
BSTFA Package

Abstract

An overview of the functions for fitting and understanding Bayesian spatio-temporal factor analysis
(BSTFA) models for spatio-temporal data. To improve computational efficiency, the package includes a
function for a BSTFA model that uses dimension reduction via basis functions. A more computationally
intensive model using Gaussian processes is also available. Users can generate posterior interpolations,
visualize spatio-temporal trends, and explore latent factor behavior through functions for mapping, time
series plotting, and interpolation. The package is designed to support both exploratory data analysis and
formal inference in applications with spatial and temporal dependence. Functionality is demonstrated
using a historical temperature dataset collected from weather stations across Utah, USA.
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1 Introduction

1.1 Intended Audience

This document is intended to help even novice Bayesian statistics students implement a fully Bayesian
spatio-temporal analysis. The functions within the package are designed with this audience in mind. This
document is meant to guide any potential user of this package through the basic implementation of the model
fitting and inferential processes; in essence, it is an instruction manual. The bulk of this document contains
examples of our functions applied on an observed data set.

The outline is as follows. First, we introduce the motivation behind the BSTFA models and why simplifying
the model for fast computation is important. Section 2 outlines the available functions and procedures within
the BSTFA package along with demonstrations on a real data set. Some basic theory and methodology are
contained in Section 3, and Section 4 details specific features of the package. The appendix contains a few
helpful additional notes on computation and references.

1.2 Motivation

Consider the motivating data set for the BSTFA package: a collection of temperature measurements across
the state of Utah. The data were collected from May 1912 through January 2015 from 146 weather stations
across the state. These measurements are 30-day averages of daily minimum observed temperatures in degrees
Celcius, with each location’s measurements zero-centered. This environmental process exhibits some of the
challenges common in environmental modeling; that is, the data exhibit spatial and temporal dependence
and not all contributing agents are known or easy to include in a modeling scheme.

Take, for example, the observations for three weather stations: Moab, Canyonlands National Park, and
Logan. The Moab and Canyonlands stations are near one another (within 50 miles) while the Logan station
is far away (300 miles). Figure 1 shows these same temperature series zoomed in on the years 1999 through
2001. The difference between low temperatures in winter 2000 and winter 2001 is slight in Moab and the
Canyonlands, but in Logan, the low temperature is much lower in winter 2001 than it was in winter 2000.
This anecdote illustrates that locations near each other in space exhibit similar environmental behavior.
Spatio-temporal factor analysis accounts for such spatio-temporal dependencies and can provide numerical
and visual summaries of that dependence.

Estimation of a fully-parameterized Bayesian spatio-temporal factor analysis model is computationally
burdensome. The BSTFA package accounts for this by using dimension reduction via basis functions, allowing
for faster computation. The remainder of this vignette describes the BSTFA package and its use of basis
functions, as well as all implemented methods for plotting, interpolating, and inference.

2 What is Implemented?

The BSTFA package contains implementation of two versions of a spatio-temporal factor analysis model along
with functions for interpolation, plotting and visualizing posterior surfaces. The model-fitting functions are
defined in Section 2.1, while the methodology associated with these models is described more fully in Section 3.
The BSTFA package’s interpolation methods are discussed in Section 2.2, functions for plotting/visualization
are described in Section 2.3, and notes about computational speed are outlined in Section 2.4.

While each of these sections describes some arguments to the functions, the best way to understand all
available function arguments is to look at the R help documentation.

2.1 Model-Fitting Functions

The BSTFA package contains two model fitting functions: BSTFA, the smoother and computationally-efficient
spatio-temporal factor analysis model using basis functions for the factor analysis component; and BSTFAfull,
the fine-grain but computationally-slower spatio-temporal factor analysis model using Gaussian processes
for the factor analysis. Both functions return a list object containing all information required to summarize
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Figure 1: Mean-centered 30-day average daily minimum temperatures for three Utah weather stations (Moab,
green; Canyonlands, orangee; Logan, purple) from January 1999 through December 2001.

Table 1: Required arguments for the BSTFA and BSTFAfull functions.

Argument Description

ymat A matrix of response values. Each row should represent a point in time;
each column should represent a specific location. Missing values should be
recorded as NA.

dates A vector of dates of length nrow(ymat). The model functions will
transform this vector into ’doy’ (day of year) using lubridate::yday().
Thus, this vector must either be a lubridate or string object with
year-month-day format.

coords A matrix of coordinate values with number of rows equal to ncol(ymat)

and 2 columns; if using longitude/latitude, longitude should be the first
column.

posterior inference, including all posterior draws from each parameter, matrices containing the basis functions,
and information about computation time. Each function has only three required arguments, summarized in
Table 1. Other arguments relating to model fitting and prior parameter values will be discussed more fully in
Section 3.

The BSTFA and BSTFAfull functions are demonstrated below. Additional Markov-chain Monte Carlo (MCMC)
arguments such as iters, thin, and burn have default values, but they can be specified as in any Bayesian
model to control the number of posterior draws. Although the BSTFA function is much faster than the
fully-parameterized BSTFAfull function, it is still an MCMC with many parameters and will need many
draws to fully represent the posterior distributions. Except for the model comparison figures (where plots
were created outside the vignette), for the sake of keeping the vignette’s compile time short, we use a data
set in the package called out.sm which is an object fit using the code below.

#Code used to create the "out.sm" data object in the BSTFA package.

#Note: Not run within this vignette.

#Load the full temperature data set

data(UtahDataList)

attach(UtahDataList)
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#Load the data and select a subset

dates.ind <- 1151:1251

locs.use <- c(3, 8, 11, 16, 17,

20, 23, 29, 30, 46,

47, 49, 60, 62, 66, 73,

75, 76, 77, 78, 85, 89, 94,

96, 98, 100, 109, 112,

115, 121, 124, 128, 133, 144)

temps.sm <- TemperatureVals[dates.ind, locs.use]

coords.sm <- Coords[locs.use,]

dates.sm <- Dates[dates.ind]

locsm.names <- Locations[locs.use]

#Fit the model

set.seed(466)

out.sm <- BSTFA(ymat=temps.sm,

dates=dates.sm,

coords=coords.sm,

iters=5000,

burn=1000,

thin=40,

factors.fixed=c(14, 22, 15, 20),

n.temp.bases=45,

save.missing=FALSE)

The verbose argument controls whether or not the function prints status updates during sampling. Although
the default value for this is TRUE, for the sake of this vignette, verbose will always be set to FALSE.

