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Foreword

This book is written for those who want to learn how to analyze data. This challenge
arises frequently when you need to determine a previously unknown fact. For exam-
ple: does this new medicine have an effect on a patient’s symptoms? Or: Is there a
difference between the public’s rating of two politicians? Or: how will the oil prices
change in the next week?

You might think that you can find the answer to such a question simply by looking at
the numbers. Unfortunately this is often not the case. For example, after surveying
262 people exiting a polling site, it was found that 52% voted for candidate A and
48% for candidate B.

I Do the results of this exit poll tell you that candidate A won the election?

Thinking about it, many would say “yes,” and then, considering it for a moment,
“Well, I don’t know, maybe?” But there is a simple (from the point of view of modern
computer programs) “proportion test” that tells you not only the answer (in this case,
“No, the results of the exit poll do not indicate that Candidate A won the election”)
but also allows you to calculate how many people you would need to survey to be able
to answer that question. In this case, the answer would be “about 5,000 people”—see
the explanation at the end of the chapter about one-dimensional data.

The ignorance of the statistical methods can lead to mistakes and misinterpreta-
tions. Unfortunately, understanding of these methods is far from common. Many
college majors require a course in probability theory and mathematical statistics, but
all many of us remember from these courses is horror and/or frustration at complex
mathematical formulas filled with Greek letters, some of them wearing hats.

It is true that probability theory forms the basis of most data analysis methods but on
the other hand, most people use fridge without knowledge about thermodynamics
and Carnot cycle. For the practical purposes of analyzing data, you do not have to
be fully fluent in mathematical statistics and probability theory.



Therefore, we tried to follow Steven Hawking who in the “A Brief History of Time”
stated that “... someone told me that each equation I included in the book would
halve the sales. I therefore resolved not to have any equations at all ..”. Conse-
quently, there is only one equation in this book. By the way, an interesting exercise
is just to find! it.

Even better, almost ideal approach would be the book similar to R. Munroe’s “Thing
Explainer”? where complicated concepts are explained using dictionary of 1,000
most frequent English words.

To make a long story short, this textbook is the kind of “statistic without math” but
with R.

Some caution is required, though, for readers of such books: many methods of sta-
tistical analysis have, so to speak, a false bottom. You can apply these methods with-
out delving too deeply into the underlying principles, get results, and discuss these
results in your report. But you might find one day that a given method was totally
unsuitable for the data you had, and therefore your conclusions are invalid. You must
be careful and aware of the limitations of any method you try to use and determine
whether they are applicable to your situation.

This book devoted mostly to biometry, methods of data analysis applied to biological
objects. As Fred Bookstein mentioned in his book (2018), biological objects have at
least two important features: morphological integration (substantial but inconstant
correlation among most pairs of measurements), and the centrality of measures of
extent (lengths, areas, weights). We will use these features in the book.

On examples: This book is based on a software which runs data files, and we have
made most of the data files used here available to download from

http://ashipunov.info/data

We recommend to copy data files to the data subdirectory of your working directory;
one of possible methods is to open this URL in browser and download all files. Then
all code examples should work without Internet connection.

However, you can load data directly from the URL above. If you decide to work on-
line, then the convention is that when the books says "data/...", replace it with
"http://ashipunov.info/data/...".

1Usually, small (running) exercises are boldfaced.
thtps ://xkcd.com/thing-explainer/
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Some data is available also from from author’s open repository at
http://ashipunov.info/shipunov/open

Most example problems in this book can and should be reproduced independently.
These examples are written in typewriter font and begin with the > symbol. If an
example does not fit on one line, a + sign indicates the line’s continuation—so

do not type the + (and >) signs when reproducing the code!

All commands used in the text of this book are downloadable as one big R script (col-
lection of text commands) from http://ashipunov.info/shipunov/school/biol_
240/en/visual_statistics.r

The book also contain supplements, they are presented both as zipped and non-
zipped folders here:

http://ashipunov.info/shipunov/school/biol_240/en/supp

Custom functions used in this book could be loaded using shipunov package. To in-
stall this package, macOS and Linux users run:

> install.packages("http://ashipunov.info/r/shipunov.tar.gz",
+ repos=NULL)

Windows (only!) users run:

> install.packages("http://ashipunov.info/r/shipunov.zip",
+ repos=NULL)

You need to install this package only once. However, to upgrade the package to the
new version, run this above command again in a way customary to your OS.

Then if you want to use custom commands, load the package first:
> library(shipunov)

How do you know if the command is custom? They frequently title-cased, but more
important is that they labeled in the text like:

> ... # shipunov

This situation (as of March 2019) is temporary, and it is likely that shipunov package
will soon enough be available as normal R package, on CRAN (more explanations will
follow.)
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Of course, many statistical methods including really important ones are not dis-
cussed in this book. We almost completely neglect statistical modeling, do not dis-
cuss contrasts, do not examine standard distributions besides the normal, do not
cover survival curves, factor analysis, geostatistics, we do not talk about how to do
multi-factorial or block analysis of variation, multivariate and ordinal regression,
design of experiments, and much else. The goal of the first part is just to explain
fundamentals of statistical analysis with emphasis on biological problems. Having
mastered the basics, more advanced methods can be grasped without much diffi-
culty with the help of the scholarly literature, internal documentation, and on-line
resources.

This book was first written and published in Russian. The leading author (Alexey
Shipunov) of the Russian edition is extremely grateful to all who participated in
writing, editing and translating. Some names are listed below: Eugene Baldin,
Polina Volkova, Anton Korobeinikov, Sofia Nazarova, Sergei Petrov, Vadim Sufijanov,
Alexandra Mushegjan. And many thanks to the editor, Yuta Tamberg who did a great
job of the improving and clarifying the text.

Please note that book is under development. If you obtained it from somewhere else,
do not hesitate to check for the update from the main location (look on the second
page for URL).

Happy Data Analysis!
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Part 1

One or two dimensions



Chapter 1

The data

1.1 Origin of the data

He who would catch fish must find the water first, they say. If you want to analyze
data, you need to obtain them. There are many ways of obtaining data but the most
important are observation and experiment.

Observation is the method when observer has the least possible influence on the
observed. It is important to understand that zero influence is practically impossible
because the observer will always change the environment.

