------------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, topology = topology, stomach_data = example_stomach_data, literature_diets = example_literature_diets, nb_literature = 10, literature_slope = 0.5) ## ---- fig1, fig.height = 4, fig.width = 6------------------------------------- plot_data(biotracer_data = example_biotracer_data, stomach_data = example_stomach_data) ## ---- eval = FALSE------------------------------------------------------------ # plot_data(biotracer_data = example_biotracer_data, # stomach_data = example_stomach_data, # save = TRUE, save_path = ".") ## ---- fig.height = 4, fig.width = 6------------------------------------------- plot_prior(data, literature_configuration) ## ---- fig.height = 4, fig.width = 6------------------------------------------- plot_prior(data, literature_configuration, pred = "huge") ## ---- fig.height = 4, fig.width = 6------------------------------------------- data <- preprocess_data(biotracer_data = example_biotracer_data, trophic_discrimination_factor = c(0.8, 3.4), literature_configuration = literature_configuration, topology = topology, stomach_data = example_stomach_data, literature_diets = example_literature_diets, nb_literature = 2, literature_slope = 0.5) plot_prior(data, literature_configuration, pred = "huge", variable = "eta") ## ----------------------------------------------------------------------------- filename <- "mymodel.txt" write_model(file.name = filename, literature_configuration = literature_configuration, print.model = F) ## ---- eval = TRUE------------------------------------------------------------- mcmc_output <- run_model(filename, data, run_param = "test") ## ---- eval = FALSE------------------------------------------------------------ # mcmc_output <- run_model(filename, data, run_param=list(nb_iter=10000, nb_burnin=5000, nb_thin=5)) # mcmc_output <- run_model(filename, data, run_param=list(nb_iter=50000, nb_burnin=25000, nb_thin=25)) # mcmc_output <- run_model(filename, data, run_param=list(nb_iter=100000, nb_burnin=50000, nb_thin=50)) # # mcmc_output_example <- run_model(filename, data, run_param=list(nb_iter=50000, nb_burnin=25000, nb_thin=25)) ## ---- eval = FALSE------------------------------------------------------------ # save(mcmc_output_example, file = "./data/mcmc_output_example.rda") ## ----------------------------------------------------------------------------- Gelman_model <- diagnose_model(mcmc_output_example) print(Gelman_model) ## ---- eval = FALSE------------------------------------------------------------ # diagnose_model(mcmc_output_example, var.to.diag = "all", save = TRUE) ## ----------------------------------------------------------------------------- str(mcmc_output_example) ## ---- fig.height = 4, fig.width = 6------------------------------------------- plot_results(mcmc_output_example, data) ## ----------------------------------------------------------------------------- print(mcmc_output_example$summary[,"mean"]) ## ---- fig.height = 4, fig.width = 6------------------------------------------- plot_results(mcmc_output_example, data, pred = "huge") ## ---- fig.height = 4, fig.width = 6------------------------------------------- plot_results(mcmc_output_example, data, pred = "large") ## ---- eval=FALSE-------------------------------------------------------------- # mcmc_output_delta <- run_model(filename, data, # variables_to_save = c("delta"), # run_param = "test") ## ---- eval=FALSE-------------------------------------------------------------- # print(mcmc_output_delta$summary[,"mean"])