The utahDataList list object in the BSTFA package contains the observed temperature data
(TemperatureVals), the corresponding dates (Dates), the coordinates (Coords), and the weather
station names (Locations).

out = BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

verbose=FALSE)

full.out = BSTFAfull(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

verbose=FALSE)

#Load small pre-fit model output

data(out.sm)

attach(out.sm)

2.1.1 Understanding Output

The BSTFA and BSTFAfull functions return a list object. It should be noted that a user can use all functions
within the BSTFA package without understanding or using the specific output. We provide these additional
details for more in-depth analyses and summaries. Most objects contained in the list are self-explanatory. A
few, however, warrant further explanation.

• Each object that is a parameter (i.e., beta) is an MCMC object from the coda package (Plummer et
al., 2006) with number of rows equal to the number of MCMC draws.

• time.data is a matrix with number of rows equal to iters and columns indicating the computation
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time (in seconds) for the given parameter on that given iteration. This is the object used to create the
compute_summary mentioned in Section 2.4.

• y.missing is a matrix with number of rows equal to the number of missing data points in ymat and
number of columns equal to the number of MCMC draws. These are posterior draws from relevant
distributions of the missing values of ymat. If save.missing=FALSE in the function, this will be NULL.

• model.matrices stores all basis function matrices and other useful matrices for calculating Y (more
details given in Section 3).

– newS is equivalent to Bβ ≡ Bξj
∀j and has dimension n × bβ . Note that bβ = bξ, and this value is

n.spatial.bases in the model functions.
– linear.Tsub is t − t̄, a T × 1 vector of values t − t̄ ∀ t.
– seasonal.bs.basis is the t × u matrix of cubic circular b-spline bases where each row represents

U(t∗) for a given time point t∗.
– confoundingPmat.prime is an orthogonal projection matrix P ⊥ used to prevent confounding

between the linear and seasonal components and the factor analysis component. For more
information about this component, see Berrett et al. (2020).

– QT is the T × Rt matrix of Fourier basis functions for the temporally-dependent factors.
– QS is the n × Rs matrix of basis functions used for the spatially-dependent loadings. If

spatial.style == load.style and n.spatial.bases == n.load.bases, this will be equiva-
lent to newS.

• Note : Care must be taken in understanding the ordering of F.tilde and Lambda.tilde (discussed in
greater detail in Section 3.1.3). Each draw of F.tilde (meaning, each column) has dimension TL × 1.
This means the first T values correspond to factor one, the next T values correspond to factor two,
and so on. However, each draw of Lambda.tilde has dimension Ln × 1. This means the first L values
correspond to location one, the next L values correspond to location two, and so on. When converting
a draw of F.tilde into a matrix, setting byrow=FALSE provides the appropriate T × L matrix, while
when converting a draw of Lambda.tilde into a matrix, setting byrow=TRUE provides the appropriate
n × L matrix.

2.2 Interpolation

The function predictBSTFA takes as its first argument the output from the BSTFA or BSTFAfull functions.
Within the function, posterior samples from relevant parameters are used to interpolate either spatio-temporal
processes, Y (s, t), at observed location s and time t, or for, Y (s∗, t), at unobserved location s∗ and time t.
The location argument takes either a location number (corresponding to the appropriate column of your
ymat argument) for estimation at an observed location, or a matrix of coordinate values if interpolating to a
new location.

If the argument type is set to "all", the function will return draws of Y (s, t) ∀ t for each saved draw of the
parameters. type can also be set to "mean", "median", "ub" (upper bound), or "lb" (lower bound). The
option pred.int controls whether the calculated uncertainty is a prediction interval (pred.int == TRUE) or
a credible interval (pred.int == FALSE; default value).

The code below provides posterior predictive draws of temperatures at an observed location, Loa, Utah. Since
type == "all", the function will return a T × d matrix of posterior draws of Y (s, t) ∀ t with d being the
number of saved MCMC draws. Each column represents one draw of the T × 1 vector, Y(s).

loc = 17 # Loa, Utah in our small data set

preds = predictBSTFA(out.sm,

location = loc,

type='all',

pred.int=TRUE,

ci.level=c(0.025,0.975))

The code below sets type == "mean" and returns a T × 1 vector containing the posterior mean of Y (s, t) ∀ t.
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loc = 17 # Loa, Utah in our small data set

preds = predictBSTFA(out.sm,

location = loc,

type='mean')

The code below provides posterior predictive draws for temperatures at an unobserved location by setting
the location argument to a matrix of coordinate values. In this case, we consider a city without a monitor,
Torrey, Utah (near Loa), with longitude 111.41◦ W and latitude 38.29◦ N.

loc = matrix(c(-111.41, 38.29), nrow=1, ncol=2) # Torrey, Utah

preds_new = predictBSTFA(out.sm,

location = loc,

type='all',

pred.int=TRUE,

ci.level=c(0.025,0.975))

The predictBSTFA function is also called within the plot_location function, which takes similar arguments
as predictBSTFA with the addition of a few extra plotting arguments. xrange defines the time points
{t : t ∈ T } at which the posterior estimates are plotted, with default value NULL indicating to plot on all of
T . truth (default value FALSE) will plot the observed data along with the estimates if location comes from
the data set. uncertainty (default value TRUE) indicates whether to include a posterior predictive interval
(pred.int==TRUE) or a credible interval (pred.int==FALSE).