Experiment approaches the nature the other way. In the experiment, influence(s)
are strictly controlled. Very important here are precise measurements of effects, re-
moval of all interacting factors and (related) contrasting design. The latter means
that one experimental group has no sense, there must be at least two, experiment
(influence) and control (no influence). Only then we can equalize all possibly inter-
acting factors and take into account solely the results of our influence. Again, no
interaction is practically impossible since everything around us is structurally too
complicated. One of the most complicated things are we humans, and this is why
several special research methods like blind (when patients do not know what they
receive, drug or placebo) or even double blind (when doctor also does not know that)
were invented.

1.2 Population and sample

Let us research the simple case: which of two ice-creams is more popular? It would
be relatively easy to gather all information if all these ice-creams sold in one shop.

14



However, the situation is usually different and there are many different sellers which
are really hard to control. In situation like that, the best choice is sampling. We can-
not control everybody but we can control somebody. Sampling is also cheaper, more
robust to errors and gives us free hands to perform more data collection and anal-
yses. However, when we receive the information from sampling, another problem
will become apparent—how representative are these results? Is it possible to esti-
mate the small piece of sampled information to the whole big population (this is not
a biological term) of ice-cream data? Statistics (mathematical statistics, including
the theory of sampling) could answer this question.

Itis interesting that sampling could be more precise than the total investigation. Not
only because it is hard to control all variety of cases, and some data will be inevitably
mistaken. There are many situations when the smaller size of sample allows to ob-
tain more detailed information. For example, in XIX century many Russian peasants
did not remember their age, and all age-related total census data was rounded to
tens. However, in this case selective but more thorough sampling (using documents
and cross-questioning) could produce better result.

And philosophically, full investigation is impossible. Even most complete research
is a subset, sample of something bigger.

1.3 How to obtain the data

There are two main principles of sampling: replication and randomization.

Replication suggests that the same effect will be researched several times. This idea
derived from the cornerstone math “big numbers” postulate which in simple words
is “the more, the better”. When you count replicates, remember that they must be
independent. For example, if you research how light influences the plant growth and
use five growing chambers, each with ten plants, then number of replicates is five,
not fifty. This is because plants withing each chamber are not independent as they all
grow in the same environment but we research differences between environments.
Five chambers are replicates whereas fifty plants are pseudoreplicates.

Repeated measurements is another complication. For example, in a study of short-
term visual memory ten volunteers were planned to look on the same specific object
multiple times. The problem here is that people may remember the object and re-
call it faster towards the end of a sequence. As a result, these multiple times are
not replicates, they are repeated measurements which could tell something about
learning but not about memory itself. There are only ten true replicates.

Another important question is how many replicates should be collected. There is
the immense amount of publications about it, but in essence, there are two answers:
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(a) as many as possible and (b) 30. Second answer looks a bit funny but this rule of
thumb is the result of many years of experience. Typically, samples which size is
less than 30, considered to be a small. Nevertheless, even minuscule samples could
be useful, and there are methods of data analysis which work with five and even
with three replicates. There are also special methods (power analysis) which allow
to estimate how many objects to collect (we will give one example due course).

Randomization tells among other that every object should have the equal chances
to go into the sample. Quite frequently, researchers think that data was randomized
while it was not actually collected in the random way.

For example, how to select the sample of 100 trees in the big forest? If we try sim-
ply to walk and select trees which somehow attracted the attention, this sample will
not be random because these trees are somehow deviated and this is why we spotted
them. Since one of the best ways of randomization is to introduce the order which is
knowingly absent in nature (or at least not related with the study question), the reli-
able method is, for example, to use a detailed map of the forest, select two random
coordinates, and find the tree which is closest to the selected point. However, trees
are not growing homogeneously, some of them (like spruces) tend to grow together
whereas others (like oaks) prefer to stay apart. With the method described above,
spruces will have a better chance to come into sample so that breaks the rule of ran-
domization. We might employ the second method and make a transect through the
forest using rope, then select all trees touched with it, and then select, saying, every
fifth tree to make a total of hundred.

I Isthe last (second) method appropriate? How to improve it?

Now you know enough to answer another question:

Once upon a time, there was an experiment with a goal to research the effect of
different chemical poisons to weevils. Weevils were hold in jars, chemicals were
put on fragments of filter paper. Researcher opened the jar, then picked up the
weevil which first came out of jar, put it on the filter paper and waited until weevil
died. Then researcher changed chemical, and start the second run of experiment
in the same dish, and so on. But for some unknown reason, the first chemical
used was always the strongest (weevils died very fast). Why? How to organize
this experiment better?

16



1.4 What to find in the data

1.4.1 Why do we need the data analysis

Well, if everything is so complicated, why to analyze data? It is frequently evident
the one shop has more customers than the other, or one drug is more effective, and
so on... —This is correct, but only to the some extent. For example, this data

23421220

is more or less self-explanatory. It is easy to say that here is a tendency, and this
tendency is most likely 2. Actually, it is easy to use just a brain to analyze data which
contains 5-9 objects. But what about this data?

88 22 52 31 51 63 32 57 68 27 15
20 26 3 33 7 35 17 28 32 8 19
60 18 30 104 @ 72 51 66 22 44 75
87 95 65 77 34 47 108 9 105 24 29
31 65 12 82

(This is the real-word example of some flowers measurements in orchids, you can
download it from the book data folder as dact.txt.)

It is much harder to say anything about tendency without calculations: there are too
many objects. However, sometimes the big sample is easy enough to understand:

NN NN
NN NN
NN NN
NN NN
NN NN
NN NN
NN NN
N W NN

2
2
2
2

Here everything is so similar than again, methods of data analysis would be redun-
dant.

As a conclusion, we might say that statistical methods are wanted in cases of (1)
numerous objects and/or (2) when data is not uniform. And of course, if there are
not one (like in examples above) but several variables, our brain does not handle
them easily and we again need statistics.

1.4.2 What data analysis can do

1. First of all, data analysis can characterize samples, reveal central tendency
(of course, if it is here) and variation. You may think of them as about target
and deviations.
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2. Then, data analysis reveals differences between samples (usually two sam-
ples). For example, in medicine it is very important to understand if there is
a difference between physiological characteristics of two groups of patients:
those who received the drug of question, and those who received the placebo.
There is no other way to understand if the drug works. Statistical tests and
effect size estimations will help to understand the reliability of difference nu-
merically.

3. Data analysis might help in understanding relations within data. There plenty
of relation types. For example, association is the situation when two things
frequently occur together (like lightning and thunder). The other type is corre-
lation where is the way to measure the strength and sign (positive or negative)
of relation. And finally, dependencies allow not only to spot their presence
and to measure their strength but also to understand direction and predict the
value of effect in unknown situations (this is a statistical model).

