We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.
| Version: | 0.1.1 | 
| Imports: | optimx, ggplot2, stats | 
| Published: | 2023-12-07 | 
| DOI: | 10.32614/CRAN.package.BTdecayLasso | 
| Author: | Yunpeng Zhou [aut, cre], Jinfeng Xu [aut] | 
| Maintainer: | Yunpeng Zhou <u3514104 at connect.hku.hk> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | BTdecayLasso results | 
| Reference manual: | BTdecayLasso.html , BTdecayLasso.pdf | 
| Package source: | BTdecayLasso_0.1.1.tar.gz | 
| Windows binaries: | r-devel: BTdecayLasso_0.1.1.zip, r-release: BTdecayLasso_0.1.1.zip, r-oldrel: BTdecayLasso_0.1.1.zip | 
| macOS binaries: | r-release (arm64): BTdecayLasso_0.1.1.tgz, r-oldrel (arm64): BTdecayLasso_0.1.1.tgz, r-release (x86_64): BTdecayLasso_0.1.1.tgz, r-oldrel (x86_64): BTdecayLasso_0.1.1.tgz | 
| Old sources: | BTdecayLasso archive | 
Please use the canonical form https://CRAN.R-project.org/package=BTdecayLasso to link to this page.