Last updated on 2025-10-30 09:50:02 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags | 
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 1.0.5 | 84.07 | 441.61 | 525.68 | OK | |
| r-devel-linux-x86_64-debian-gcc | 1.0.5 | 47.42 | 310.43 | 357.85 | OK | |
| r-devel-linux-x86_64-fedora-clang | 1.0.5 | 154.00 | 707.02 | 861.02 | OK | |
| r-devel-linux-x86_64-fedora-gcc | 1.0.5 | 150.00 | 690.56 | 840.56 | OK | |
| r-devel-windows-x86_64 | 1.0.5 | 96.00 | 357.00 | 453.00 | ERROR | |
| r-patched-linux-x86_64 | 1.0.5 | 86.80 | 420.09 | 506.89 | OK | |
| r-release-linux-x86_64 | 1.0.5 | 80.65 | 419.96 | 500.61 | OK | |
| r-release-macos-arm64 | 1.0.5 | 28.00 | 178.00 | 206.00 | OK | |
| r-release-macos-x86_64 | 1.0.5 | 38.00 | 370.00 | 408.00 | WARN | |
| r-release-windows-x86_64 | 1.0.5 | 97.00 | 374.00 | 471.00 | ERROR | |
| r-oldrel-macos-arm64 | 1.0.5 | 27.00 | 169.00 | 196.00 | NOTE | |
| r-oldrel-macos-x86_64 | 1.0.5 | 36.00 | 323.00 | 359.00 | NOTE | |
| r-oldrel-windows-x86_64 | 1.0.5 | 113.00 | 498.00 | 611.00 | ERROR | 
Version: 1.0.5
Check: tests
Result: ERROR
    Running 'testthat.R' [193s]
  Running the tests in 'tests/testthat.R' failed.
  Complete output:
    > # CRAN OMP THREAD LIMIT
    > Sys.setenv("OMP_THREAD_LIMIT" = 1)
    > 
    > library(testthat)
    > library(shapr)
    
    Attaching package: 'shapr'
    
    The following object is masked from 'package:testthat':
    
        setup
    
    > 
    > test_check("shapr")
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 7
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 128 of 128 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 6
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 64 of 64 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 10 of 32 coalitions, 2 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 2 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 14 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 2 new. 
    