4. Finally, data analysis might help in understating the structure of data. This
is the most complicated part of statistics because structure includes multiple
objects and multiple variables. The most important outcome of the analysis
of structure is classification which, in simple words, is an ultimate tool to
understand world around us. Without proper classification, most of problems
is impossible to resolve.

All of the methods above include both description (visualization) methods—which
explain the situation, and inferential methods—which employ probability theory
and other math. Inferential methods include many varieties (some of them ex-
plained below in main text and in appendices), e.g., parametric and nonparametric
methods, robust methods and re-sampling methods. There are also analyses which
fall into several of these categories.

1.4.3 What data analysis cannot do

1. Data analysis cannot read your mind. You should start data analysis only if you
know what is your data, and which exact questions you need to answer.

2. Data analysis cannot give you certainty. Most inferential methods are based
on the theory of probability.

3. Data analysis does not reflect the world perfectly. It is always based on a sam-
ple.

18



1.5 Answers to exercises

Answer to the exercise about tree sampling. In case of transect, spruces still have
a better chance to be selected. Also, this forest could have some specific structure
along the transect. So to improve method, one can use several transects and increase
distances between selected trees.

Answer to the weevil question. In that case, first were always most active insects
which piked the lethal dose of the chemical mush faster than less active individuals.
Rule of replication was also broken here because one dish was used for the sequence
of experiments. We think that if you read this explanation and understand it, it
already became clear how to improve the experiment.
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Chapter 2

How to process the data

Generally, you do not need a computer to process the data. However, contemporary
statistics is “heavy” and almost always requires the technical help from some kind
of software.

2.1 General purpose software

Almost every computer or smart phone has the calculator. Typically, it can do sim-
ple arithmetics, sometimes also square roots and degrees. This is enough for the
basic data processing. However, to do any statistical analysis, such calculator will
need statistical tables which give approximate values of statistics, special character-
istics of data distribution. Exact calculation of these statistics is too complicated
(for example, it might require integration) and most programs use embedded sta-
tistical tables. Calculators usually do not have these tables. Even more important
disadvantage of the calculator is absence of the ability to work with sequences of
numbers.

To deal with many numbers at once, spreadsheets were invented. The power of
spreadsheet is in data visualization. From the spreadsheet, it is easy to estimate
the main parameters of data (especially if the data is small). In addition, spread-
sheets have multiple ways to help with entering and converting data. However, as
spreadsheets were initially created for the accounting, they oriented still to the tasks
typical to that field. If even they have statistical functions, most of them are not con-
temporary and are not supported well. Multivariate methods are frequently absent,
realization of procedures is not optimal (and frequently hidden from the user), there
is no specialized reporting system, and so on.

20



And thinking of data visualization in spreadsheets—what if the data do not fit the
window? In that case, the spreadsheet will start to prevent the understanding of
data instead of helping it.

Another example—what if you need to work simultaneously with three non-neighbor-
ing columns of data? This is also extremely complicated in spreadsheets.

This is why specialized statistical software come to the scene.

2.2 Statistical software

2.2.1 Graphical systems

There are two groups of statistical software. First, graphical systems which at a glance
do not differ much from spreadsheets but supplied with much more statistical func-
tions and have the powerful graphical and report modules. The typical examples are
SPSS and MiniTab.

As all visual systems, they are flexible but only within the given range. If you need
something new (new kind of plot, new type of calculation, unusual type of data
input), the only possibility is to switch to non-visual side and use macros or sub-
programs. But even more important is that visual ideology is not working well with
more than one user, and does not help if the calculation should be repeated in dif-
ferent place with different people or several years after. That breaks reproducibility,
one of the most important principle of science. Last but not least, in visual soft-
ware statistical algorithms are hidden from end-user so if even you find the name of
procedure you want, it is not exactly clear what program is going to do.

2.2.2 Statistical environments

This second group of programs uses the command-line interface (CLI). User enters
commands, the system reacts. Sounds simple, but in practice, statistical environ-
ments belong to the most complicated systems of data analysis. Generally speaking,
CLI has many disadvantages. It is impossible, for example, to choose available com-
mand from the menu. Instead, user must remember which commands are available.
Also, this method is so similar to programming that users of statistical environments
need to have some programming skills.

As a reward, the user has the full control over the system: combine all types of anal-
ysis, write command sequences into scripts which could be run later at any time,
modify graphic output, easily extend the system and if the system is open source,
modify the core statistical environment. The difference between statistical environ-
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ment and graphical system is like the difference between supermarket and vending
machine!

SAS is the one of the most advanced and powerful statistical environments. This
commercial system has extensive help and the long history of development. Unfor-
tunately, SAS is frequently overcomplicated even for the experienced programmer,
has many “vestiges” of 1970s (when it was written), closed-source and extremely
expensive...

2.3 The very short history of the S and R

R is the statistical environment. In was created as a freeware analog of commercial
S-Plus which is in turn was implementation of the S language concept. The S lan-
guage was first created in 1976 in Bell Labs, and its name was inspired by famous
C language (from same Bell Labs). S-Plus started in the end of 1980s, and as many
statistical software, was seriously expensive. In August 1993, two New Zealand sci-
entists, Robert Gentleman and Ross Thaka, decided to make R (this name was, in
turn, inspired by S). The idea was to make independent realization of S language
concept which would differ from S-Plus in some details (for example, in the way it
works with local and global variables).

Practically, R is not an imitation of S-Plus but the new “branch” in the family of S
software. In 1990s, R was developing slowly, but when users finally realized its truly
amazing opportunities (like the system of R extensions—packages, or libraries) and
started to migrate from other statistical systems, R started to grow exponentially.
Now, there are thousands of R packages, and R is used almost everywhere! Without
any exaggeration, R is now the most important software tool for data analysis.

2.4 Use, advantages and disadvantages of the R

R is used everywhere to work with any kind of data. R is capable to do not only
“statistics” in the strict sense but also all kinds of data analysis (like visualization
plots), data operations (similar to databasing) and even machine learning and ad-
vanced mathematical modeling (which is the niche of other software like Python mod-
ules, Octave or MATLAB).

There are several extremely useful features of R: flexibility, reproducibility, open source
code and (yes!) command-line interface. Flexibility allows to create extension pack-
ages almost for all purposes. For the common user, it means that almost everything
which was described in statistical literature as a method, is available in R. And peo-
ple who professionally work in the creation of statistical methods, use R for their
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research. And (this is rare case) if the method is not available, it is possible to write
yourself commands implementing it.

Reproducibility allow to repeat the same analysis, without much additional efforts,
with the updated data, or ten years later, or in other institutions.

