## ----label = "format-setup", include = FALSE---------------------------------- knitr::opts_chunk$set(collapse = TRUE) ## ----label = "setup"---------------------------------------------------------- library(CommKern) ## ---- fig.width = 7, fig.height = 3.5, fig.show='hold'------------------------ matrix_plot(SBM_net) ## ----------------------------------------------------------------------------- net <- matrix_to_df(func_mat = SBM_net$func_mat, str_mat = SBM_net$str_mat) identical(net, SBM_net) ## ----------------------------------------------------------------------------- str(SBM_net) ## ----------------------------------------------------------------------------- str(simasd_covars) ## ----------------------------------------------------------------------------- str(simasd_comm_df, max.level = 0) ## ----------------------------------------------------------------------------- str(simasd_hamil_df) ## ----------------------------------------------------------------------------- str(simasd_array) ## ----------------------------------------------------------------------------- net <- matrix_to_df(func_mat = SBM_net$func_mat, str_mat = SBM_net$str_mat) identical(net, SBM_net) ## ----------------------------------------------------------------------------- str(hms) ## ----------------------------------------------------------------------------- hms_object <- hms( input_net = SBM_net, spins = 2, alpha = 0, coolfact = 0.99, tol = 0.01, max_layers = 1) str(hms_object) ## ---- fig.show='hold'--------------------------------------------------------- community_plot(hms_object) ## ---- fig.show='hold'--------------------------------------------------------- set.seed(7183) x <- sample(x = rep(1:3, 4), 12) y <- sample(x = rep(1:3, 4), 12) z <- sample(x = rep(1:3, 4), 12) xyz_comms <- data.frame(id=seq(1:length(x)),x_comm=x,y_comm=y,z_comm=z) xyz_alleg <- community_allegiance(xyz_comms) xyz_melt <- reshape2::melt(xyz_alleg) print(xyz_comms) ggplot2::ggplot(data = xyz_melt) + ggplot2::theme_minimal() + ggplot2::aes(x = as.factor(Var1), y = as.factor(Var2), fill = value) + ggplot2::geom_tile() + ggplot2::xlab('Node') + ggplot2::ylab('Node') + ggplot2::ggtitle('Community Allegiance Example') + ggplot2::scale_fill_gradient2( low = 'navy', high = 'goldenrod1', mid = 'darkturquoise', midpoint = 0.5, limit = c(0, 1), space = 'Lab', name='') ## ----------------------------------------------------------------------------- set.seed(7183) x <- sample(x = rep(1:3, 4), 12) y <- sample(x = rep(1:3, 4), 12) z <- sample(x = rep(1:3, 4), 12) xyz_comms_mat <- matrix(c(x,y,z),nrow=length(x),ncol=3) consensus_similarity(xyz_comms_mat) ## ----------------------------------------------------------------------------- str(group_network_perturb) str(group_adj_perturb) ## ---- fig.show='hold'--------------------------------------------------------- sim_nofuzzy <- group_network_perturb( n_nodes = 50, n_comm = 4, n_nets = 3, perturb_prop = 0.1, wcr = c(8, 8), bcr = c(1.5, 8) ) nofuzzy_adj <- group_adj_perturb(sim_nofuzzy, n_nets = 3, n_nodes = 50) if (require(pheatmap)) { pheatmap::pheatmap( nofuzzy_adj[1,,], treeheight_row = FALSE, treeheight_col = FALSE ) } ## ---- fig.show='hold'--------------------------------------------------------- sim_fuzzy <- group_network_perturb( n_nodes = 50, n_comm = 4, n_nets = 3, perturb_prop = 0.1, wcr = c(8, 8), bcr = c(1.5, 8), bfcr = c(3.5, 8), fuzzy_comms = c('comm_b', 'comm_c') ) fuzzy_adj <- group_adj_perturb(sim_fuzzy, n_nets = 3, n_nodes = 50) if (require(pheatmap)) { pheatmap::pheatmap( fuzzy_adj[1,,], treeheight_row = FALSE, treeheight_col = FALSE ) } ## ----------------------------------------------------------------------------- set.seed(7183) x <- sample(x = rep(1:3, 4), 12) y <- sample(x = rep(1:3, 4), 12) purity(x,y) ## ----------------------------------------------------------------------------- set.seed(7183) x <- sample(x = rep(1:3, 4), 12) y <- sample(x = rep(1:3, 4), 12) NMI(x,y) ## ----------------------------------------------------------------------------- set.seed(7183) x <- sample(x = rep(1:3, 4), 12) y <- sample(x = rep(1:3, 4), 12) adj_RI(x,y) ## ----------------------------------------------------------------------------- x <- c(2,2,3,1,3,1,3,3,2,2,1,1) y <- c(3,3,2,1,1,1,1,2,2,3,2,3) z <- c(1,1,2,3,2,3,2,1,1,2,3,3) xyz_comms <- data.frame(x_comm = x, y_comm = y, z_comm = z) ext_distance(xyz_comms, variant = 'NMI') ext_distance(xyz_comms, variant = 'adj_RI') ext_distance(xyz_comms, variant = 'purity') ## ----------------------------------------------------------------------------- hamil_df <- data.frame(id = seq(1:8), ham = c(-160.5375, -167.8426, -121.7128, -155.7245, -113.9834, -112.5262, -117.9724, -171.374)) ham_distance(hamil_df) ## ----------------------------------------------------------------------------- str(score_log_nonparam) ## ----------------------------------------------------------------------------- simasd_ham_mat <- ham_distance(simasd_hamil_df) score_log_nonparam(outcome=simasd_covars$dx_group, dist_mat=simasd_ham_mat) ## ----------------------------------------------------------------------------- str(score_log_semiparam) ## ----------------------------------------------------------------------------- simasd_ham_mat <- ham_distance(simasd_hamil_df) simasd_confound <- simasd_covars[,3:5] simasd_confound$handedness <- as.factor(simasd_confound$handedness) score_log_semiparam(outcome=simasd_covars$dx_group, covars=simasd_confound, dist_mat=simasd_ham_mat) ## ----------------------------------------------------------------------------- str(score_cont_nonparam) ## ----------------------------------------------------------------------------- simasd_NMI_mat <- ext_distance(comm_df=simasd_comm_df, variant=c("NMI")) score_cont_nonparam(outcome=simasd_covars$verbal_IQ, dist_mat=simasd_NMI_mat) ## ----------------------------------------------------------------------------- str(score_cont_semiparam) ## ----------------------------------------------------------------------------- simasd_pur_mat <- ext_distance(comm_df=simasd_comm_df, variant=c("purity")) simasd_confound <- simasd_covars[,3:5] simasd_confound$handedness <- as.factor(simasd_confound$handedness) score_cont_semiparam(outcome=simasd_covars$verbal_IQ, covars=simasd_confound, dist_mat=simasd_pur_mat)