    -- Iteration 7 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 8 -----------------------------------------------------------------
    i Using 20 of 32 coalitions, 2 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 5
    * Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
    {"Month"}; Day: {"Day"}
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 10 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 3
    * Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
    {"Day"}
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 6 of 8 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` at 2025-10-14 19:49:49 --------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    * Computations (temporary) saved at:
    'D:\temp\2025_10_14_01_50_00_4128\RtmpApJbpN\shapr_obj_108507f967355.rds'
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian, gaussian, gaussian, and gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: vaeac
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 10
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions.
Flavor: r-devel-windows-x86_64
Version: 1.0.5
Check: Rd files
Result: WARN
  additional_regression_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
  aicc_full_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  aicc_full_single_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  append_vS_list.Rd: Sections \title, and \name must exist and be unique in Rd files
  categorical_to_one_hot_layer.Rd: Sections \title, and \name must exist and be unique in Rd files
  check_categorical_valid_MCsamp.Rd: Sections \title, and \name must exist and be unique in Rd files
  check_convergence.Rd: Sections \title, and \name must exist and be unique in Rd files
  check_groups.Rd: Sections \title, and \name must exist and be unique in Rd files
  check_verbose.Rd: Sections \title, and \name must exist and be unique in Rd files
  cli_compute_vS.Rd: Sections \title, and \name must exist and be unique in Rd files
  cli_iter.Rd: Sections \title, and \name must exist and be unique in Rd files
  cli_startup.Rd: Sections \title, and \name must exist and be unique in Rd files
  cli_topline.Rd: Sections \title, and \name must exist and be unique in Rd files
  coalition_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  compute_estimates.Rd: Sections \title, and \name must exist and be unique in Rd files
  compute_shapley.Rd: Sections \title, and \name must exist and be unique in Rd files
  compute_time.Rd: Sections \title, and \name must exist and be unique in Rd files
  compute_vS.Rd: Sections \title, and \name must exist and be unique in Rd files
  convert_feature_name_to_idx.Rd: Sections \title, and \name must exist and be unique in Rd files
  correction_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  create_ctree.Rd: Sections \title, and \name must exist and be unique in Rd files
  create_marginal_data_cat.Rd: Sections \title, and \name must exist and be unique in Rd files
  create_marginal_data_gaussian.Rd: Sections \title, and \name must exist and be unique in Rd files
  create_marginal_data_training.Rd: Sections \title, and \name must exist and be unique in Rd files
  default_doc_export.Rd: Sections \title, and \name must exist and be unique in Rd files
  default_doc_internal.Rd: Sections \title, and \name must exist and be unique in Rd files
  exact_coalition_table.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  finalize_explanation.Rd: Sections \title, and \name must exist and be unique in Rd files
  format_convergence_info.Rd: Sections \title, and \name must exist and be unique in Rd files
  format_info_basic.Rd: Sections \title, and \name must exist and be unique in Rd files
  Warning in for (i in seq_along(specs)) { :
    closing unused connection 6 ()
  Warning in for (i in seq_along(specs)) { :
    closing unused connection 5 ()
  Warning in for (i in seq_along(specs)) { :
    closing unused connection 4 ()
  Warning in for (i in seq_along(specs)) { :
    closing unused connection 3 ()
  format_info_extra.Rd: Sections \title, and \name must exist and be unique in Rd files
  format_round.Rd: Sections \title, and \name must exist and be unique in Rd files
  format_shapley_info.Rd: Sections \title, and \name must exist and be unique in Rd files
  gauss_cat_loss.Rd: Sections \title, and \name must exist and be unique in Rd files
  gauss_cat_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
  gauss_cat_sampler_most_likely.Rd: Sections \title, and \name must exist and be unique in Rd files
  gauss_cat_sampler_random.Rd: Sections \title, and \name must exist and be unique in Rd files
  gaussian_transform.Rd: Sections \title, and \name must exist and be unique in Rd files
  gaussian_transform_separate.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_S_causal_steps.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_cov_mat.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_data_forecast.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_data_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  get_extra_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_feature_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_iterative_args_default.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_max_n_coalitions_causal.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_model_specs.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_mu_vec.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_nice_time.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_output_args_default.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_predict_model.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  get_supported_approaches.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_supported_models.Rd: Sections \title, and \name must exist and be unique in Rd files
  get_valid_causal_coalitions.Rd: Sections \title, and \name must exist and be unique in Rd files
  group_forecast_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