Openness means that it is always possible to look inside the code and find out how
exactly the particular procedure was implemented. It is also possible to correct mis-
takes in the code (since everything made by humans have mistakes and R is not an
exception) in Wikipedia-like communal way.

Command-line interface (CLI) of R is in truth, superior way over GUI (graphical user
interface) of other software. User of GUI is just like the ordinary worker whereas CLI
user is more similar to foreman who leaves the “dirty work” to the computer, and
this is exactly what computers were invented for. CLI also allows to make interfaces,
connect R with almost any software.

There is also the R “dark side”. R is difficult to learn. This is why you are reading this
book. After you install R, you see the welcome screen with a > prompt, and that is
it. Many commands are hard to remember, and there are no of almost no menus.
Sometimes, it is really complicated to find how to do something particular.

As a difference from S-Plus, R makes all calculations in the operational memory.
Therefore if you accidentally power off the computer, all results not written on disk
intentionally, will be lost!.

2.5 How to download and install R

Since R is free, it is possible to download and install it without any additional pro-
cedures. There are several ways to do that depending on your operation system, but
generally one need to google the uppercase letter “R” which will give the link to the
site of R project. Next step is to find there “CRAN”, the on-line repository of all R-
related software. In fact, there are multiple repositories (mirrors) so next step is to
choose the nearest mirror. Then everything is straightforward, links will finally get
you to the downloading page.

IThere is however the SOAR package which overrides this behavior.
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If your operating system has the package manager, software center of similar, in-
stalling R is even simpler. All that you need is to find R from within the manager and
click install?.

As of 2019, one can install R on Android smartfones. To do that, install Termux appli-
cation and add its-pointless repository (to know how, check Termux Wiki). However,
situation in this field changes rapidly.

Under Windows, R might be installed in two different modes, “one big window with
smaller windows inside” (MDI) or “multiple independent windows” (SDI). We rec-
ommended to use the second (SDI) as R in other operating systems can work only
in SDI mode. It is better to determine the mode during the installation: to make
this choice, choose “Custom installation” from the one of first screens. If for some
reason, you skipped it, it may be done later, through the menu (R GUI options).

Apart from “graphical” R, both Windows and macOS have terminal R applications.
While the functionality of Windows terminal programs is limited, on macQOS it runs
in a way similar to Linux and therefore makes the appropriate alternative. To start
using this terminal R application in macOS, user should run any available terminal
(like Terminal.app) first.

There are useful features in macOS graphical R, but also restrictions, especially with
saving history of commands (see below). When R is installed on macOS GUI, it is
better to uncheck Read history and check Save workspace -> No. On R with macOS
Terminal.app, this is not necessary.

If you are going to work with R, you might enjoy also some companion software:
Geany (or Kate) as a text editor, LibreOffice Calc as spreadsheet, muCommander (or
Double Commander) as two-panel file manager, Inkscape as vector editor, and also
good monospace font like Ubuntu Mono, Hack, or Fantasque Sans Mono. All of these
should work on three main OSes and also should be freely available online.

If you use macOS Terminal.app or R on Linux, then useful software are nano text ed-
itor (should be installed by default), Midnight Commander two-panel file manager
(mc, check how to install it on your OS) and bash command shell with saving his-
tory between sessions “on” (this is only for macOS, check online how). On macOS,
in addition to the core R, it is recommended to install also XQuartz software.

For the beginner in R, it is better to avoid any R GUI as they hamper the learning
process.

21 you do not use these managers or centers, it is recommended to regularly update your R, at least
once a year.
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2.6 How to start with R

2.6.1 Launching R

Typically, you launch R from the desktop icon or application menu. To launch R from
the terminal, type:

$ R
—and you will see the R screen.

It is even possible to launch R on the remote UNIX server without any graphical
system running. In that case, all plots will be written in one PDF file, Rplots.pdf
which will appear in the working directory.

If you know how to work with R, it is a good idea to check the fresh installation typing,
for example, plot (1:20) to check if graphics works. If you are a novice to R, proceed
to the next section.

2.6.2 First steps

After you successfully opened R, it is good to understand how to exit. After entering
empty parentheses, be sure to press Enter and answer “n” or “No” on the question:

> q0)

Save workspace image? [y/n/c]l: n

This simple example already shows that any command (or function, this is almost the
same) in R has an argument inside round brackets, parentheses. If there is no argu-
ment, you still need these parentheses. If you forget them, R will show the definition
of the function instead of quitting:

>q

function (save = "default", status = @, runLast = TRUE)
.Internal(quit(save, status, runLast))

<bytecode: 0x28a5708>

<environment: namespace:base>

(For the curious, “bytecode” means that this function was compiled for speed, “en-
vironment” shows the way to call this function. If you want to know the function
code, it is not always work to call it without parentheses; see the reference card for
more advanced methods.)
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How to know more about function? Call the help:
> help(q)

or simply
> ?7q

And you will see the separate window or (under Linux) help text in the same window
(to exit this help, press q)>.

But what if you do not know your command, and only know what to do? What to do
if you were told to perform, saying, analysis of variation (ANOVA) in R but do not
know which command to use? (See the answer in the end of chapter.)

Now back to the ?q. If you read this help text thoroughly, you might conclude that
to quit R without being asked anything, you may want to enter q("no"). Please try it.

"no" is the argument of the exit function q(). Actually, not exactly the argument but
its value, because in some cases you can skip the name of argument. The name of
argument is save so you can type q(save="no"). In fact, most of R functions look
like function(name="value"); see more detail in Fig. 2.1.

By the way, on Linux systems you may replace q() command with Ctrl+D key, and
on Windows with Crt1+Z key sequence.

function body
/ argument \

/ \
g(save="no", ...)
| ] \ / \ / \ /

function name of argument value of argument other arguments

name

Figure 2.1: Structure of R command.

R is pretty liberal about arguments. You will receive same answers if you enter any
of these variants:

3There is command Xpager () in the shipunov package, it allows to see help in the separate window
even if you work in terminal.
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> round(1.5, digits=0)
(1] 2

> round(1.5, d=0)
[1] 2

> round(d=0, 1.5)
[1] 2

> round(1.5, @)
[11 2

> round(1.5,)

(1] 2

> round(1.5)

[1] 2

(* As you see, arguments are matched by name and/or by position. In output, R fre-
quently prints something like [1], it is just an index of resulted number(s). What is
round()? Run ?round to find out.)