Below is an example of code used to plot the posterior mean temperature values (black line) at an observed
location, Loa, Utah, with 95% posterior credible bounds (gray bands), and observed measurements (gray
circles). Figure 2 provides the plot. Notice that the posterior mean (black line) closely follows the pattern
of the observed data, but, as expected due to basis smoothing, is more smooth than the observed data.
Increasing the number of bases will decrease the smoothness (but increase computation time).

loc = 17 # Loa, Utah in our small data set

plot_location(out.sm,

location=loc,

type='mean',

uncertainty=TRUE,

ci.level=c(0.025,0.975),

truth=TRUE)

Below is an example of code used to plot the estimated posterior mean temperature values at an unobserved
location, “Torrey, Utah,” a location near Loa. Figure 3 provides the plot where again, the black line represents
the posterior mean and the gray bands represent the 95% posterior predictive intervals.

loc = matrix(c(-111.41, 38.29), nrow=1, ncol=2) # Torrey, Utah

plot_location(out.sm,

location=loc,

type='mean',

uncertainty=TRUE,

ci.level=c(0.025,0.975),

truth=FALSE)

2.3 Visualization

The BSTFA package contains multiple functions for plotting and visualizing the model output. Of course, all
of these can be implemented on your own (the output from the BSTFA or BSTFAfull functions contain all
posterior draws and basis function matrices), but these functions exist for quick plotting and visualization
of posterior distributions. Some functions use base R for plotting while others use the ggplot2 package
(Wickham, 2016). Table 2 below displays a table with each plotting function and a basic description.
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Figure 2: Posterior mean temperature values (black line) at an in-sample location, Loa, Utah, with 95%
posterior predictive bounds (gray bands), and observed temperature measurements (gray circles).

Figure 3: Posterior mean temperature values (black line) at an out-of-sample location, Torrey, Utah, with
95% posterior predictive bounds (gray bands).
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Table 2: Plotting/visualization functions in the BSTFA package.

Function Description

plot_location Plot estimated response variable at a specific location (either observed or
unobserved) for a specified time range. Credible or prediction interval
bands for a given probability (default is 95%) can be included. Uses base R
for plotting.

plot_annual Plot the estimated annual seasonal behavior at a specific location (either
observed or unobserved). Credible interval bands for a given probability
(default is 95%) can be included. Uses base R for plotting.

plot_spatial_param Plot the estimated spatially-dependent linear slope or specific factor
loading (the user specifies the parameter of interest) at all observed
locations. Credible interval bounds for a given probability (default is 95%)
can also be plotted. Uses ggplot2 for plotting.

map_spatial_param Plot the interpolated spatially-dependent linear slope or specific factor
loading (the user specifies the parameter of interest) on a grid of unobserved
locations. Credible interval bounds for a given probability (default is 95%)
can also be plotted. Contains arguments to import and plot the grid on a
map using functions from the sf package. Uses ggplot2 for plotting.

plot_factor Plot the estimated factors, either individually or all together. Credible
interval bands for a given probability (default is 95%) can be included.
Uses base R for plotting.

For instance, plot_annual can plot the estimated annual seasonal behavior at any (observed or unobserved)
location. The code for doing this for an observed location, Loa, Utah, is provided below. Figure 4 provides the
corresponding plot, where the black line is the posterior mean, the gray band is the 95% credible interval, and
the gray dots are the observations plotted on their day of year. This shows the expected seasonal behavior –
that the temperatures tend to increase in the spring/summer months and decrease in the fall/winter months.

plot_annual(out.sm,

location=17, # Loa, Utah in our small data set

years='one')

The plot_spatial_param function can plot the posterior mean of the linear slope or factor loadings at all
observed locations. The type argument (default is "mean", with other options "median", "ub", or "lb")
indicates which summary to show. The parameter argument can be set either to "slope" or "loading".
If set to "slope", the argument yearscale (default is TRUE) controls whether the slope estimates are “per
year.” If set to "loading", the loadings argument indicates which loading to plot. First, we provide an
example to plot the estimated linear change in temperature (increase or decrease) across time. Figure 5
provides the corresponding plot, where the color represents the long-term increasing (positive and red) or
decreasing (negative and blue) behavior over the observed time period for the observed locations. Notice that
most locations show an average increase in temperature of between 0 and approximately 0.3 degrees Celcius
per year over the 2007 to 2015 time period.

plot_spatial_param(out.sm,

type='mean',

parameter='slope',

yearscale=TRUE)

Next, we provide example code for plotting a particular loading, in this case, the posterior mean loading for
the first factor. Figure 6 provides the corresponding plot showing the posterior mean loading values that
each location places on the first factor, with the color indicating the strength of the weight (darker colors
indicate a stronger weight). The circled dot shows the location of the fixed factor; in this case, the first factor
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Figure 4: Posterior mean annual seasonal behavior (black line) with 95% credible interval (gray band), and
observed data (open gray circles) plotted by day of year.

Figure 5: Posterior mean linear change in time (slope) of temperatures at observed locations.
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is fixed at Ibapah, Utah. This means that the loading corresponding to factor 1 for that location was fixed at
a value of 1 (and fixed to be 0 for factors 2, 3, and 4) and the loadings for other locations are estimated given
that value. The model accounts for spatial dependence in the loadings so that locations near to Ibapah are
modeled to have posterior mean loadings closer to one.

plot_spatial_param(out.sm,

type='mean',

parameter='loading',

loadings=1)

Figure 6: Posterior mean estimates of loadings for factor 1 at observed locations. The circled red dot shows
the location of the fixed factor loading.

The plot_factor function plots the estimated temporally-dependent factors either together (setting
together=TRUE) or separate (setting together=FALSE and factor to the factor number you want to plot).
The example code below plots the first factor, corresponding to the loadings shown in the previous example.
Figure 7 shows the posterior mean (black line) and 95% credible intervals (gray band) of the first factor
across the 2007-2015 time period. Notice how this first factor around 2013 tends to have lower values (values
< 0). This means that after accounting for the constant increase/decrease in temperature across time and the
seasonal cycle, locations whose loadings weight positively on this factor saw lower-than-typical temperatures
during this time period.

plot_factor(out.sm,

together=FALSE,

include.legend=FALSE,

factor=1,

type='mean')

To plot the factors together, set together==TRUE, as in the example code below (not run). We can think
of the factors as “unknown” environmental behaviors. Thus, the factors capture common behaviors of the
temperature measurements across time that weren’t explicitly modeled (in contrast to the increasing/decreasing
temperature and seasonal behaviors that were explicitly modeled).
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Figure 7: Posterior mean (black line) and 95% credible interval (gray band) of the first factor across the
observed time period.

plot_factor(out.sm,

together=TRUE,

include.legend=TRUE,

type='mean')

The map_spatial_param function is similar to plot_spatial_param, but the parameter is plotted on a grid
of unobserved locations. If map is set to FALSE, the estimates will appear on a square grid. Setting, map=TRUE,
state=TRUE and location='utah' uses the sf package (Pebesma, 2018) to import a map of Utah. The fine

argument indicates the size of the grid; for instance, setting fine=25 creates a 25 × 25 grid of locations to
estimate the parameter values. This function is demonstrated below for the estimated linear increase/decrease
of temperatures across Utah (once again, setting yearscale=TRUE to provide “per year” estimates). Figure 8
shows the model estimates that temperatures tend to be increasing across the state by between ≈ 0 and 0.3◦

C each year.

map_spatial_param(out.sm,

parameter='slope',

yearscale=TRUE,

type='mean',

map=TRUE,

state=TRUE,

location='utah',

fine=25)

2.4 Speed

As mentioned before, the BSTFA package takes advantage of various mathematical and coding shortcuts to
speed up computation. Specifically, the package uses sparse matrices, the vec operator, and basis functions to
improve speed. The sparse matrices are implemented using the Matrix package. The basis functions reduce
the number of parameters, thus reducing needed computation. In this section, we illustrate computational
improvement over the fully-parameterized model for various number of bases.

