## ----knitrsetup, include = FALSE---------------------------------------------- library(reticulate) # this vignette requires python 3.7 or newer to run eval <- tryCatch({ numeric_version(py_config()$version) >= "3.7" && py_numpy_available() && py_module_available("scipy") && py_module_available("sklearn") }, error = function(e) FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = eval ) ## ---- eval=TRUE--------------------------------------------------------------- library(CytOpT) data("HIPC_Stanford") ## ----------------------------------------------------------------------------- knitr::kable(head(HIPC_Stanford_1228_1A)) ## ----------------------------------------------------------------------------- gold_standard_manual_prop <- c(table(HIPC_Stanford_1369_1A_labels)/length(HIPC_Stanford_1369_1A_labels)) ## ----------------------------------------------------------------------------- set.seed(123) res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A, Lab_source = HIPC_Stanford_1228_1A_labels, theta_true = gold_standard_manual_prop, method='both', monitoring = TRUE) ## ----------------------------------------------------------------------------- summary(res) ## ---- fig.width = 7, fig.asp = .8, fig.retina=2------------------------------- plot(res) ## ----BA, fig.width = 7, fig.asp = .6, fig.retina = 2-------------------------- Bland_Altman(res$proportions)