It is possible to mess with arguments as long as R “understands” what you want.
Please experiment more yourself and find out why this

> round(0, 1.5)
[1] o

gives the value you probably do not want.

If you want to know arguments of some function, together with their default values,
runargs():

> args(round)

function (x, digits = 0)

NULL

> args(q)

function (save = "default", status = 0, runLast = TRUE)
NULL

There is also an example () function which is quite useful, especially when you learn
plotting with R. To run examples supplied with the function, type example(function).
Also do not forget to check demo () function which outputs the list of possible demon-
strations, some of them are really handy, saying, demo(colors).

4Within parentheses immediately after example, we are going to provide comments.
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Here R shows one of its basic principles which came from Perl language: there always
more than one way to do it. There are many ways to receive a help in R!

So default is to ask the “save” question on exit. But why does R ask it? And what will
happen if you answer “yes”? In that case, two files will be written into the R working
directory: binary file .RData and textual file .Rhistory (yes, their names start with
a dot). First contains all objects you created during the R session. Second contains
the full history of entered commands. These files will be loaded automatically if you
start R from the same directory, and the following message will appear:

[Previously saved workspace restored]

Frequently, this is not a desirable behavior, especially if you are just learning R and
therefore often make mistakes. As long as you study with this book, we strongly
recommend to answer “no”.

If you by chance answered “yes” on the question in the end of the previous R session,
you might want to remove unwanted files:

> unlink(c(".RData", ".Rhistory"))

(Be extremely careful here because R deletes files silently! On macOS, file names
might be different; in addition, it is better to uncheck Read history file on startup
in the Preferences menu.)

If you are bored from answering final questions again and again, and at the same
time do not want to enter q("no"), there is a third way. Supply R starting command
with option --no-save (it could be done differently on different operation systems),
and you will get rid of it.

2.6.3 How to type

When you work in R, the previous command could be called if you press “arrow up”
key (7). This is extremely useful and saves plenty of time, especially when you need
to run the command similar to the preceding.

R on Windows, Linux and macOS Terminal.app (but not GUI) integrates readline com-
mand line editing environment. You can think of readline as of rudimentary (but
still powerful) text editor which works only with current line of text. Especially use-
ful readline key sequences are:

Ctrl+U to “kill” to the beginning of line (and Ctrl+Y to “yank” it back), this is useful
if you mistakenly typed the long command and want to wipe it;
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Ctrl+A to move the cursor to beginning or to the end of line and Ctrl+K to “kill”
(delete) to the end of line;

Cctrl+E to move the cursor to beginning or to the end of line;
Ctrl+L to clean the screen.

There are many more useful combinations; to know them, check any “readline cheat-
sheet” online.

If on Linux you run R in the terminal without scroll bar, the key sequences Shift+PgUp
and Shift+PgDn typically help to scroll. Linux also has backward search feature
(Ctr1+R) which is even more efficient than arrow up.

Another really helpful key is the Tab. To see how it works, start to type long com-
mand like read.t ... and then press Tab. It will call completion with suggests how to
continue. Completion works not only for commands, but also for objects, command
arguments and even for file names! To invoke the latter, start to type read.table("
and then press Tab once or twice; all files in the working directory will be shown.

Remember that all brackets (braces, parentheses) and quotes must be always closed.
One of the best ways to make sure of it is to enter opening and closing brackets together,
and then return your cursor into the middle. Actually, graphic R on macOS does this
by default.

Pair also all quotes. R accepts two types of quotes, single ' ..."' and double "..." but
they must be paired with quote of the same type. The backtick (*) in R is not a quote
but a symbol with special meaning.

Good question is when do you need quotes. In general, quotes belong to character
strings. Rule of thumb is that objects external to R need quotes whereas internal
objects could be called without quotes.

R is sensitive to the case of symbols. Commands 1s() and Ls() are different! How-
ever, spaces do not play any role. These commands are the same:

> round (1.5, digits=0)
> round(1.5, digits=0)
>round ( 1.5, digits = 0 )

Do not be afraid of making errors. On the contrary—

Make as many mistakes as possible!
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The more mistakes you do when you learn, the less you do when you start to work
with R on your own.

R is frequently literal when it sees a mistake, and its error messages will help you to
decipher it. Conversely, R is perfectly silent when you do well. If your input has no
errors, R usually says nothing.

It is by the way really hard to crash R. If nevertheless your R seems to hang, press
Esc button (on Linux, try Ctrl+C instead).

Yet another appeal to users of this book:
Experiment!

Try unknown commands, change options, numbers, names, remove parentheses,
load any data, run code from Internet, from help, from your brain. The more you
experiment, the better you learn R.

2.6.4 How to play with R

Now, when we know basics, it is time to do something more interesting in R. Here
is the simple task: convert the sequence of numbers from 1 to 9 into the table with
three columns. In the spreadsheet or visual statistical software, there will be several
steps: (1) make two new columns, (2—-3) copy the two pieces into clipboard and paste
them and (4) delete extra rows. In R, this is just one command:

> bb <- matrix(1:9, ncol=3)

> bb

[, 11 [, 21 [, 3]
1, 1] 1 4 7
[2, 1] 2 5 8
[3, 1] 3 6 9

(Symbol <- is an assignment operator, it is read from right to left. bb is a new R object
(it is a good custom to name objects with double letters, less chances to intersect
with existent R oblects). But what is 1:9? Find it yourself. Hint: it is explained in
few pages from this one.)

Again from the above: How to select the sample of 100 trees in the big forest? If you
remember, our answer was to produce 100 random pairs of the coordinates. If this
forest is split into 10,000 squares (100 x 100), then required sample might look like:

> coordinates <- expand.grid(1:100, 1:100)
> sampled.rows <- sample(1:nrow(coordinates), 100)
> coordinates[sampled.rows, ]

Var1 Var2
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6751 31 68
5376 70 54
668 68 7

(First, expand.grid() was used above to create all 10,000 combinations of square
numbers. Then, powerful sample () command randomly selects 100 rows from what-
ever number of rows is in the table coordinates. Note that your results will be likely
different since sample() uses the random number generator.