The model details are covered in greater detail in Section 3, so here we supply a short description as to why
BSTFA is much faster than BSTFAfull. Each function models the spatial and temporal dependence of the
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Figure 8: Posterior mean linear change in temperatures across time for locations across the observed space.

factor analysis differently. In BSTFAfull, we model the factors using a vector autoregressive model and the
factor loadings with an exponential spatial dependence structure as in Berrett et al. (2020). This causes
three main computational issues:

• The autoregressive step requires looping through all time points, with each point requiring matrix
inversion and multiplication. This process can be sped up by making use of C++ within R, but even
that takes too long in an MCMC algorithm when T gets remotely large (around 100 time points).

• Estimating the exponential spatial dependence structure for the loadings requires inversion of large,
sometimes dense matrices (of size n × n) in every iteration of the algorithm.

• Estimating the range parameters in this framework requires the Metropolis-Hastings algorithm which
introduces increased computation time and potential inefficiency (e.g., smaller posterior effective sample
sizes).

The BSTFA function instead fits both the factors and the loadings using basis functions of various forms, as
discussed in Section 3. This solves the problems mentioned above by:

• Removing the need for a vector autoregressive loop.

• Lowering the dimension of the previously large matrices to invert.

• Introducing conjugacy. The entire model used in the BSTFA function is conditionally conjugate, allowing
for an efficient Gibbs sampler without needing to use any Metropolis steps.

For reference, Table 3 compares the number of seconds per MCMC iteration for the BSTFA and BSTFAfull

functions on simulated data with differing numbers of locations (first column) and bases (indicated by the
different columns) for the factor loadings. In each instance, T = 300 and for the BSTFA function, the number
of temporal bases is Rt = 60. The computations were carried out on a MacBook Pro (13-inch, 2022) with an
Apple M2 chip (8-core CPU, 3.5 GHz) and 8 GB of RAM, running macOS 15.1.1.

Figures 9 and 10 illustrate that there is a tradeoff between computation speed and smoothness; that is,
computation time is reduced at the cost of over-smoothing. The BSTFAfull returns fine-grain estimates with
a high computational burden, while BSTFA provides a smooth representation of the process in a fraction of
the time. Figure 9 compares the estimates for the third loading from both the BSTFAfull (left) and BSTFA
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Table 3: Computation time in seconds per MCMC iteration for simulated data with n locations (first column)
and T = 300 time points fit with the BSTFA function for different number of Fourier bases for the loadings
(8, 20, and 50, indicated by the 2nd, 3rd, and 4th columns) all with Rt = 60 Fourier bases for the factors,
compared to the BSTFAfull function (last column).

n BSTFA, 8 loading bases BSTFA, 20 loading bases BSTFA, 50 loading bases BSTFAfull

100 0.016 0.017 0.021 0.481
200 0.029 0.031 0.036 1.292
300 0.051 0.050 0.056 1.693
400 0.082 0.078 0.086 2.700
500 0.120 0.119 0.126 4.186

functions with 8 (center) and 6 (right) spatial bases on the loadings. The loading plot for BSTFAfull was
fit with fine=50 to save on computation time while the two BSTFA loading plots were fit with fine=100.
Figure 10 compares the factor estimates from BSTFAfull (left) and BSTFA with 200 (center) and 126 (right)
temporal bases on the factors. For both the loadings and the factors, the estimates computed by BSTFAfull

and BSTFA display similar patterns, but the computationally-efficient BSTFA estimates are smoother spatially
and temporally.

Figure 9: Comparison of estimated loadings for factor 3 using BSTFAfull (left), BSTFA with 8 spatial bases
(center), and BSTFA with 6 spatial bases (right).

The BSTFA package contains a function compute_summary that takes as an argument the object from BSTFA

or BSTFAfull and prints a detailed summary of computation time.

out <- BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

save.time=TRUE)

compute_summary(out)
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Figure 10: Comparison of estimated factors for factor 2 using BSTFAfull (left), BSTFA with 200 temporal
bases (center), and BSTFA with 126 bases (right).

3 Methodology

This section details the methodology implemented in the BSTFA package. Specifically, the processes included
in the model, basis function dimension reduction techniques, and details about spatio-temporal factor analysis
are all discussed.

3.1 Model

The BSTFA package implements a Bayesian spatio-temporal factor analysis regression model. Our model
follows the structure proposed by Berrett et al. (2020); namely, for a location s ∈ D and a time index t ∈ T ,
let Y (s, t) be the response variable such that

Y (s, t) = µ(s) + (t − t̄)β(s) + g(ξ(s), t) + f ′(t)λ(s) + ϵ(s, t)

where µ(s) represents the location-specific mean, t − t̄ represents the time t centered by average time over the
period of interest, β(s) represents a spatially dependent linear slope in time, g(ξ(s), t) represents a spatially
dependent seasonal periodic process, f ′(t)λ(s) is a spatio-temporal confirmatory factor analysis (CFA) process,
and ϵ(s, t) is a zero-mean independent Gaussian residual process with variance σ2. Note that both BSTFA and
BSTFAfull assume the data are zero-centered and sets µ(s) = 0 for all s by default.

The approach described in Berrett et al. (2020) is implemented in the BSTFAfull function. However, as
discussed before, the BSTFA function makes adjustments to the factor analysis component f ′(t)λ(s) for
increased computational speed. We provide a brief overview of the model for each interpretable process here,
but for details, we refer the reader to Berrett et al. (2020).