  hat_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  inv_gaussian_transform_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  lag_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  mahalanobis_distance_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  mcar_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
  memory_layer.Rd: Sections \title, and \name must exist and be unique in Rd files
  model_checker.Rd: Sections \title, and \name must exist and be unique in Rd files
  num_str.Rd: Sections \title, and \name must exist and be unique in Rd files
  observation_impute.Rd: Sections \title, and \name must exist and be unique in Rd files
  observation_impute_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  paired_sampler.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  prepare_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_causal.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_copula_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_copula_cpp_caus.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_gaussian_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_gaussian_cpp_caus.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_data_single_coalition.Rd: Sections \title, and \name must exist and be unique in Rd files
  prepare_next_iteration.Rd: Sections \title, and \name must exist and be unique in Rd files
  print.shapr.Rd: Sections \title, and \name must exist and be unique in Rd files
  print_iter.Rd: Sections \title, and \name must exist and be unique in Rd files
  process_factor_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  quantile_type7_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  reg_forecast_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.check_namespaces.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.check_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.check_recipe_func.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.check_sur_n_comb.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.check_vfold_cv_para.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.cv_message.Rd: Sections \title, and \name must exist and be unique in Rd files
  regression.get_string_to_R.Rd: Sections \title, and \name must exist and be unique in Rd files
  Warning in for (block in blocks) { : closing unused connection 10 ()
  Warning in for (block in blocks) { : closing unused connection 9 ()
  Warning in for (block in blocks) { : closing unused connection 8 ()
  Warning in for (block in blocks) { : closing unused connection 7 ()
  Warning in for (block in blocks) { : closing unused connection 6 ()
  Warning in for (block in blocks) { : closing unused connection 5 ()
  Warning in for (block in blocks) { : closing unused connection 4 ()
  Warning in for (block in blocks) { : closing unused connection 3 ()
  round_manual.Rd: Sections \title, and \name must exist and be unique in Rd files
  rss_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  sample_coalitions_cpp_str_paired.Rd: Sections \title, and \name must exist and be unique in Rd files
  sample_combinations.Rd: Sections \title, and \name must exist and be unique in Rd files
  sample_ctree.Rd: Sections \title, and \name must exist and be unique in Rd files
  save_results.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  shapley_setup.Rd: Sections \title, and \name must exist and be unique in Rd files
  shapley_weights.Rd: Sections \title, and \name must exist and be unique in Rd files
  shapr-package.Rd: Sections \title, and \name must exist and be unique in Rd files
  skip_connection.Rd: Sections \title, and \name must exist and be unique in Rd files
  specified_masks_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
  specified_prob_mask_generator.Rd: Sections \title, and \name must exist and be unique in Rd files
  summary.shapr.Rd: Sections \title, and \name must exist and be unique in Rd files
  test_predict_model.Rd: Sections \title, and \name must exist and be unique in Rd files
  testing_cleanup.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  vaeac_categorical_parse_params.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_activation_func.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_cuda.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_epoch_values.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_extra_named_list.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_logicals.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_mask_gen.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_masking_ratio.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  vaeac_check_positive_integers.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_positive_numerics.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_probabilities.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_save_names.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_save_parameters.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_which_vaeac_model.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_check_x_colnames.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_compute_normalization.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_dataset.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_extend_batch.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_current_save_state.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  vaeac_get_evaluation_criteria.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  vaeac_get_full_state_list.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_mask_generator_name.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_model_from_checkp.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_n_decimals.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_optimizer.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_save_file_names.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_val_iwae.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_get_x_explain_extended.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_impute_missing_entries.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_kl_normal_normal.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_normal_parse_params.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_normalize_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_postprocess_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_preprocess_data.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_print_train_summary.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_save_state.Rd: Sections \title, and \name must exist and be unique in Rd files
