## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ---- eval=FALSE-------------------------------------------------------------- # library(EcoDiet) # # example_stomach_data_path <- system.file("extdata", "example_stomach_data.csv", # package = "EcoDiet") # example_biotracer_data_path <- system.file("extdata", "example_biotracer_data.csv", # package = "EcoDiet") # # data <- preprocess_data(biotracer_data = read.csv(example_biotracer_data_path), # trophic_discrimination_factor = c(0.8, 3.4), # literature_configuration = FALSE, # stomach_data = read.csv(example_stomach_data_path)) # # filename <- "mymodel.txt" # write_model(file.name = filename, literature_configuration = literature_configuration, print.model = F) # mcmc_output <- run_model(filename, data, run_param="test") ## ---- eval=FALSE-------------------------------------------------------------- # # mcmc_output <- run_model(filename, data, run_param=list(nb_iter=100000, nb_burnin=50000, nb_thin=50, nb_adapt=50000), parallelize = T) # ## ---- eval=FALSE-------------------------------------------------------------- # # # Option 1: use the jagsUI object # mcmc_output_example$summary[,c("Rhat", "n.eff")] # # # Option 2: diagnose function # Gelman_diag <- diagnose_model(mcmc_output_example) # just display the Gelman-Rubin diagnostic # Gelman_diag # # # Option 3: diagnose function # Gelman_diag <- diagnose_model(mcmc_output_example, var.to.diag = "all", save = TRUE) # Display the Gelman-Rubin diagnostic and produce the plots # Gelman_diag # ## ---- eval = FALSE------------------------------------------------------------ # mcmc_output <- run_model(filename, data, run_param="normal") # mcmc_output <- run_model(filename, data, run_param="long") # mcmc_output <- run_model(filename, data, run_param="very long")