3.1.1 Linear Component

The linear changes across time, β(s), are allowed to vary spatially by using spatial basis functions. Let
β = (β(s1), . . . , β(sn))′ be the n × 1 vector of coefficients for the locations of interest. We model

β ∼ N(Bβαβ, τ2
βI),

where Bβ is an n × bβ matrix of basis functions evaluated at each location, αβ represents the corresponding
bβ × 1 vector of coefficients, τ2

β represents the variances, and I the appropriate identity matrix. We place
conjugate priors on αβ ,

αβ ∼ N(0, A−1)

where A is a diagonal precision matrix, and τ2
β ,

1

τ2
β

∼ Gamma(γ, ϕ),
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Table 4: Arguments to BSTFA and BSTFAfull associated with the linear component.

Argument Default Value Description

linear TRUE TRUE/FALSE value indicating whether the linear component is
included in the model.

beta NULL Vector of starting values for β of length n × 1; if none is supplied,
realistic starting values are calculated.

alpha.prec 1e-5 Value on the diagonal of the precision matrix A.
tau2.gamma 2 Value of the shape parameter, γ, for the prior of the variance, τ2

β .

tau2.phi 1e-6 Value of the rate parameter, ϕ, for the prior of the variance, τ2
β .

Table 5: Arguments to BSTFA and BSTFAfull associated with the seasonal component.

Argument Default Value Description

seasonal TRUE TRUE/FALSE value indicating whether the seasonal component
should be included in the model.

xi NULL Vector of starting values for ξ of length un × 1; if none is supplied,
realistic starting values are calculated.

n.seasn.knots 7 Value representing the value of u, the number of circular B-spline
knots.

where ϕ is the rate parameter of the gamma distribution. Table 4 provides a list of the arguments to the
BSTFA and BSTFAfull functions that are associated with the linear component.

3.1.2 Seasonal Component

Similarly, the spatially-dependent seasonal periodic process also uses basis functions. First, we use cubic
circular b-splines (Wood, 2017) in time on the day of the year to model the periodic seasonal component. Let

g(ξ(s), t) = U(t∗)ξ(s),

where U(t∗) is the u × 1 vector of cubic circular B-splines evaluated at the day of year of time t, denoted by
t∗, and ξ(s) the corresponding u × 1 vector of coefficients. We then model the coefficients using the same
approach used for the linear slopes. Namely, let ξj = (ξj(s1), . . . , ξj(sn))′ represent the coefficients for the
jth spline for all locations of interest. Then,

ξj ∼ N(Bξj
αξj

, τ2
ξj

I),

where Bξj
is an n × bξj

matrix of basis functions evaluated at each location, αξj
represents the corresponding

bξj
× 1 vector of coefficients, τ2

ξj
represents the variance, and I the appropriate identity matrix. Each αξj

and τ2
ξj

are modeled with the same prior distributions (and same hyperparameters) as αβ and τ2
β . Table 5

provides a list of the arguments to the BSTFA and BSTFAfull functions that are associated with the seasonal
component.

3.1.3 Factor Analysis Component

BSTFAfull uses a vector autoregressive model on the factors and an exponential Gaussian process model on
the loadings.

Let L represents the number of factors so that f(t) is an L × 1 vector of factors (a.k.a. scores) at time t and
λ(s) is an L × 1 vector of loadings for each factor at location s. Define F = [f(1) · · · f(T )]′ to be the T × L
matrix for all L factors and T times of interest and Λ = [λ(s1) · · · λ(sn)] to be the L × n loading matrix for
all n locations of interest. As required for identifiability by CFA, given L number of factors, we fix the values
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Table 6: Arguments to BSTFA and BSTFAfull associated with the factor analysis component.

Argument Default Value Description

factors TRUE TRUE/FALSE value indicating whether the factor
analysis component should be included in the
model.

Fmat NULL Matrix of starting values for F of dimension
T × L; if none is supplied, realistic starting values
are calculated.

Lambda NULL Matrix of starting values for Λ of dimension
n × L; if none is supplied, realistic starting values
are calculated.

factors.fixed NULL Vector of indices (representing specific columns of
ymat) indicating locations to fix for the factors. If
no vector is supplied, fixed factor locations are
optimally chosen according to distance and
amount of non-missing data. If this vector is
supplied, n.factors =

length(factors.fixed).
n.factors min(4,

ceiling(ncol(ymat)/20))

Number of factors to fit. If the number of
locations is greater than 80, the function will
always fit 4 factors unless otherwise specified in
the factors.fixed argument.

plot.factors FALSE TRUE/FALSE value indicating whether to
provide a base R plot of the fixed factor locations.

for the loadings for L locations with an L-rank matrix of constants (Rencher & Christensen, 2012). Table 6
provides a list of the arguments to the BSTFA and BSTFAfull functions that are associated with the factor
analysis component.

3.1.4 Residual Component

The variance of the zero-mean independent Gaussian residual process, σ2, is modeled with a conjugate prior
similar to the other variance components,

1

σ2
∼ Gamma(γσ, ϕσ),

where ϕσ is the rate parameter of the gamma distribution. Table 7 provides a list of the arguments to the
BSTFA and BSTFAfull functions that are associated with the residual variance.

Table 7: Arguments to BSTFA and BSTFAfull associated with the residual.

Argument Default Value Description

sig2 NULL A starting value for σ2; if none is supplied, the starting value will
be the variance of the non-missing values of ymat.

sig2.gamma 2 Value of the shape parameter, γσ, for the prior of the residual
variance, σ2.

sig2.phi 1e-5 Value of the rate parameter, ϕσ, for the prior of the overall
residual variance, σ2.
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3.2 Basis Functions

Basis functions are a projection of a process onto a set of linear combinations of lower-dimension functions
(Cressie et al., 2022). We make use of basis functions to allow for smooth estimates for each process across
space and to drastically increase computational speed. For spatial modeling, the BSTFA package has three
basis function forms built in: eigenvectors of an exponential correlation, Fourier bases, bisquare bases, and
thin-plate spline bases. For temporal modeling, only Fourier bases are implemented. Eigenvectors (eigen) is
the default approach in the BSTFA package. We discuss this and the Fourier basis approach in this vignette;
for the others, we refer the reader to Cressie & Johannesson (2008) for bisquare bases and Nychka (2000) for
thin-plate spline bases.