  Error writing to connection:  No space left on device
  Error writing to connection:  No space left on device
  vaeac_train_model_continue.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_update_para_locations.Rd: Sections \title, and \name must exist and be unique in Rd files
  vaeac_update_pretrained_model.Rd: Sections \title, and \name must exist and be unique in Rd files
  weight_matrix.Rd: Sections \title, and \name must exist and be unique in Rd files
  weight_matrix_cpp.Rd: Sections \title, and \name must exist and be unique in Rd files
  problems found in ‘additional_regression_setup.Rd’, ‘aicc_full_cpp.Rd’, ‘aicc_full_single_cpp.Rd’, ‘append_vS_list.Rd’, ‘categorical_to_one_hot_layer.Rd’, ‘check_categorical_valid_MCsamp.Rd’, ‘check_convergence.Rd’, ‘check_groups.Rd’, ‘check_verbose.Rd’, ‘cli_compute_vS.Rd’, ‘cli_iter.Rd’, ‘cli_startup.Rd’, ‘cli_topline.Rd’, ‘coalition_matrix_cpp.Rd’, ‘compute_MSEv_eval_crit.Rd’, ‘compute_estimates.Rd’, ‘compute_shapley.Rd’, ‘compute_time.Rd’, ‘compute_vS.Rd’, ‘convert_feature_name_to_idx.Rd’, ‘correction_matrix_cpp.Rd’, ‘create_coalition_table.Rd’, ‘create_ctree.Rd’, ‘create_marginal_data_cat.Rd’, ‘create_marginal_data_gaussian.Rd’, ‘create_marginal_data_training.Rd’, ‘default_doc_export.Rd’, ‘default_doc_internal.Rd’, ‘exact_coalition_table.Rd’, ‘explain.Rd’, ‘explain_forecast.Rd’, ‘finalize_explanation.Rd’, ‘format_convergence_info.Rd’, ‘format_info_basic.Rd’, ‘format_info_extra.Rd’, ‘format_round.Rd’, ‘format_shapley_info.Rd’, ‘gauss_cat_loss.Rd’, ‘gauss_cat_parameters.Rd’, ‘gauss_cat_sampler_most_likely.Rd’, ‘gauss_cat_sampler_random.Rd’, ‘gaussian_transform.Rd’, ‘gaussian_transform_separate.Rd’, ‘get_S_causal_steps.Rd’, ‘get_cov_mat.Rd’, ‘get_data_forecast.Rd’, ‘get_data_specs.Rd’, ‘get_extra_comp_args_default.Rd’, ‘get_extra_parameters.Rd’, ‘get_feature_specs.Rd’, ‘get_iterative_args_default.Rd’, ‘get_max_n_coalitions_causal.Rd’, ‘get_model_specs.Rd’, ‘get_mu_vec.Rd’, ‘get_nice_time.Rd’, ‘get_output_args_default.Rd’, ‘get_predict_model.Rd’, ‘get_results.Rd’, ‘get_supported_approaches.Rd’, ‘get_supported_models.Rd’, ‘get_valid_causal_coalitions.Rd’, ‘group_forecast_setup.Rd’, ‘hat_matrix_cpp.Rd’, ‘inv_gaussian_transform_cpp.Rd’, ‘lag_data.Rd’, ‘mahalanobis_distance_cpp.Rd’, ‘mcar_mask_generator.Rd’, ‘memory_layer.Rd’, ‘model_checker.Rd’, ‘num_str.Rd’, ‘observation_impute.Rd’, ‘observation_impute_cpp.Rd’, ‘paired_sampler.Rd’, ‘plot.shapr.Rd’, ‘plot_MSEv_eval_crit.Rd’, ‘plot_SV_several_approaches.Rd’, ‘plot_vaeac_eval_crit.Rd’, ‘plot_vaeac_imputed_ggpairs.Rd’, ‘predict_model.Rd’, ‘prepare_data.Rd’, ‘prepare_data_causal.Rd’, ‘prepare_data_copula_cpp.Rd’, ‘prepare_data_copula_cpp_caus.Rd’, ‘prepare_data_gaussian_cpp.Rd’, ‘prepare_data_gaussian_cpp_caus.Rd’, ‘prepare_data_single_coalition.Rd’, ‘prepare_next_iteration.Rd’, ‘print.shapr.Rd’, ‘print_iter.Rd’, ‘process_factor_data.Rd’, ‘quantile_type7_cpp.Rd’, ‘reg_forecast_setup.Rd’, ‘regression.check_namespaces.Rd’, ‘regression.check_parameters.Rd’, ‘regression.check_recipe_func.Rd’, ‘regression.check_sur_n_comb.Rd’, ‘regression.check_vfold_cv_para.Rd’, ‘regression.cv_message.Rd’, ‘regression.get_string_to_R.Rd’, ‘round_manual.Rd’, ‘rss_cpp.Rd’, ‘sample_coalition_table.Rd’, ‘sample_coalitions_cpp_str_paired.Rd’, ‘sample_combinations.Rd’, ‘sample_ctree.Rd’, ‘save_results.Rd’, ‘setup.Rd’, ‘setup_approach.Rd’, ‘shapley_setup.Rd’, ‘shapley_weights.Rd’, ‘shapr-package.Rd’, ‘skip_connection.Rd’, ‘specified_masks_mask_generator.Rd’, ‘specified_prob_mask_generator.Rd’, ‘summary.shapr.Rd’, ‘test_predict_model.Rd’, ‘testing_cleanup.Rd’, ‘vaeac.Rd’, ‘vaeac_categorical_parse_params.Rd’, ‘vaeac_check_activation_func.Rd’, ‘vaeac_check_cuda.Rd’, ‘vaeac_check_epoch_values.Rd’, ‘vaeac_check_extra_named_list.Rd’, ‘vaeac_check_logicals.Rd’, ‘vaeac_check_mask_gen.Rd’, ‘vaeac_check_masking_ratio.Rd’, ‘vaeac_check_parameters.Rd’, ‘vaeac_check_positive_integers.Rd’, ‘vaeac_check_positive_numerics.Rd’, ‘vaeac_check_probabilities.Rd’, ‘vaeac_check_save_names.Rd’, ‘vaeac_check_save_parameters.Rd’, ‘vaeac_check_which_vaeac_model.Rd’, ‘vaeac_check_x_colnames.Rd’, ‘vaeac_compute_normalization.Rd’, ‘vaeac_dataset.Rd’, ‘vaeac_extend_batch.Rd’, ‘vaeac_get_current_save_state.Rd’, ‘vaeac_get_data_objects.Rd’, ‘vaeac_get_evaluation_criteria.Rd’, ‘vaeac_get_extra_para_default.Rd’, ‘vaeac_get_full_state_list.Rd’, ‘vaeac_get_mask_generator_name.Rd’, ‘vaeac_get_model_from_checkp.Rd’, ‘vaeac_get_n_decimals.Rd’, ‘vaeac_get_optimizer.Rd’, ‘vaeac_get_save_file_names.Rd’, ‘vaeac_get_val_iwae.Rd’, ‘vaeac_get_x_explain_extended.Rd’, ‘vaeac_impute_missing_entries.Rd’, ‘vaeac_kl_normal_normal.Rd’, ‘vaeac_normal_parse_params.Rd’, ‘vaeac_normalize_data.Rd’, ‘vaeac_postprocess_data.Rd’, ‘vaeac_preprocess_data.Rd’, ‘vaeac_print_train_summary.Rd’, ‘vaeac_save_state.Rd’, ‘vaeac_train_model.Rd’, ‘vaeac_train_model_auxiliary.Rd’, ‘vaeac_train_model_continue.Rd’, ‘vaeac_update_para_locations.Rd’, ‘vaeac_update_pretrained_model.Rd’, ‘weight_matrix.Rd’, ‘weight_matrix_cpp.Rd’
Flavor: r-release-macos-x86_64
Version: 1.0.5
Check: tests
Result: ERROR
    Running 'testthat.R' [210s]
  Running the tests in 'tests/testthat.R' failed.
  Complete output:
    > # CRAN OMP THREAD LIMIT
    > Sys.setenv("OMP_THREAD_LIMIT" = 1)
    > 
    > library(testthat)
    > library(shapr)
    
