## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", class.output = "output", class.message = "message" ) library(EValue) # # TEMP ONLY # setwd("~/Dropbox/Personal computer/Independent studies/EValue package/evalue_package_git/EValue/data") # load("soyMeta.RData") # setwd("~/Dropbox/Personal computer/Independent studies/EValue package/evalue_package_git/EValue/R") # source("meta-analysis.R") library(metafor) library(ggplot2) library(dplyr) ## ----------------------------------------------------------------------------- data(soyMeta) ( m = rma.uni(yi = soyMeta$est, vi = soyMeta$var, method = "PM", test = "knha") ) yr = as.numeric(m$b) # returned estimate is on log scale vyr = as.numeric(m$vb) t2 = m$tau2 vt2 = m$se.tau2^2 ## ----------------------------------------------------------------------------- ( res0 = confounded_meta(method = "parametric", q = log(0.9), tail = "below", muB = 0, sigB = 0, yr = yr, vyr = vyr, t2 = t2, vt2 = vt2) ) ## ----------------------------------------------------------------------------- ( res1 = confounded_meta(method = "parametric", q = log(0.9), tail = "below", r = 0.10, muB = log(1.3), sigB = 0.2, yr = yr, vyr = vyr, t2 = t2, vt2 = vt2) ) ## ----------------------------------------------------------------------------- sens_plot(method = "parametric", type = "line", q = log(0.9), sigB = 0, tail = "below", yr = yr, vyr = vyr, t2 = t2, vt2 = vt2) ## ----------------------------------------------------------------------------- sens_plot(method = "calibrated", type = "line", q = log(0.9), tail = "below", sigB = 0, dat = soyMeta, yi.name = "est", vi.name = "var", give.CI = FALSE)