3.2.1 Eigenvector Basis Functions

The exponential correlation function for two locations s and s′ can be written as,

ρ(s, s′) = exp(−||s − s′||/ϕ),

where || · || represents the norm (or another distance metric) and ϕ is the range parameter. Note that the
value of ϕ is determined in the BSTFA function using the value of freq.lon. We obtain the eigenvector bases
by computing the correlation matrix made up of the correlation for each pair of observed locations and
computing the eigenvalue decomposition on this matrix. Thus, let R represent this correlation matrix, the
eigenvalue decomposition can be written using,

R = ΨΩΨ′,

where the n columns of Ψ make up the eigenvectors and the diagonal matrix Ω contains the eigenvalues. We
use the first eigenvectors (indicated in the package as n.spatial.bases for the mean, linear, and seasonal
processes, or n.load.bases for the loadings) as the bases matrix of spatial bases, B, and a scaled version of
the corresponding submatrix of Ω, denoted by Ω̇, as the prior covariance of the estimated coefficients. Note
that R ≈ BΩ̇B′. Thus, for any spatially-dependent parameter, denoted generally by θ, we model,

θ ∼ N (Bαθ, τ2
θ I),

with prior distribution,
αθ ∼ N (0, a Ω̇).

To estimate the spatial process at an unobserved location, we need to determine the appropriate values of the
eigen bases for the new locations. Let R[adj] represent the exponential correlation matrix of all observed and
unobserved locations for interpolation, such that

R[adj] =

[

R R(obs,new)

R′

(obs,new) R(new)

]

,

where R(obs,new) represents the correlation matrix specifically between the observed and new locations and
R(new) represents the correlation matrix specific to the new locations. Note that taking the eigenvalue
decomposition of this adjusted correlation matrix will not result in correct basis values for the new locations.
Instead, we can scale R(obs,new) by the original B and Ω̇. Specifically,

B(new) = R′

(obs,new) B Ω̇.

Thus, values of the spatial parameter at the new location(s), s(new), can be estimated using θ(s(new)) ∼
N (B(new)αθ, τ2

θ I).

3.2.2 Fourier Basis Functions

We use Fourier bases because of their connection to Gaussian processes and their computational flexibility. A
Gaussian process can be approximated quite well with orthogonal spectral basis functions (Wikle, 2002). One
example is to use some number of principal components of the spatial covariance matrix. These spectral basis
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functions can themselves be represented as a sum of sine and cosine functions (Paciorek, 2007) reminiscent of
a trigonometric Fourier series. Fourier bases, then, can capture the frequencies exhibited in the principal
components of the underlying Gaussian process, granting a smooth approximation of the process.

We make use of Fourier basis functions for both spatial and temporal dependence. First, consider the Fourier
bases for temporal dependence. Let QT

r (t) and QT
r+1(t) be the rth and (r + 1)th columns of the matrix of

bases for time t for r = 1, 3, 5, . . . Rt. Then,

QT
r (t) = sin

(

2π
r + 1

2

t

ft

)

,

QT
r+1(t) = cos

(

2π
r + 1

2

t

ft

)

,

where ft is the frequency of the Fourier function.

For the spatial basis functions, we must accommodate the two-dimensional nature of space. Thus, we must
multiply the sine and cosine functions for each dimension (Paciorek, 2007). Let Br(s) represent the rth

through (r + 3)th columns of the matrix of bases evaluated at location s. Then,

Br(s) =

























sin

(

2π r+1
2

s[1]

fs[1]

)

× sin

(

2π r+1
2

s[2]

fs[2]

)

sin

(

2π r+1
2

s[1]

fs[1]

)

× cos

(

2π r+1
2

s[2]

fs[2]

)

cos

(

2π r+1
2

s[1]

fs[1]

)

× sin

(

2π r+1
2

s[2]

fs[2]

)

cos

(

2π r+1
2

s[1]

fs[1]

)

× cos

(

2π r+1
2

s[2]

fs[2]

)

























′

,

where s[1] represents the first coordinate of s (e.g., longitude), and s[2] the second coordinate (e.g., latitude),
and fs[1]

and fs[2]
are the corresponding frequencies of the Fourier functions.

The BSTFA package contains a helper function to visualize spatial Fourier bases over a given set of coordinates.
This can be useful when trying to choose the value of the spatial frequencies, fs[1]

and fs[2]
(freq.lon and

freq.lat) and number of bases (Rs, or n.load.bases) to include in the model. This function is demonstrated
below using the Utah temperature data.

plot_fourier_bases(utahDataList$Coords,

R=6,

plot.3d=TRUE,

freq.lon = 4*diff(range(utahDataList$Coords[,1])),

freq.lat = 4*diff(range(utahDataList$Coords[,2])))

3.3 Spatio-Temporal Factor Analysis using Basis Functions

We model the factors and loadings using the bases in the following way. Let F̃ = vec(F), be the vectorized
TL × 1 vector of all factors, and Λ̃ = vec(Λ) be the vectorized Ln × 1 vector of all loadings. We model F̃

and Λ̃ using a similar basis function decomposition used for the coefficients of the other processes described
in 2.1.1 and 2.1.2; namely,

F̃ = (IL ⊗ QT)αF ,

Λ̃ ∼ N
(

(QS ⊗ IL)αΛ, τ2
ΛILn

)

,

where QT is a T × (Rt + 1) matrix of temporal bases, QS is an n × (Rs + 1) matrix of spatial bases, IL is
the L × L identity matrix, αF is an (Rt + 1)L × 1 vector of coefficients, αΛ is an L(Rs + 1) × 1 vector of
coefficients, and τ2

Λ is the residual variance for the loadings.

A word about notation: the BSTFA function allows the spatial bases for the mean, linear, and seasonal
components to be different from the spatial bases used for the loadings. Thus, the notation for the spatial
bases for the loadings are distinguished here using QS , although they are determined the same as B.
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Both sets of coefficients are modeled a priori in the same way as αβ and αξj
, namely,

αF ∼ N(0, A−1
αF

),

αΛ ∼ N(0, A−1
αΛ

),

and the variance component for the loadings τ2
Λ the same as τ2

β and τ2
ξj

,

1

τ2
Λ

∼ Gamma(γ, ϕ).