Command sample () was used to create new samples.rows object. Finally, this last
object was used as an index to randomly select 100 rows (pairs of coordinates) from
10,000 combinations. What is left for you now is to go to the forest and find these
trees :-))

Let us now play dice and cards with R:

> dice <- as.vector(outer(1:6, 1:6, paste))
> sample(dice, 4, replace=TRUE)

[1] ll6 4" I|4 5" l|6 6" l|3 5"

> sample(dice, 5, replace=TRUE)

[1] l13 2" l|3 1" l|3 1" l|6 4|l ||2 3"

> cards <- paste(rep(c(6:10,"v","D","K","T"), 4),
+ C("Tl"","BU","Ch","P’L"))

> sample(cards, 6)

[1] llv Tr.ll l|6 Tr.ll lls BLl" ||T Tr.ll HT Bull |l8 Bull

> sample(cards, 6)

[1] IIK Tr.ll IIK Ch" IID BU" ||T P.'Lll ||T Tr.ll |I7 Chll

(Note here outer () command which combines values, paste () which joins into the
text, rep() which repeats some values, and also the replace=TRUE argument (by
default, replace is FALSE). What is replace=FALSE? Please find out. Again, your
results could be different from what is shown here. Note also that TRUE or FALSE
must always be fully uppercased.)

2.6.5 Overgrown calculator

But the most simple way is to use R as an advanced calculator:

> 2+2
[1] 4
> 2+.2
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[2] 2.2

(Note that you can skip leading zero in decimal numbers.)

The more complicated example, “log10 (((sqrt(sum(c(2, 2))))~2)*2.5)” will be
calculated as follows:

1.

The vector will me created from two twos: c(2, 2).

2. The sum of its elements will be counted: 2+2=4.
3. Square root calculated: sqrt(4)=2.

4.

5. The result is multiplied by 2.5: 4x2.5=10.

6.

It is raised to the power of 2: 2~2=4.

Decimal logarithm is calculated: log10(10)=1.

As you see, it is possible to embed pairs of parentheses. It is a good idea to count
opening and closing parentheses before you press Enter; these numbers must be
equal. After submission, R will open them, pair by pair, from the deepest pair to the
most external one.

So R expressions are in some way similar to Russian doll, or to onion, or to artichoke
(Fig. 2.2), and to analyze them, one should peel it.

KX >

Figure 2.2: You may think of R syntax as of “artichoke”.

Here is also important to say that R (similar to its TgX friend) belongs to one of
the most deeply thought software. In essence, R “base” package covers almost 95%

32



needs of the common statistical and data handling work and therefore external tools
are often redundant. It is wise to keep things simple with R.

If there are no parentheses, R will use precedence rules which are similar to the rules
known from the middle school.

For example, in 2+3%5 R will multiply first (3%x5=15), and only then calculate the sum
(2+15=17). Please check it in R yourself. How to make the result 25? Add parenthe-
ses.

Let us feed something mathematically illegal to R. For example, square root or log-
arithm of —1:

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

If you thought that R will crash, that was wrong. It makes NaN instead. NaN is not a
number, one of reserved words.

By the way, warnings in general are neither good nor bad. There is a simple rule
about them: if you understand the warning, do something (or decide not to do); if
you do not understand warning—ignore it.

What about division by zero?

> 100/0
[1] Inf

This is another reserved word, Inf, infinity.

2.7 R and data

2.7.1 How to enter the data from within R

We now need to know how to enter data into R. Basic command is c() (shortcut of
the word concatenate):

33



>c(1, 2, 3, 4, 5)
[11 12345

However, in that way your numbers will be forgotten because R does not remember
anything which is not saved into object:

> aa <-c(2, 3, 4, 5, 6, 7, 8)
> aa
[1] 23456738

(Here we created an object aa, assigned to it vector of numbers from one to five, and
then printed object with typing its name.)

If you want to create and print object simultaneously, use external parentheses:

> (aa <- c(1, 2, 3, 4, 5, 6, 7, 8, 9))
[1112345673839

> aa

[1112345672839

(By the way, here we created aa object again, and R silently re-wrote it. R never gives
a warning if object already exists!)

In addition to c(), we can use commands rep(), seq(), and also the colon (:) oper-
ator:

> rep(1, 5)

1111111

> rep(1:5, each=3)
[1]111222333444555

> seq(1, 5)

[1] 12 3 45

> 1:5

[11 123 45

2.7.2 How to name your objects

R has no strict rules on the naming your objects, but it is better to follow some guide-
lines:

1. Keep in mind that R is case-sensitive, and, for example, X and x are different
names.

2. For objects, use only English letters, numbers, dot and (possibly) underscore.
Do not put numbers and dots in the beginning of the name. One of recom-
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mended approaches is double-letter (or triple-letter) when you name objects
like aa, jjj, xx and so on.

3. In data frames, we recommend to name your columns (characters) with upper-
case letters and dots. The examples are throughout of this book.

4. Do not reassign names already given to popular functions (like c()), reserved
words (especially T, F, NA, NaN, Inf and NULL) and predefined objects like pi°,
LETTERS and letters. If you accidentally did it, there is conflict() function
to help in these situations. To see all reserved words, type ?Reserved.

2.7.3 How to load the text data

In essence, data which need to be processed could be of two kinds: text and binary.
To avoid unnecessary details, we will accept here that text data is something which
you can read and edit in the simple text editor like Geany®. But if you want to edit
the binary data, you typically need a program which outputted this file in the past.
Without the specific software, the binary data is not easy to read.

Text data for the statistical processing is usually text tables where every row corre-
sponds with the table row, and columns are separated with delimiters, either invis-
ible, like spaces or tab symbols, or visible, like commas or semicolons. If you want
R to “ingest” this kind of data, is is necessary to make sure first that the data file is
located within the same directory which R regards as a working directory:

> getwd()
[1] "d:/programs/R/R-3.2.3"

If this is not the directory you want, you can change it with the command:

> setwd("e:\\wrk\\temp") # Windows only!
> getwd()
[1] "e:/wrk/temp"

Note how R works with backslashes under Windows. Instead of one backslash, you
need to enter two. Only in that case R under Windows will understand it. It is also
possible to use slashes under Windows, similar to Linux and macOS:

> setwd("e:/wrk/temp")
> getwd()
[1] "e:/wrk/temp"

5By the way, if you want the Euler number, e, type exp(1).

6 And also like editor which is embedded into R for Windows or into R macOS GUI, or the editor from
rite R package, but not office software like MS Word or Excel!
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Please always start each of your R session from changing working directory. Ac-
tually, it is not absolutely necessary to remember long paths. You can copy it from
your file manager into R. Then, graphical R under Windows and macOS have rudi-
mentary menu system, and it is sometimes easier to change working directory though
the menu. Finally, package shipunov contains function Files () which is the textual
file bgowser, so it is possible to run setwd (Files()) and then follow screen instruc-
tions’.

