## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(crayon.enabled = TRUE) ansi_aware_handler <- function(x, options) { paste0( "
",
    fansi::sgr_to_html(x = x, warn = FALSE, term.cap = "256"),
    "
" ) } old_hooks <- fansi::set_knit_hooks(knitr::knit_hooks, which = c("output", "message", "error", "warning")) knitr::knit_hooks$set( output = ansi_aware_handler, message = ansi_aware_handler, warning = ansi_aware_handler, error = ansi_aware_handler ) ## ----setup-------------------------------------------------------------------- library(DImodelsMulti) ## ----DImulti_modelEx---------------------------------------------------------- modelFinal <- DImulti(y = c("Y1", "Y2", "Y3"), eco_func = c("NA", "UN"), time = c("time", "CS"), unit_IDs = 1, prop = 2:5, data = simMVRM, DImodel = "AV", method = "REML") print(modelFinal) ## ----predict_layout, eval=FALSE----------------------------------------------- # predict.DImulti(object, newdata = NULL, stacked = TRUE, ...) ## ----predict_default---------------------------------------------------------- head(predict(modelFinal)) ## ----predict_wide------------------------------------------------------------- head(predict(modelFinal, stacked = FALSE)) ## ----predict_subset----------------------------------------------------------- predict(modelFinal, newdata = simMVRM[c(1, 4, 7, 10, 21), ]) ## ----predict_newSim----------------------------------------------------------- newSim <- data.frame(plot = c(1, 2), p1 = c(0.25, 0.6), p2 = c(0.25, 0.2), p3 = c(0.25, 0.1), p4 = c(0.25, 0.1)) predict(modelFinal, newdata = newSim) ## ----predict_Y1--------------------------------------------------------------- newSim <- data.frame(plot = c(1, 2), p1 = c(0.25, 0.6), p2 = c(0.25, 0.2), p3 = c(0.25, 0.1), p4 = c(0.25, 0.1), Y1 = 0) predict(modelFinal, newdata = newSim) ## ----predict_newSim_missingID------------------------------------------------- newSim <- data.frame(p1 = c(0.25, 0.6), p2 = c(0.25, 0.2), p3 = c(0.25, 0.1), p4 = c(0.25, 0.1)) predict(modelFinal, newdata = newSim) ## ----predict_newSim_merge----------------------------------------------------- newSim <- data.frame(plot = c(1, 2), p1 = c(0.25, 0.6), p2 = c(0.25, 0.2), p3 = c(0.25, 0.1), p4 = c(0.25, 0.1)) preds <- predict(modelFinal, newdata = newSim, stacked = FALSE) merge(newSim, preds, by = "plot") ## ----predict_newSim_aggregate------------------------------------------------- newSim <- data.frame(plot = c(1, 1), p1 = c(0.25, 0.6), p2 = c(0.25, 0.2), p3 = c(0.25, 0.1), p4 = c(0.25, 0.1)) predict(modelFinal, newdata = newSim, stacked = FALSE)