    Attaching package: 'shapr'
    
    The following object is masked from 'package:testthat':
    
        setup
    
    > 
    > test_check("shapr")
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 7
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 128 of 128 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 6
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 64 of 64 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 10 of 32 coalitions, 2 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 2 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 14 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 2 new. 
    
    -- Iteration 7 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 8 -----------------------------------------------------------------
    i Using 20 of 32 coalitions, 2 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 5
    * Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
    {"Month"}; Day: {"Day"}
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 10 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 3
    * Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
    {"Day"}
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 6 of 8 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` at 2025-10-26 14:41:03 --------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    * Computations (temporary) saved at:
    'D:\temp\2025_10_26_01_50_00_14777\RtmpMjlaMQ\shapr_obj_b8a079154a9b.rds'
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian, gaussian, gaussian, and gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: vaeac
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 10
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: vaeac
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 10
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 5
    * Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
    {"Month"}; Day: {"Day"}
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 50
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 18 of 32 coalitions. 
    
    -- Convergence info 
    v Iterative Shapley value estimation stopped at 18 coalitions after 1 iterations, due to:
    Maximum number of iterations (1) reached!
    Maximum number of coalitions (18) reached!
    
    Final estimated Shapley values (sd)
       explain_id      none      Solar.R          Wind         Temp        Month
            <int>    <char>       <char>        <char>       <char>       <char>
    1:          1 42.44 (0) -3.39 (0.80)   7.95 (0.62) 14.86 (3.27) -4.63 (2.39)
    2:          2 42.44 (0)  3.08 (0.62)  -3.56 (0.36) -4.64 (0.97) -6.03 (1.03)
    3:          3 42.44 (0)  3.73 (0.60) -18.90 (0.68) -1.04 (1.40) -3.56 (1.36)
                Day
             <char>
    1: -2.20 (2.47)
    2: -2.74 (0.96)
    3:  2.20 (0.96)
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 50
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 20 of 32 coalitions. 
    
    -- Convergence info 
    v Iterative Shapley value estimation stopped at 20 coalitions after 1 iterations, due to:
    Maximum number of iterations (1) reached!
    Maximum number of coalitions (20) reached!
    
    Final estimated Shapley values (sd)
       explain_id      none      Solar.R          Wind         Temp        Month
            <int>    <char>       <char>        <char>       <char>       <char>
    1:          1 42.44 (0) -4.33 (0.59)   7.52 (0.79) 17.47 (0.29) -5.01 (0.72)
    2:          2 42.44 (0)  2.87 (0.55)  -4.41 (0.35) -4.71 (0.16) -4.97 (0.50)
    3:          3 42.44 (0)  3.35 (0.18) -18.35 (0.16) -1.83 (0.06) -2.82 (0.21)
                Day
             <char>
    1: -3.06 (0.29)
    2: -2.67 (0.16)
    3:  2.08 (0.06)
    [ FAIL 2 | WARN 1 | SKIP 56 | PASS 48 ]
    
