## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(E2E) # Initialize systems for the examples initialize_modeling_system_dia() initialize_modeling_system_pro() ## ----include=FALSE------------------------------------------------------------ # Set up a 2-core cluster for parallel processing in this vignette # This is crucial for passing R CMD check on CI/CD platforms cl <- parallel::makeCluster(2) doParallel::registerDoParallel(cl) ## ----------------------------------------------------------------------------- # 1. Define the model function (must accept X, y, and other standard args) ab_dia <- function(X, y, tune = FALSE, cv_folds = 5) { # Ensure caret is available if (!requireNamespace("caret", quietly = TRUE)) { stop("Package 'caret' is required for this custom model.") } ctrl <- caret::trainControl(method = "cv", number = cv_folds, classProbs = TRUE, summaryFunction = caret::twoClassSummary) grid <- if (tune) { expand.grid(iter = c(50, 100), maxdepth = c(1, 2), nu = 0.1) } else { expand.grid(iter = 50, maxdepth = 1, nu = 0.1) } caret::train(x = X, y = y, method = "ada", metric = "ROC", trControl = ctrl, tuneGrid = grid) } # 2. Register the model with a unique name register_model_dia("ab", ab_dia) # 3. Now you can use "ab" in any diagnostic function results_ab <- models_dia(train_dia, model = "ab") print_model_summary_dia("ab", results_ab$ab) ## ----fig.width=7, fig.height=6, warning=FALSE--------------------------------- # First, we need a model result object bagging_xb_results <- bagging_dia(train_dia, base_model_name = "xb", n_estimators = 10, seed=123) # Now, generate the SHAP explanation plot p6 <- figure_shap( data = bagging_xb_results, raw_data = train_dia, target_type = "diagnosis" ) #plot(p6) ## ----fig.width=7, fig.height=6, warning=FALSE--------------------------------- # First, we need a model result object stacking_stepcox_pro_results <- stacking_pro( results_all_models = models_pro(train_pro, model = c("lasso_pro", "rsf_pro")), data = train_pro, meta_model_name = "stepcox_pro" ) # Generate the SHAP explanation plot p7 <- figure_shap( data = stacking_stepcox_pro_results, raw_data = train_pro, target_type = "prognosis" ) #plot(p7) ## ----include=FALSE------------------------------------------------------------ # Stop the parallel cluster parallel::stopCluster(cl)