## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") knitr::opts_chunk$set(fig.width = 7, fig.height = 5) ## ----setup, eval = FALSE------------------------------------------------------ # # if (!requireNamespace("remotes", quietly = TRUE)) { # # install.packages("remotes") # # } # # Sys.unsetenv("GITHUB_PAT") # # remotes::install_github("JGASmits/AnanseSeurat") # # library(AnanseSeurat) # library(Seurat) # library(Signac) ## ----load_scObject, eval = FALSE---------------------------------------------- # rds_file <- 'preprocessed_PDMC.Rds' # pbmc <- readRDS(rds_file) # DimPlot(pbmc, # label = TRUE, # repel = TRUE, # reduction = "umap") + NoLegend() ## ----export_CPMs, eval = FALSE------------------------------------------------ # export_CPM_scANANSE( # pbmc, # min_cells <- 25, # output_dir = paste0(tempdir(),'/analysis'), # cluster_id = 'predicted.id', # RNA_count_assay = 'RNA' # ) ## ----eval = FALSE------------------------------------------------------------- # export_ATAC_scANANSE( # pbmc, # min_cells <- 25, # output_dir = paste0(tempdir(),'/analysis'), # cluster_id = 'predicted.id', # ATAC_peak_assay = 'peaks' # ) ## ----eval = FALSE------------------------------------------------------------- # contrasts <- list('B-naive_B-memory', # 'B-memory_B-naive', # 'B-naive_CD16-Mono', # 'CD16-Mono_B-naive') # # config_scANANSE( # pbmc, # min_cells <- 25, # output_dir = paste0(tempdir(),'/analysis'), # cluster_id = 'predicted.id', # genome = './data/hg38', # additional_contrasts = contrasts # ) ## ----eval = FALSE------------------------------------------------------------- # DEGS_scANANSE( # pbmc, # min_cells <- 25, # output_dir = './analysis', # cluster_id = 'predicted.id', # additional_contrasts = contrasts # ) ## ----eval = FALSE------------------------------------------------------------- # pbmc <- import_seurat_scANANSE(pbmc, # cluster_id = 'predicted.id', # anansnake_inf_dir = "./analysis/influence/") ## ----eval = FALSE------------------------------------------------------------- # TF_influence <- per_cluster_df(pbmc, # assay = 'influence', # cluster_id = 'predicted.id') # # head(TF_influence) ## ----eval = FALSE------------------------------------------------------------- # highlight_TF1 <- c('STAT4', 'MEF2C') # # DefaultAssay(object = pbmc) <- "RNA" # plot_expression1 <- # FeaturePlot(pbmc, features = highlight_TF1, ncol = 1) # DefaultAssay(object = pbmc) <- "influence" # plot_ANANSE1 <- # FeaturePlot( # pbmc, # ncol = 1, # features = highlight_TF1, # cols = c("darkgrey", "#fc8d59") # ) # print(plot_expression1 | plot_ANANSE1)