    ══ Skipped tests (56) ══════════════════════════════════════════════════════════
    • On CRAN (56): 'test-asymmetric-causal-output.R:14:1',
      'test-asymmetric-causal-setup.R:4:3', 'test-asymmetric-causal-setup.R:232:3',
      'test-asymmetric-causal-setup.R:256:3',
      'test-asymmetric-causal-setup.R:321:3', 'test-forecast-output.R:2:1',
      'test-forecast-setup.R:7:3', 'test-forecast-setup.R:36:3',
      'test-forecast-setup.R:114:3', 'test-forecast-setup.R:139:3',
      'test-forecast-setup.R:166:3', 'test-forecast-setup.R:228:3',
      'test-forecast-setup.R:302:3', 'test-forecast-setup.R:352:3',
      'test-forecast-setup.R:448:3', 'test-forecast-setup.R:521:3',
      'test-iterative-output.R:1:1', 'test-iterative-setup.R:79:3',
      'test-iterative-setup.R:313:3', 'test-iterative-setup.R:398:3',
      'test-plot.R:1:1', 'test-regression-output.R:1:1',
      'test-regression-setup.R:11:3', 'test-regression-setup.R:49:3',
      'test-regression-setup.R:177:3', 'test-regression-setup.R:235:3',
      'test-regression-setup.R:297:3', 'test-regression-setup.R:338:3',
      'test-regular-output.R:1:1', 'test-regular-setup.R:5:3',
      'test-regular-setup.R:38:3', 'test-regular-setup.R:121:3',
      'test-regular-setup.R:243:3', 'test-regular-setup.R:262:3',
      'test-regular-setup.R:320:3', 'test-regular-setup.R:397:3',
      'test-regular-setup.R:558:3', 'test-regular-setup.R:681:3',
      'test-regular-setup.R:797:3', 'test-regular-setup.R:818:3',
      'test-regular-setup.R:876:3', 'test-regular-setup.R:934:3',
      'test-regular-setup.R:1040:3', 'test-regular-setup.R:1152:3',
      'test-regular-setup.R:1225:3', 'test-regular-setup.R:1269:3',
      'test-regular-setup.R:1794:3', 'test-regular-setup.R:1829:3',
      'test-regular-setup.R:1852:3', 'test-semi-deterministic-output.R:1:1',
      'test-semi-deterministic-setup.R:2:3',
      'test-semi-deterministic-setup.R:23:3',
      'test-semi-deterministic-setup.R:48:3',
      'test-semi-deterministic-setup.R:97:3',
      'test-semi-deterministic-setup.R:126:3', 'test-summary.R:1:1'
    
    ══ Failed tests ════════════════════════════════════════════════════════════════
    ── Error ('test-regular-setup.R:1632:3'): vaeac_set_seed_works ─────────────────
    <std::runtime_error/C++Error/error/condition>
    Error in `cpp_torch_manual_seed(as.character(seed))`: Lantern is not loaded. Please use `install_torch()` to install additional dependencies.
    Backtrace:
        ▆
     1. └─shapr::explain(...) at test-regular-setup.R:1632:3
     2.   ├─shapr::setup_approach(internal, model = model, predict_model = predict_model)
     3.   └─shapr:::setup_approach.vaeac(internal, model = model, predict_model = predict_model)
     4.     ├─base::do.call(vaeac_train_model, c(vaeac_all_parameters, list(x_train = internal$data$x_train)))
     5.     └─shapr (local) `<fn>`(...)
     6.       └─torch::torch_manual_seed(seed)
     7.         └─torch:::cpp_torch_manual_seed(as.character(seed))
    ── Error ('test-regular-setup.R:1678:3'): vaeac_pretreained_vaeac_model ────────
    <std::runtime_error/C++Error/error/condition>
    Error in `cpp_torch_manual_seed(as.character(seed))`: Lantern is not loaded. Please use `install_torch()` to install additional dependencies.
    Backtrace:
        ▆
     1. └─shapr::explain(...) at test-regular-setup.R:1678:3
     2.   ├─shapr::setup_approach(internal, model = model, predict_model = predict_model)
     3.   └─shapr:::setup_approach.vaeac(internal, model = model, predict_model = predict_model)
     4.     ├─base::do.call(vaeac_train_model, c(vaeac_all_parameters, list(x_train = internal$data$x_train)))
     5.     └─shapr (local) `<fn>`(...)
     6.       └─torch::torch_manual_seed(seed)
     7.         └─torch:::cpp_torch_manual_seed(as.character(seed))
    
    [ FAIL 2 | WARN 1 | SKIP 56 | PASS 48 ]
    Error: Test failures
    Execution halted
Flavor: r-release-windows-x86_64
Version: 1.0.5
Check: installed package size
Result: NOTE
    installed size is  8.6Mb
    sub-directories of 1Mb or more:
      doc    3.3Mb
      libs   4.1Mb
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64
Version: 1.0.5
Check: tests
Result: ERROR
    Running 'testthat.R' [305s]
  Running the tests in 'tests/testthat.R' failed.
  Complete output:
    > # CRAN OMP THREAD LIMIT
    > Sys.setenv("OMP_THREAD_LIMIT" = 1)
    > 
    > library(testthat)
    > library(shapr)
    
    Attaching package: 'shapr'
    
    The following object is masked from 'package:testthat':
    
        setup
    
    > 
    > test_check("shapr")
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 5
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 7
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 128 of 128 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 6
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 64 of 64 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain_forecast()` ----------------------------------------
    i Feature names extracted from the model contain `NA`.
      Consistency checks between model and data are therefore disabled.
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
    
    -- Explanation overview --
    
    * Model class: <Arima>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 2
    * Number of observations to explain: 2
    
    -- Main computation started --
    
    i Using 4 of 4 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 10 of 32 coalitions, 2 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 2 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 14 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 2 new. 
    