Once again, the hyperparameters for the variance take the same argument values as used in the linear and
seasonal components. Table 8 provides a list of the arguments to the BSTFA and BSTFAfull functions that
are associated the with basis functions.

4 Useful Features

4.1 Fixing Factors

Factor analysis allows for interpretability of the factors and/or loadings. Since loadings are spatially dependent,
it makes sense to use a geographic interpretation. Thus, to model the Utah temperature data, we choose
locations to fix that will lend factor interpretation to West (Wendover), East (Moab), South (Kanab), and
North (Logan) factors, shown by the large red dots in Figure 11. In this instance, with L = 4 factors chosen,
the L-rank matrix of constants is the L × L identity matrix. This is the matrix for fixed factors used in the
BSTFA and BSTFAfull functions.

It’s important that the fixed factor locations have a low proportion of missing data. If fixed factor locations
are not given, they will be smartly chosen by the function according to distance and proportion of missing
data.

Figure 11: Plot of Utah showing locations of fixed factors (in red) and all locations (in black).

Because Ibapah is the first fixed loading location (western-most red dot in Figure 11), the map of estimates
for the first loading indicate the strength of the relationship of each location’s temperatures to Ibapah’s
temperatures, after accounting for linear and seasonal behavior. Higher loading values indicate greater
similarity. We can use the map_spatial_param to plot the estimated loadings across a grid over the observed
locations by using parameter='loading' and loading=1 (for the first loading).
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Table 8: Arguments to BSTFA and BSTFAfull associated with basis functions used for various components of
the model.

Argument Default Value Description

spatial.style ’fourier’ Indicates which type of basis functions to use for
the linear and seasonal components. The default
is ’fourier’. Other values accepted are ’grid’

(for multiresolution bisquare bases) and ’tps’

(for thin-plate splines).
n.spatial.bases 8 Number of basis functions to use for the linear

and seasonal components. For Fourier bases, this
value is Rs. For bisquare bases, this value is
ignored. For thin-plate spline bases, the number
of bases is floor(sqrt(n.spatial.bases))2̂ to
create an even grid.

load.style ’fourier’ The same as spatial.style but for the factor
loadings. This does not have to be the same bases
as spatial.style.

n.load.bases 6 The same as n.spatial.bases but for the factor
loadings. This does not have to be the same
vvalue as n.spatial.bases.

freq.lon 4*diff(range(coords[,1])) Spatial range parameter for the eigenvalue bases
(ϕ). For the Fourier bases, this is the frequency
for longitude (fs[1]

; or, if using other coordinate
system, the first coordinate value). Default value
is two times the range of the longitude
coordinates. If not using ’eigen’ or ’fourier’,
this argument is not used.

freq.lat 4*diff(range(coords[,2])) Same as freq.lon for the Fourier bases but for
latitude (or the second coordinate value).

n.temp.bases floor(n.times/10) Number of Fourier basis functions to use for the
temporally-dependent factors. This value is Rt.
The default value is floor(n.times/10).

freq.temp n.times Frequency of the Fourier bases functions for the
temporally-dependent factors. This value is ft.
Default value is T (n.times).

knot.levels 2 The number of resolutions when using the
bisquare basis functions. If not using bisquare
bases, this argument is not used.

max.knot.dist mean(dist(coords)) The distance beyond which a location is
considered ’too far’ from a knot, meaning its basis
function value associated with that knot evaluates
to zero. If not using bisquare bases, this argument
is not used.

premade.knots NULL A list of coordinates containing pre-specified
knots. Each element of the list is a resolution.
Each resolution should have the same number of
columns as coords. If not using bisquare bases,
this argument is not used.

plot.knots FALSE TRUE/FALSE value indicating whether to
provide a base R plot of the knot resolutions
overlaid on top of the given coords. If not using
bisquare bases, this argument is not used.
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4.2 Basis Function Details

The choice of basis functions is assigned using the spatial.style and load.style arguments. The
spatial.style argument controls which basis functions to use for the linear and seasonal components
(Bβ and each Bξj

) while the load.style argument controls the basis functions for the factor loadings (QS).
The number of bases for the linear and seasonal components is specified with the argument n.spatial.bases

while the loadings use the argument n.load.bases. The values given to spatial.style and load.style

need not be the same, nor do n.spatial.bases and n.load.bases. The default value for both style ar-
guments is "fourier". The only basis functions used for the temporally-dependent factors are Fourier
bases.

4.2.1 Fourier Bases

When using Fourier bases, the user needs to specify number of bases and the spatial frequency in both the
longitude and latitude directions. As demonstrated in Section 3.2, the function plot_fourier_bases can help
the user visualize Fourier bases and choose the appropriate amount of bases and frequencies. After exploratory
analysis methods (demonstrated in Section 4.2.4), it seems that assigning freq.lon and freq.lat values
of 40 and 30 respectively and setting n.spatial.bases and n.load.bases equal to 8 and 6, respectively,
works well for the Utah data set.

The user should also consider the frequency (freq.temp) and number of bases (n.temp.bases) for the
temporal factors, which always use Fourier bases. The default values (see Table 8) tend to work well, but
increasing the number of bases can create a finer estimate at the cost of reduced computational speed.

out <- BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

spatial.style='fourier',

load.style='fourier',

n.spatial.bases=8,

n.load.bases=6,

freq.lon=40,

freq.lat=30,

n.temp.bases=floor(nrow(utahDataList$TemperatureVals)/10),

freq.temp=nrow(utahDataList$TemperatureVals))

4.2.2 Bisquare Bases

As described in Table 2.5, multiple arguments to BSTFA and BSTFAfull are used only for bisquare bases. The
argument given to spatial.style or load.style to use these basis functions is 'grid'. The knot.levels

argument indicates how many resolutions of knots to create, where the rth resolution uses 22r bases distributed
evenly in a square grid across the coordinates of the data. Setting plot.knots=TRUE outputs a plot of knots
in all resolutions. The code below shows how to use this version of bases in the BSTFA function for two
resolutions of knots and the data locations for the Utah temperature data. Using plot.knots=TRUE will
provide a plot of the locations of the knots.

bstfa.plot_knots = BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

spatial.style='grid',

load.style='grid',

knot.levels=2,

plot.knots=TRUE,

verbose=FALSE,

iters=5)

