## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(BayesChange) ## ----------------------------------------------------------------------------- data("eu_inflation") ## ----------------------------------------------------------------------------- out <- detect_cp(data = eu_inflation[1,], n_iterations = 2000, n_burnin = 500, q = 0.5, params = list(prior_var_phi = 0.1, prior_delta_c = 1, prior_delta_d = 1), kernel = "ts") ## ----------------------------------------------------------------------------- print(out) summary(out) ## ----------------------------------------------------------------------------- cp_est <- posterior_estimate(out, loss = "binder") cumsum(table(cp_est))[-length(table(cp_est))] + 1 ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- coda::traceplot(out$lkl_MCMC, ylab = "Log-Likelihood") ## ----------------------------------------------------------------------------- params_multi <- list(m_0 = rep(0,3), k_0 = 1, nu_0 = 10, S_0 = diag(0.1,3,3), prior_var_phi = 0.1, prior_delta_c = 1, prior_delta_d = 1) ## ----------------------------------------------------------------------------- out <- detect_cp(data = eu_inflation[1:3,], n_iterations = 2000, n_burnin = 500, q = 0.5, params = params_multi, kernel = "ts") table(posterior_estimate(out, loss = "binder")) ## ----------------------------------------------------------------------------- plot(out, loss = "binder", plot_freq = TRUE) ## ----------------------------------------------------------------------------- data("epi_synthetic") ## ----------------------------------------------------------------------------- params_epi <- list(M = 250, xi = 1/8, a0 = 4, b0 = 10, I0_var = 0.1) out <- detect_cp(data = epi_synthetic, n_iterations = 2000, n_burnin = 500, q = 0.25, params = params_epi, kernel = "epi") print(out) ## ----------------------------------------------------------------------------- plot(out) ## ----------------------------------------------------------------------------- data("stock_uni") ## ----------------------------------------------------------------------------- params_uni <- list(a = 1, b = 1, c = 1, phi = 0.1) out <- clust_cp(data = stock_uni[1:5,], n_iterations = 2000, n_burnin = 500, L = 1, q = 0.5, B = 1000, params = params_uni, kernel = "ts") posterior_estimate(out, loss = "binder") ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- plot_psm(out, reorder = TRUE) ## ----------------------------------------------------------------------------- data("stock_multi") ## ----------------------------------------------------------------------------- params_multi <- list(m_0 = rep(0,2), k_0 = 1, nu_0 = 10, S_0 = diag(1,2,2), phi = 0.1) out <- clust_cp(data = stock_multi[,,1:5], n_iterations = 2500, n_burnin = 500, L = 1, B = 1000, params = params_multi, kernel = "ts") posterior_estimate(out, loss = "binder") ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----eval = FALSE------------------------------------------------------------- # data("epi_synthetic_multi") # # params_epi <- list(M = 100, xi = 1/8, # alpha_SM = 1, # a0 = 4, # b0 = 10, # I0_var = 0.1, # avg_blk = 2) # # out <- clust_cp(epi_synthetic_multi[,10:150], n_iterations = 2000, n_burnin = 500, # L = 1, B = 1000, params = params_epi, kernel = "epi") # # posterior_estimate(out, loss = "binder") # plot(out, loss = "binder")