--- title: "Getting Started" output: rmarkdown::html_vignette: md_extensions: [ "-autolink_bare_uris" ] vignette: > %\VignetteIndexEntry{Getting Started} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ``` r library(CausalQueries) library(dplyr) library(knitr) ``` # Make a model **Generating**: To make a model you need to provide a DAG statement to `make_model`. For instance * `"X->Y"` * `"X -> M -> Y <- X"` or * `"Z -> X -> Y <-> X"`. ``` r # examples of models xy_model <- make_model("X -> Y") iv_model <- make_model("Z -> X -> Y <-> X") ``` **Graphing**: Once you have made a model you can inspect the DAG: ``` r plot(xy_model) ```  **Simple summaries:** You can access a simple summary using `summary()` ``` r summary(xy_model) #> #> Causal statement: #> X -> Y #> #> Nodal types: #> $X #> 0 1 #> #> node position display interpretation #> 1 X NA X0 X = 0 #> 2 X NA X1 X = 1 #> #> $Y #> 00 10 01 11 #> #> node position display interpretation #> 1 Y 1 Y[*]* Y | X = 0 #> 2 Y 2 Y*[*] Y | X = 1 #> #> Number of types by node: #> X Y #> 2 4 #> #> Number of causal types: 8 #> #> Note: Model does not contain: posterior_distribution, stan_objects; #> to include these objects use update_model() #> #> Note: To pose causal queries of this model use query_model() ``` or you can examine model details using `inspect()`. **Inspecting**: The model has a set of parameters and a default distribution over these. ``` r xy_model |> inspect("parameters_df") #> #> parameters_df #> Mapping of model parameters to nodal types: #> #> param_names: name of parameter #> node: name of endogeneous node associated #> with the parameter #> gen: partial causal ordering of the #> parameter's node #> param_set: parameter groupings forming a simplex #> given: if model has confounding gives #> conditioning nodal type #> param_value: parameter values #> priors: hyperparameters of the prior #> Dirichlet distribution #> #> param_names node gen param_set nodal_type given param_value priors #> 1 X.0 X 1 X 0 0.50 1 #> 2 X.1 X 1 X 1 0.50 1 #> 3 Y.00 Y 2 Y 00 0.25 1 #> 4 Y.10 Y 2 Y 10 0.25 1 #> 5 Y.01 Y 2 Y 01 0.25 1 #> 6 Y.11 Y 2 Y 11 0.25 1 ``` **Tailoring**: These features can be edited using `set_restrictions`, `set_priors` and `set_parameters`. Here is an example of setting a monotonicity restriction (see `?set_restrictions` for more): ``` r iv_model <- iv_model |> set_restrictions(decreasing('Z', 'X')) ``` Here is an example of setting priors (see `?set_priors` for more): ``` r iv_model <- iv_model |> set_priors(distribution = "jeffreys") #> Altering all parameters. ``` **Simulation**: Data can be drawn from a model like this: ``` r data <- make_data(iv_model, n = 4) data |> kable() ``` | Z| X| Y| |--:|--:|--:| | 0| 0| 1| | 0| 1| 0| | 0| 1| 0| | 1| 0| 0| # Update the model **Updating**: Update using `update_model`. You can pass all `rstan` arguments to `update_model`. ``` r df <- data.frame(X = rbinom(100, 1, .5)) |> mutate(Y = rbinom(100, 1, .25 + X*.5)) xy_model <- xy_model |> update_model(df, refresh = 0) ``` **Inspecting**: You can access the posterior distribution on model parameters directly thus: ``` r xy_model |> grab("posterior_distribution") |> head() |> kable() ``` | X.0| X.1| Y.00| Y.10| Y.01| Y.11| |---------:|---------:|---------:|---------:|---------:|---------:| | 0.4802981| 0.5197019| 0.1754291| 0.1730648| 0.5101839| 0.1413222| | 0.5969120| 0.4030880| 0.0672990| 0.1458238| 0.5314693| 0.2554079| | 0.4081154| 0.5918846| 