    -- Iteration 7 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 8 -----------------------------------------------------------------
    i Using 20 of 32 coalitions, 2 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 5
    * Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
    {"Month"}; Day: {"Day"}
    * Number of observations to explain: 3
    
    -- Iterative computation started --
    
    -- Iteration 1 -----------------------------------------------------------------
    i Using 6 of 32 coalitions, 6 new. 
    
    -- Iteration 2 -----------------------------------------------------------------
    i Using 8 of 32 coalitions, 2 new. 
    
    -- Iteration 3 -----------------------------------------------------------------
    i Using 12 of 32 coalitions, 4 new. 
    
    -- Iteration 4 -----------------------------------------------------------------
    i Using 16 of 32 coalitions, 4 new. 
    
    -- Iteration 5 -----------------------------------------------------------------
    i Using 18 of 32 coalitions, 2 new. 
    
    -- Iteration 6 -----------------------------------------------------------------
    i Using 22 of 32 coalitions, 4 new. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 10 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 3
    * Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
    {"Day"}
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 6 of 8 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: ctree
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` at 2025-10-22 01:43:53 --------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    * Computations (temporary) saved at:
    'D:\temp\2025_10_21_12_46_10_10564\RtmpSOCZ2O\shapr_obj_779425f428bb.rds'
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, gaussian, and copula
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian, gaussian, gaussian, and gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence, empirical, independence, and empirical
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: vaeac
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 10
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: vaeac
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 10
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: gaussian
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 1000
    * Number of group-wise Shapley values: 5
    * Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
    {"Month"}; Day: {"Day"}
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 32 of 32 coalitions. 
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 50
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 18 of 32 coalitions. 
    
    -- Convergence info 
    v Iterative Shapley value estimation stopped at 18 coalitions after 1 iterations, due to:
    Maximum number of iterations (1) reached!
    Maximum number of coalitions (18) reached!
    
    Final estimated Shapley values (sd)
       explain_id      none      Solar.R          Wind         Temp        Month
            <int>    <char>       <char>        <char>       <char>       <char>
    1:          1 42.44 (0) -3.39 (0.80)   7.95 (0.62) 14.86 (3.27) -4.63 (2.39)
    2:          2 42.44 (0)  3.08 (0.62)  -3.56 (0.36) -4.64 (0.97) -6.03 (1.03)
    3:          3 42.44 (0)  3.73 (0.60) -18.90 (0.68) -1.04 (1.40) -3.56 (1.36)
                Day
             <char>
    1: -2.20 (2.47)
    2: -2.74 (0.96)
    3:  2.20 (0.96)
    
    -- Starting `shapr::explain()` -------------------------------------------------
    
    -- Explanation overview --
    
    * Model class: <lm>
    * v(S) estimation class: Monte Carlo integration
    * Approach: independence
    * Procedure: Non-iterative
    * Number of Monte Carlo integration samples: 50
    * Number of feature-wise Shapley values: 5
    * Number of observations to explain: 3
    
    -- Main computation started --
    
    i Using 20 of 32 coalitions. 
    
    -- Convergence info 
    v Iterative Shapley value estimation stopped at 20 coalitions after 1 iterations, due to:
    Maximum number of iterations (1) reached!
    Maximum number of coalitions (20) reached!
    
    Final estimated Shapley values (sd)
       explain_id      none      Solar.R          Wind         Temp        Month
            <int>    <char>       <char>        <char>       <char>       <char>
    1:          1 42.44 (0) -4.33 (0.59)   7.52 (0.79) 17.47 (0.29) -5.01 (0.72)
    2:          2 42.44 (0)  2.87 (0.55)  -4.41 (0.35) -4.71 (0.16) -4.97 (0.50)
    3:          3 42.44 (0)  3.35 (0.18) -18.35 (0.16) -1.83 (0.06) -2.82 (0.21)
                Day
             <char>
    1: -3.06 (0.29)
    2: -2.67 (0.16)
    3:  2.08 (0.06)
    [ FAIL 2 | WARN 1 | SKIP 56 | PASS 48 ]
    
