## ---- include=FALSE----------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(crayon.enabled = TRUE) ansi_aware_handler <- function(x, options) { paste0( "
",
    fansi::sgr_to_html(x = x, warn = FALSE, term.cap = "256"),
    "
" ) } old_hooks <- fansi::set_knit_hooks(knitr::knit_hooks, which = c("output", "message", "error", "warning")) knitr::knit_hooks$set( output = ansi_aware_handler, message = ansi_aware_handler, warning = ansi_aware_handler, error = ansi_aware_handler ) ## ----setup, message=FALSE, warning=FALSE-------------------------------------- library(DImodelsMulti) library(dplyr) library(nlme) library(ggplot2) ## ----data_head---------------------------------------------------------------- head(simMVRM) ## ----data_group--------------------------------------------------------------- simMVRM_group <- dplyr::summarise(dplyr::group_by(simMVRM, time), Y1 = mean(Y1), Y2 = mean(Y2), Y3 = mean(Y3), MFindex = mean(Y1 + Y2 + Y3)) simMVRM_group ## ----data_hist, out.width="75%"----------------------------------------------- hist(simMVRM[which(simMVRM$time == 1), ]$Y1, main = "Y1 at time 1", xlab = "Y1") ## ----DImulti_modelSTR--------------------------------------------------------- modelSTR <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "STR", method = "ML") ## ----DImulti_modelSTR_print--------------------------------------------------- print(modelSTR) ## ----DImulti_modelID---------------------------------------------------------- modelID <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ID", method = "ML") ## ----DImulti_modelID_tTable--------------------------------------------------- summary(modelID)$tTable ## ----DImulti_STR_ID_LRT------------------------------------------------------- anova(modelSTR, modelID) ## ----DImulti_modelAV---------------------------------------------------------- modelAV <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML") coef(modelAV) anova(modelID, modelAV) ## ----DImulti_modelAV_theta---------------------------------------------------- modelAV_theta <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML", estimate_theta = TRUE) thetaVals <- modelAV_theta$theta thetaVals AICc(modelAV) AICc(modelAV_theta) ## ----DImulti_modelADD--------------------------------------------------------- modelADD <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML", theta = thetaVals) modelADD$coefficients anova(modelAV_theta, modelADD) ## ----DImulti_modelADD_treat, eval=FALSE--------------------------------------- # modelAV_treat1 <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), # unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML", # theta = thetaVals, extra_fixed = ~treat) # # modelAV_treat2 <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), # unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "ADD", method = "ML", # theta = thetaVals, extra_fixed = ~1:treat) ## ----DImulti_modelAV_ID------------------------------------------------------- modelAV_ID <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "ML", theta = thetaVals, ID = c("Group1", "Group1", "Group2", "Group2")) summary(modelAV_ID)$tTable anova(modelAV_ID, modelAV) ## ----DImulti_modelFinal------------------------------------------------------- modelFinal <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "REML", theta = thetaVals) summary(modelFinal) ## ----DImulti_modelFinal_tTable------------------------------------------------ summary(modelFinal)$tTable ## ----DImulti_modelFinal_varCovs, eval=FALSE----------------------------------- # nlme::getVarCov(modelFinal) # # modelFinal$vcov ## ----DImulti_modelFinal_getVarCov, echo=FALSE--------------------------------- nlme::getVarCov(modelFinal) ## ----DImulti_modelFinal_predict----------------------------------------------- comms <- simMVRM[c(1, 4, 7, 10, 21), ] print(comms) commPred <- predict(modelFinal, newdata = comms) commPred ## ----DImulti_modelFinal_grouped, out.width="75%"------------------------------ ggplot2::ggplot(commPred, ggplot2::aes(fill=Ytype, y=Yvalue, x=plot)) + ggplot2::geom_bar(position="dodge", stat="identity")