0.1279818| 0.0784327| 0.6366884| 0.1568971| | 0.5074739| 0.4925261| 0.1346880| 0.0945238| 0.6796534| 0.0911348| | 0.5293336| 0.4706664| 0.1725529| 0.0041493| 0.4037340| 0.4195638| | 0.5379008| 0.4620992| 0.0359858| 0.1687144| 0.6990939| 0.0962059| where each row is a draw of parameters. # Query the model ## Arbitrary queries **Querying**: You ask arbitrary causal queries of the model. Examples of *unconditional* queries: ``` r xy_model |> query_model("Y[X=1] > Y[X=0]", using = c("priors", "posteriors")) #> #> Causal queries generated by query_model (all at population level) #> #> |label |using | mean| sd| cred.low| cred.high| #> |:---------------|:----------|-----:|-----:|--------:|---------:| #> |Y[X=1] > Y[X=0] |priors | 0.252| 0.192| 0.008| 0.702| #> |Y[X=1] > Y[X=0] |posteriors | 0.586| 0.088| 0.401| 0.740| ``` This query asks the probability that $Y(1)> Y(0)$. Examples of *conditional* queries: ``` r xy_model |> query_model("Y[X=1] > Y[X=0] :|: X == 1 & Y == 1", using = c("priors", "posteriors")) #> #> Causal queries generated by query_model (all at population level) #> #> |label |using | mean| sd| cred.low| cred.high| #> |:-------------------------------------|:----------|-----:|-----:|--------:|---------:| #> |Y[X=1] > Y[X=0] given X == 1 & Y == 1 |priors | 0.504| 0.285| 0.030| 0.972| #> |Y[X=1] > Y[X=0] given X == 1 & Y == 1 |posteriors | 0.737| 0.106| 0.528| 0.940| ``` This query asks the probability that $Y(1) > Y(0)$ *given* $X=1$ and $Y=1$; it is a type of "causes of effects" query. Note that ":|:" is used to separate the main query element from the conditional statement to avoid ambiguity, since "|" is reserved for the "or" operator. Queries can even be conditional on counterfactual quantities. Here the probability of a positive effect given *some* effect: ``` r xy_model |> query_model("Y[X=1] > Y[X=0] :|: Y[X=1] != Y[X=0]", using = c("priors", "posteriors")) #> #> Causal queries generated by query_model (all at population level) #> #> |label |using | mean| sd| cred.low| cred.high| #> |:--------------------------------------|:----------|-----:|-----:|--------:|---------:| #> |Y[X=1] > Y[X=0] given Y[X=1] != Y[X=0] |priors | 0.501| 0.290| 0.027| 0.973| #> |Y[X=1] > Y[X=0] given Y[X=1] != Y[X=0] |posteriors | 0.863| 0.074| 0.725| 0.989| ``` Note that we use ":" to separate the base query from the condition rather than "|" to avoid confusion with logical operators. ## Output Query output is ready for printing as tables, but can also be plotted, which is especially useful with batch requests: ``` r batch_queries <- xy_model |> query_model(queries = list(ATE = "Y[X=1] - Y[X=0]", `Positive effect given any effect` = "Y[X=1] > Y[X=0] :|: Y[X=1] != Y[X=0]"), using = c("priors", "posteriors"), expand_grid = TRUE) batch_queries |> kable(digits = 2, caption = "tabular output") ``` Table: tabular output |label |query |given |using |case_level | mean| sd| cred.low| cred.high| |:--------------------------------|:---------------|:----------------|:----------|:----------|----:|----:|--------:|---------:| |ATE |Y[X=1] - Y[X=0] |- |priors |FALSE | 0.01| 0.32| -0.62| 0.64| |ATE |Y[X=1] - Y[X=0] |- |posteriors |FALSE | 0.49| 0.08| 0.32| 0.64| |Positive effect given any effect |Y[X=1] > Y[X=0] |Y[X=1] != Y[X=0] |priors |FALSE | 0.50| 0.29| 0.02| 0.98| |Positive effect given any effect |Y[X=1] > Y[X=0] |Y[X=1] != Y[X=0] |posteriors |FALSE | 0.86| 0.07| 0.72| 0.99| ``` r batch_queries |> plot() ``` 