The user can specify custom knot locations with the premade.knots argument. This argument takes a list
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of coordinates containing pre-specified knots. The number of elements in the list represents the number of
resolutions. Each element of the list should have the same number of columns as coords. An example of how
to do this is provided in the code below.

knots=list()

max.lon = max(utahDataList$Coords[,1])

min.lon = min(utahDataList$Coords[,1])

max.lat = max(utahDataList$Coords[,2])

min.lat = min(utahDataList$Coords[,2])

range.lon = max.lon-min.lon

range.lat = max.lat-min.lat

knots[[1]] = expand.grid(c(min.lon+(range.lon/4), min.lon+3*(range.lon/4)),

c(min.lat+(range.lat/4), min.lat+3*(range.lat/4)))

knots[[2]] = expand.grid(c(min.lon+(range.lon/6),

min.lon+(range.lon/2),

min.lon+5*(range.lon/6)),

c(min.lat+(range.lat/6),

min.lat+(range.lat/2),

min.lat+5*(range.lat/6)))

bstfa.custom_knots = BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

spatial.style='grid',

load.style='grid',

knot.levels=2,

plot.knots=TRUE,

premade.knots=knots,

verbose=FALSE,

iters=5)

4.2.3 Thin-Plate Spline Bases

The argument given to spatial.style and load.style to use these basis functions is 'tps'. The function
basis.tps from the npreg package is used to create the thin-plate spline bases. The knots used to create
the bases are on a square grid; thus, the number of bases is equal to floor(sqrt(n.spatial.bases))ˆ2

and floor(sqrt(n.load.bases))ˆ2. So, even if the values 8 and 10 are given to n.spatial.bases and
n.load.bases as shown in the code below, the number of bases used in the model will be 4 and 9.

bstfaTPS <- BSTFA(ymat=utahDataList$TemperatureVals,

dates=utahDataList$Dates,

coords=utahDataList$Coords,

spatial.style='tps',

load.style='tps',

n.spatial.bases=8,

n.load.bases=10)

4.2.4 Choosing Basis Functions

There are few ways to decide which spatial basis functions to use for your data. First, diagnostics such as the
Watanabe-Akaike Information Criterion (WAIC) and Leave-One-Out Cross-Validation (LOO-CV) can help
the user compare model fits (Vehtari et al., 2017). These can be computed using the waic and loo functions
from the loo package. These functions require a matrix of log-likelihood values, which can be generated
using the function computeLogLik from the BSTFA package, supplying as argument the output from BSTFA

or BSTFAfull.
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Table 9: Summary of model performance diagnostics, LOO-CV and WAIC, for different basis functions.

Type # of Spatial Bases # of Temporal Bases LOO-CV WAIC

Fourier 8 126 202.7 195.8
Fourier 16 126 203.2 195.4

Bisquare 4 (1-level) 126 203.4 195.4
Bisquare 20 (2-levels) 126 203.6 195.3

TPS 9 126 202.6 195.7
TPS 16 126 203.2 195.6

Fourier 8 200 204.6 191.6
Fourier 16 200 205.7 191.4

Bisquare 4 (1-level) 200 204.7 191.6
Bisquare 20 (2-levels) 200 203.9 191.9

TPS 9 200 205.2 191.7
TPS 16 200 204.8 191.8

loglik = computeLogLik(out.sm,

verbose=FALSE)

loo::waic(t(loglik))

loo::loo(t(loglik))

Table 9 compares the WAIC and LOO-CV for 12 different models fit to the full Utah temperature data.
In each instance, the number of spatial bases is the same for both the linear/seasonal components and the
factor analysis component – that is, n.spatial.bases = n.load.bases. The number of temporal bases is
the n.temp.bases argument; 126 is the default for the Utah data (10% of T ).

Notice that in this case, the choice of spatial basis function does not matter much, while increasing the
number of temporal bases from 126 to 200 leads to a reduction in WAIC, indicating better model fit. However,
increasing the number of temporal bases reduces computational efficiency (in this instance, moving from 126
to 200 temporal bases added about 0.2 seconds to each iteration).

In addition to model diagnostics, it’s also important to visually assess estimates using the different basis
functions and other settings. For instance, this can be done by fitting a model with each basis function and
estimating the linear slope and loadings using map_spatial_param, as demonstrated in Section 2.3. Figure 12
shows three estimates of the second loading (based on the “East” factor for fixed loading Moab, Utah) when
the loadings are fit with Fourier bases (using default values for frequency), bisquare bases, and thin-plate
spline bases. The estimates for the different basis functions look quite different; this is partly because the
corresponding estimated factors are different.

4.3 Assessing MCMC Convergence

The BSTFA package has built-in helper functions for assessing convergence. These functions use the fact that
all matrices of parameter draws are MCMC objects from the coda package. To look at trace plots, you can
use the plot_trace function. This function takes as input your BSTFA or BSTFAfull object, a string value
parameter indicating which parameter to view (corresponds directly to what the parameter is called in the
BSTFA list output), and param.range which accepts a numeric vector indicating which of these parameters
you want to view.

plot_trace(out.sm,

parameter='beta',

param.range=c(27),

density=FALSE)

The other available helper function is convergence_diag. This function takes as input the BSTFA or BSTFAfull
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Figure 12: Posterior mean estimates of the second loading for different style of spatial bases: Fourier (left),
bisquare (center), and thin-plate spline (right).

function output and returns the effective sample size or Geweke diagnostic (indicated by type='eSS' or
type='geweke') for all parameters above a given cutoff (indicated by cutoff). For instance, the function
below will return all parameters with an effective sample size below 100.

convergence_diag(out.sm,

type='geweke',

cutoff = 2)

We encourage the user to read additional resources on MCMC and convergence, such as Johnson et al. (2022)
for introductory readers or Gelman et al. (2013) for more advanced readers.

5 Appendices

5.1 Computation Notes

Below are specific notes about computation not explicitly mentioned in the vignette:

• The values for n.spatial.bases, n.load.bases and n.temp.bases need to be even numbers. If they
are not, the function will add 1 to the supplied value.

• To help with convergence of the residual factor analysis component, the sampler waits to sample F and
Λ until min(floor(burn/2), 500). That is why, for example, the compute_summary function divides
computation time into “Pre-Factor Analysis” and “Post-Factor Analysis”.
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