## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ACEsimFit) ## ----simulation--------------------------------------------------------------- kindata <- kinsim_double( GroupNames = c("SStwins", "OStwins"), GroupSizes = c(120, 60), GroupRel = c(.75, 0.5), GroupR_c = c(1, 1), mu = c(0, 0), ace1 = c(.6, .2, .2), ace2 = c(.6, .2, .2), ifComb = TRUE ) head(kindata) ## ----Sim_Fit------------------------------------------------------------------ time1 <- Sys.time() results_fit <- Sim_Fit( GroupNames = c("SStwins", "OStwins"), GroupSizes = c(120, 60), nIter = 50, SSeed = 62, GroupRel = c(.75, 0.5), GroupR_c = c(1, 1), mu = c(0, 0), ace1 = c(.6, .2, .2), ace2 = c(.6, .2, .2), ifComb = TRUE, lbound = FALSE, saveRaw = FALSE ) time2 <- Sys.time() ## FYI, the time used for the results above is here. So design your simulation wisely!!! time2 - time1 ## ----resultsDemo-------------------------------------------------------------- results_fit[["Iteration1"]][["Results"]][["nest"]] ## ----powerCalculation--------------------------------------------------------- N <- 180 ##the total number of kin pairs you used in your previous simulation ## Calculate the average diffLL between ACE and CE model. DiffLL <- numeric() for(i in 1:50){ DiffLL[i] <- results_fit[[1]][["Results"]][["nest"]]$diffLL[3] } meanDiffLL <- mean(DiffLL) ## Calculate the power based on an alpha level of .05 Power <- 1- pchisq(qchisq(1-.05, 1), 1, meanDiffLL) Power ## ----powerCalculation2-------------------------------------------------------- Power_LS(N1=120, N2=60, h2=.6, c2=.2, R1 = .75, R2 = 0.5, alpha = 0.05)