    ══ Skipped tests (56) ══════════════════════════════════════════════════════════
    • On CRAN (56): 'test-asymmetric-causal-output.R:14:1',
      'test-asymmetric-causal-setup.R:4:3', 'test-asymmetric-causal-setup.R:232:3',
      'test-asymmetric-causal-setup.R:256:3',
      'test-asymmetric-causal-setup.R:321:3', 'test-forecast-output.R:2:1',
      'test-forecast-setup.R:7:3', 'test-forecast-setup.R:36:3',
      'test-forecast-setup.R:114:3', 'test-forecast-setup.R:139:3',
      'test-forecast-setup.R:166:3', 'test-forecast-setup.R:228:3',
      'test-forecast-setup.R:302:3', 'test-forecast-setup.R:352:3',
      'test-forecast-setup.R:448:3', 'test-forecast-setup.R:521:3',
      'test-iterative-output.R:1:1', 'test-iterative-setup.R:79:3',
      'test-iterative-setup.R:313:3', 'test-iterative-setup.R:398:3',
      'test-plot.R:1:1', 'test-regression-output.R:1:1',
      'test-regression-setup.R:11:3', 'test-regression-setup.R:49:3',
      'test-regression-setup.R:177:3', 'test-regression-setup.R:235:3',
      'test-regression-setup.R:297:3', 'test-regression-setup.R:338:3',
      'test-regular-output.R:1:1', 'test-regular-setup.R:5:3',
      'test-regular-setup.R:38:3', 'test-regular-setup.R:121:3',
      'test-regular-setup.R:243:3', 'test-regular-setup.R:262:3',
      'test-regular-setup.R:320:3', 'test-regular-setup.R:397:3',
      'test-regular-setup.R:558:3', 'test-regular-setup.R:681:3',
      'test-regular-setup.R:797:3', 'test-regular-setup.R:818:3',
      'test-regular-setup.R:876:3', 'test-regular-setup.R:934:3',
      'test-regular-setup.R:1040:3', 'test-regular-setup.R:1152:3',
      'test-regular-setup.R:1225:3', 'test-regular-setup.R:1269:3',
      'test-regular-setup.R:1794:3', 'test-regular-setup.R:1829:3',
      'test-regular-setup.R:1852:3', 'test-semi-deterministic-output.R:1:1',
      'test-semi-deterministic-setup.R:2:3',
      'test-semi-deterministic-setup.R:23:3',
      'test-semi-deterministic-setup.R:48:3',
      'test-semi-deterministic-setup.R:97:3',
      'test-semi-deterministic-setup.R:126:3', 'test-summary.R:1:1'
    
    ══ Failed tests ════════════════════════════════════════════════════════════════
    ── Error ('test-regular-setup.R:1632:3'): vaeac_set_seed_works ─────────────────
    <std::runtime_error/C++Error/error/condition>
    Error in `cpp_torch_manual_seed(as.character(seed))`: Lantern is not loaded. Please use `install_torch()` to install additional dependencies.
    Backtrace:
        ▆
     1. └─shapr::explain(...) at test-regular-setup.R:1632:3
     2.   ├─shapr::setup_approach(internal, model = model, predict_model = predict_model)
     3.   └─shapr:::setup_approach.vaeac(internal, model = model, predict_model = predict_model)
     4.     ├─base::do.call(vaeac_train_model, c(vaeac_all_parameters, list(x_train = internal$data$x_train)))
     5.     └─shapr (local) `<fn>`(...)
     6.       └─torch::torch_manual_seed(seed)
     7.         └─torch:::cpp_torch_manual_seed(as.character(seed))
    ── Error ('test-regular-setup.R:1678:3'): vaeac_pretreained_vaeac_model ────────
    <std::runtime_error/C++Error/error/condition>
    Error in `cpp_torch_manual_seed(as.character(seed))`: Lantern is not loaded. Please use `install_torch()` to install additional dependencies.
    Backtrace:
        ▆
     1. └─shapr::explain(...) at test-regular-setup.R:1678:3
     2.   ├─shapr::setup_approach(internal, model = model, predict_model = predict_model)
     3.   └─shapr:::setup_approach.vaeac(internal, model = model, predict_model = predict_model)
     4.     ├─base::do.call(vaeac_train_model, c(vaeac_all_parameters, list(x_train = internal$data$x_train)))
     5.     └─shapr (local) `<fn>`(...)
     6.       └─torch::torch_manual_seed(seed)
     7.         └─torch:::cpp_torch_manual_seed(as.character(seed))
    
    [ FAIL 2 | WARN 1 | SKIP 56 | PASS 48 ]
    Error: Test failures
    Execution halted
Flavor: r-oldrel-windows-x86_64