The next step after you got sure that the working directory is correct, is to check if
your data file is in place, with dir() command:

> dir("data")
[1] "mydata.txt"

It is really handy to separate data from all other stuff. Therefore, we assumed above
that you have subdirectory data in you working directory, and your data files (in-
cluding mydata.txt) are in that subdirectory. Please create it (and of course, cre-
ate the working directory) if you do not have it yet. You can create these with your
file manager, or even with R itself:

> dir.create("data")

Now you can load your data with read.table() command. But wait a minute! You
need to understand the structure of your file first.

Command read.table() is sophisticated but it is not smart enough to determine
the data structure on the fly8. This is why you need to check data. You can open it
in any available simple text editor, in your Web browser, or even from inside R with
file.show() orurl.show() command. It outputs the data “as is”. This is what you
will see:

> file.show("data/mydata.txt")

)

)

b;c
7253
5;6
8;9

"Yet another possibility is to set working directory in preferences (this is quite different between op-
erating systems) but this is not the best solution because you might (and likely will) want different
working directories for different tasks.

8There is rio package which can determine the structure of data.
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(By the way, if you type file.show("data/my and press Tab, completion will show
you if your file is here—if it is really here. This will save both typing file name and
checking the presence with dir().)

How did the file mydata.txt appear in your data subdirectory? We assume that you
already downloaded it from the repository mentioned in the foreword. If you did not
do it, please do it now. It is possible to perform with any browser and even with R:

> download.file("http://ashipunov.info/data/mydata.txt",
+ "data/mydata.txt")

(Within parentheses, left part is for URL whereas right tells R how to place and name
the downloaded file.)

Alternatively, you can check your file directly from the URL with url.show() and
then use read.table() from the same URL.

Now time finally came to load data into R. We know that all columns have names,
and therefore use head=TRUE, and also know that the delimiter is the semicolon, this
is why we use sep=";":

> mydata <- read.table("data/mydata.txt", sep=";", head=TRUE)

Immediately after we loaded the data, we must check the new object. There are three
ways:

> str(mydata)

'data.frame': 3 obs. of 3 variables:
$ a: int 147

$b:int 258

$c:int 369

> head(mydata)
ab
12
4 5
7 8

Third way is to simply type mydata but this is not optimal since when data is large,
your computer screen will be messed with content. Commands head() and str()
are much more efficient.

To summarize, local data file should be loaded into R in three steps:
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1. Make sure that you data is in place, with dir() command, Tab completion or
through Web browser;

2. Take a look on data with file.show() or url.show() command and deter-
mine its structure;

3. Load it with read.table() command using appropriate options (see below).

2.7.4 How to load data from Internet

Loading remote data takes same three steps from above. However, as the data is not
on disk but somewhere else, to check its presence, the best way is to open it in the
Internet browser using URL which should be given to you; this also makes the second
step because you will see its structure in the browser window. It is also possible to
check the structure with the command:

> url.show("http://ashipunov.info/data/mydata.txt")
Then you can run read. table() but with URL instead of the file name:

> read.table("http://ashipunov.info/data/mydata.txt", sep=";",
+ head=TRUE)

(Here and below we will sometimes skip creation of new object step. However, re-
member that you must create new object if you want to use the data in R later. Other-
wise, the content will be shown and immediately forgotten.)

2.7.5 How to use read.table()
Sometimes, you want R to “ingest” not only column names but also row names:

> read.table("data/mydata?.txt", head=TRUE)

abec
one 123
two 456
three 7 8 9

(File mydata1.txt? is constructed in the unusual way: its first row has three items
whereas all other rows each have four items delimited with the tab symbol—"big in-
visible space”. Please do not forget to check that beforehand, for example using
file.show() or url.show() command.)

Sometimes, there are both spaces (inside cells) and tabs (between cells):

9Again, download it from Internet to data subdirectory first. Alternatively, replace subdirectory with
URL and load it into R directly—of course, after you check the structure.
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> read.table("data/mydata2.txt", sep="\t", quote="", head=TRUE)

abec
one 123
two 456

three o'clock 7 8 9

If we run read.table() without sep="\t" option (which is “separator is a tab”), R
will give an error. Try it. But why did it work for mydata1.txt? This is because the
default separator is both space and/or tab. If one of them used as the part of data,
the other must be stated as separator explicitly.

Note also that since row names contain quote, quoting must be disabled, otherwise
data will silently read in a wrong way.

How to know what separator is here, tab or space? This is usually simple as most
editors, browsers and file.show() /url.show() commands visualize tab as a space
which is much broader than single letter. However, do not forget to use monospaced
font in your software, other fonts might be deceiving.

Sometimes, numbers have comma as a decimal separator (this is another worldwide
standard). To input this kind of data, use dec option:

> read.table("data/mydata3.txt", dec=",", se=";", h=T)

(Please note the shortcuts. Shortcuts save typing but could be dangerous if they
match several possible names. There are only one read.table() argument which
starts with se, but several of them start with s (e.g., skip); therefore it is impossible
to reduce se further, into s. Note also that TRUE and FALSE are possible to shrink
into T and F, respectively (but this is the only possible way); we will avoid this in the
book though.)

When read.table() sees character columns, it converts them into factors (see be-
low). To avoid this behavior, use as.is=TRUE option.

Command scan() is similar to read.table() but reads all data into only one “col-
umn” (one vector). It has, however, one unique feature:

> scan()

1: 1

2: 2

3: 3

4:

Read 3 items
[11 123
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(What did happen here? First, we entered scan() with empty first argument, and R
changed its prompt to numbers allowing to type numerical data in, element after
element. To finish, enter empty row!'?. One can paste here even numbers from the
clipboard!)

2.7.6 How to load binary data

Functions from the foreign package (it is installed by default) can read data in
MiniTab, S, SAS, SPSS, Stata, Systat, and FoxPro DBF binary formats. To find out
more, you may want to call it first with command library(foreign) and then call
help about all its commands help(package=foreign).

R can upload images. There are multiple packages for this, one of the most devel-
oped is pixmap. R can also upload GIS maps of different formats including ArcIinfo
(packages maps, maptools and others).

R has its own binary format. It is very fast to write and to load!! (useful for big data)
but impossible to use with any program other than R:

> xx <- "apple"

> save(xx, file="xx.rd") # Save object "xx"
> exists("xx")

[1] TRUE

> rm(xx)

> exists("xx")

[1] FALSE

> dirQ)

[1] "xx.rd"

> load("xx.rd") # Load object "xx"
> XX

[1] "apple"

(Here we used several new commands. To save and to load binary files, one needs
save () and load () commands, respectively; to remove the object, there is rm() com-
mand. To show you that the object was deleted, we used exists() command.)

