## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(E2E) ## ----include=FALSE------------------------------------------------------------ # Set up a 2-core cluster for parallel processing in this vignette # This is crucial for passing R CMD check on CI/CD platforms cl <- parallel::makeCluster(2) doParallel::registerDoParallel(cl) ## ----------------------------------------------------------------------------- initialize_modeling_system_pro() ## ----------------------------------------------------------------------------- # Run a subset of available prognostic models results_all_pro <- models_pro(train_pro, model = c("lasso_pro", "rsf_pro")) # Print summary for Random Survival Forest print_model_summary_pro("rsf_pro", results_all_pro$rsf_pro) ## ----------------------------------------------------------------------------- # Create a Bagging ensemble with lasso as the base survival model # n_estimators is reduced for faster execution. bagging_lasso_pro_results <- bagging_pro(train_pro, base_model_name = "lasso_pro", n_estimators = 5, seed = 123) print_model_summary_pro("Bagging (LASSO)", bagging_lasso_pro_results) ## ----------------------------------------------------------------------------- # Create a Stacking ensemble with lasso as the meta-model stacking_lasso_pro_results <- stacking_pro( results_all_models = results_all_pro, data = train_pro, meta_model_name = "lasso_pro" ) print_model_summary_pro("Stacking (LASSO)", stacking_lasso_pro_results) ## ----------------------------------------------------------------------------- # Apply the trained stacking model to the test set pro_pred_new <- apply_pro( trained_model_object = stacking_lasso_pro_results$model_object, new_data = test_pro, time_unit = "day" ) # Evaluate the new prognostic scores eval_pro_new <- evaluate_predictions_pro( prediction_df = pro_pred_new, years_to_evaluate = c(1,3, 5) ) print(eval_pro_new) ## ----fig.width=6, fig.height=5, warning=FALSE--------------------------------- # Kaplan-Meier Curve p4 <- figure_pro(type = "km", data = stacking_lasso_pro_results, time_unit= "days") #print(p4) # Time-Dependent ROC Curve p5 <- figure_pro(type = "tdroc", data = stacking_lasso_pro_results, time_unit = "days") #print(p5) ## ----include=FALSE------------------------------------------------------------ # Stop the parallel cluster parallel::stopCluster(cl)