## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(BayesChange) ## ----------------------------------------------------------------------------- data_uni <- as.numeric(c(rnorm(50,0,0.1), rnorm(50,1,0.25))) ## ----------------------------------------------------------------------------- out <- detect_cp(data = data_uni, n_iterations = 1000, n_burnin = 100, params = list(q = 0.25, phi = 0.1, a = 1, b = 1, c = 0.1)) ## ----------------------------------------------------------------------------- print(out) summary(out) ## ----------------------------------------------------------------------------- table(posterior_estimate(out, loss = "binder")) ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- data_multi <- matrix(NA, nrow = 3, ncol = 100) data_multi[1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_multi[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225))) data_multi[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280))) ## ----------------------------------------------------------------------------- out <- detect_cp(data = data_multi, n_iterations = 1000, n_burnin = 100, list(q = 0.25, k_0 = 0.25, nu_0 = 4, phi_0 = diag(1,3,3), m_0 = rep(0,3), par_theta_c = 2, par_theta_d = 0.2, prior_var_gamma = 0.1)) table(posterior_estimate(out, loss = "binder")) ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- data_mat <- matrix(NA, nrow = 5, ncol = 100) data_mat[1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_mat[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225))) data_mat[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280))) data_mat[4,] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225))) data_mat[5,] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280))) ## ----------------------------------------------------------------------------- out <- clust_cp(data = data_mat, n_iterations = 1000, n_burnin = 100, kernel = "ts", params = list(B = 1000, L = 1, gamma = 0.5)) posterior_estimate(out, loss = "binder") ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- data_array <- array(data = NA, dim = c(3,100,5)) data_array[1,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[2,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[3,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[1,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[2,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[3,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250))) data_array[1,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280))) data_array[2,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280))) data_array[3,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280))) data_array[1,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225))) data_array[2,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225))) data_array[3,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225))) data_array[1,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280))) data_array[2,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280))) data_array[3,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280))) ## ----------------------------------------------------------------------------- out <- clust_cp(data = data_array, n_iterations = 1000, n_burnin = 100, kernel = "ts", list(B = 1000, L = 1, gamma = 0.1, k_0 = 0.25, nu_0 = 5, phi_0 = diag(0.1,3,3), m_0 = rep(0,3))) posterior_estimate(out, loss = "binder") ## ----------------------------------------------------------------------------- plot(out, loss = "binder") ## ----------------------------------------------------------------------------- data_mat <- matrix(NA, nrow = 5, ncol = 50) betas <- list(c(rep(0.45, 25),rep(0.14,25)), c(rep(0.55, 25),rep(0.11,25)), c(rep(0.50, 25),rep(0.12,25)), c(rep(0.52, 10),rep(0.15,40)), c(rep(0.53, 10),rep(0.13,40))) inf_times <- list() for(i in 1:5){ inf_times[[i]] <- sim_epi_data(S0 = 10000, I0 = 10, max_time = 50, beta_vec = betas[[i]], gamma_0 = 1/8) vec <- rep(0,50) names(vec) <- as.character(1:50) for(j in 1:50){ if(as.character(j) %in% names(table(floor(inf_times[[i]])))){ vec[j] = table(floor(inf_times[[i]]))[which(names(table(floor(inf_times[[i]]))) == j)] } } data_mat[i,] <- vec } ## ----------------------------------------------------------------------------- out <- clust_cp(data = data_mat, n_iterations = 100, n_burnin = 10, kernel = "epi", list(M = 100, B = 1000, L = 1, q = 0.1, gamma = 1/8)) posterior_estimate(out, loss = "binder") ## ----------------------------------------------------------------------------- plot(out, loss = "binder")