Note also that everything which is written after “#” symbol on the same text string
is a comment. R skips all comments without reading.

There are many interfaces which connect R to databases including MySQL, Post-
gresSQL and sqlite (it is possible to call the last one directly from inside R see the
documentation for RSQLite and sqldf packages).

100p macOS, type Enter twice.
Hwith commands dput () and dget (), R also saves and loads textual representations of objects.
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But what most users actually need is to load the spreadsheet data made with MS Excel
or similar programs (like Gnumeric or LibreOffice Calc). There are three ways.

First way we recommend to all users of this book: convert Excel file into the
text, and then proceed with read.table() command explained above!2. On macOS,
the best way is likely to save data from spreadsheet as tab-delimited text file. On
Windows and Linux, if you copy any piece of spreadsheet into clipboard and then
paste it into text editor (including R script editor), it becomes the tab-delimited text.
The same is possible in macOS but you will need to use some terminal editor (like
nano).

Another way is to use external packages which convert binary spreadsheets “on the
fly”. One is readxl package with main command read_excel(), another is xLlsx
package with main command read.x1lsx(). Please note that these packages are not
available by default so you need to download and install them (see below for the ex-
planations).

2.7.7 How to load data from clipboard

Third way is to use clipboard. It is easy enough: on Linux or Windows you will need
to select data in the open spreadsheet, copy it to clipboard, and then in R window
type command like:

> read.table("clipboard", sep="\t", head=TRUE)
On macOS, this is slightly different:
> read.table(pipe("pbpaste"), sep="\t", head=TRUE)

(Ignore warnings about “incomplete lines” or “closed connection”. Package clipr
unifies the work with clipboard on main OSes.)

“Clipboard way” is especially good when your data come out of non-typical software.
Note also that entering scan() and then pasting from clipboard (see above) work the
same way on all systems.

Summarizing the above, recommended data workflow in R might look like:

12This is a bit similar to the joke about mathematician who, in order to boil the kettle full with water,
would empty it first and therefore reduce the problem to one which was already solved!
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1. Enter data into the spreadsheet;

2. Save it as a text file with known delimiters (tab and semicolon are preferable),
headers and row names (if needed);

3. Load it into R with read.table();

4. If you must change the data in R, write it afterwards to the external file using
write.table() command (see below);

5. Open it in the spreadsheet program again and proceed to the next round.

One of its big pluses of this workflow is the separation between data editing and data
processing.

2.7.8 How to edit data in R

If there is a need to change existing objects, you could edit them through R. We do
not recommend this though, spreadsheets and text editors are much more advanced
then R internal tools.

Nevertheless, there is a spreadsheet sub-program embedded into R which is set to
edit table-like objects (matrices or data frames). To start it on bb matrix (see above),
enter command fix(bb) and edit “in place”. Everything which you enter will im-
mediately change your object. This is somewhat contradictory with R principles so
there is the similar function edit() which does not change the object but outputs
the result to the R window.

For other types of objects (not table-like), commands fix() / edit() call internal
(on Windows or macOS) or external (on Linux) text editor. To use external editor, you
might need to supply an additional argument, edit(..., editor="name") where
name could be any text editor which is available in the system.

R on Linux has vi editor as a default but it is too advanced for the beginner!3; we

recommend to use nano instead!4. Also, there is a pico() command which is usually
equal to edit(..., editor="nano"). nano editor is usually available also through
the macOS terminal.

2.7.9 How to save the results

Beginners in R simply copy results of the work (like outputs from statistical tests)
from the R console into some text file. This is enough if you are the beginner. Earlier
or later, however, it becomes necessary to save larger objects (like data frames):

13If, by chance, it started and you have no idea how to quit, press uppercase ZQ.
l4Wwithin nano, use Ctrl+0 to save your edits and Ctr1+X to exit.
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> write.table(file="trees.txt", trees, row.names=FALSE, sep="\t",
+ quote=FALSE)

(File trees.txt, which is made from the internal trees data frame, will be written
into the working directory.)

Please be really careful with write.table() as R is perfectly silent if the file with the
same name trees.txt is already here. Instead of giving you any warning, it simply
overwrites it!

By the way, “internal data” means that it is accessible from inside R directly, without
preliminary loading. You may want to check which internal data is available with
command data().

While a scan() is a single-vector variant of read.table(), write() command is the
single-vector variant of write.table().

It is now a good time to speak about file name conventions in this book. We highly
recommend to follow these simply rules:

1. Use only lowercase English letters, numbers and underscore for the file and
directory names (and also dot, but only to separate file extension).

2. Do not use uppercase letters, spaces and other symbols!
3. Make your names short, preferably shorter than 15-20 symbols.
4. For R command (script) files, use extension %.r

By the way, for the comfortable work in R, it is strongly recommended to change those
options of your operating system which allow it to hide file extensions. On macOS, go to
Finder preferences, choose Advanced tab and select the appropriate box. On Windows,
click View tab in File Explorer, choose Options, then View again, unselect appropriate
box and apply this to all folders. Linux, as a rule, does not hide file extensions.

But what if we need to write into the external file our results (like the output from
statistical test)? There is the sink() command:

> sink("1.txt", split=TRUE)
> 242
(1] 4

> sink(Q)
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(Here the string “[1] 4” will be written to the external file.),

We specified split=TRUE argument because we wanted to see the result on the screen.
Specify also append=TRUE if you want to add output to the existing file. To stop sink-
ing, use sink() without arguments. Be sure that you always close sink()!

There are many tools and external packages which enhance R to behave like full-
featured report system which is not only calculates something for you but also helps
you to write the results. One of the simplest is Rresults shell script (http://ashipunov.
info/shipunov/r) which works on macOS and Linux. The appendix of the book ex-
plains Sweave system. There are also knitr and much more.

2.7.10 History and scripts

To see what you typed during the current R session, run history()!°:

> history(100) # 100 last commands
> history(Inf) # all session commands
> history(p="plot") # last plot commands

If you want to save your history of commands, use savehistory() with the appropriate
file name (in quotes) as argument!®,

While you work with this book, it is a good idea to use savehistory() and save
all commands from each R session in the file named, saying, by the date (like
20170116.r) and store this file in your working folder.

To do that on macOS, use menu R -> Preferences -> Startup -> History, uncheck Read
history file on startup and and enter the name of today’s history file. When you close
R, file will appear in your working directory.

To save all objects in the binary file, type save.image(). You may want to use it if,
for example, you are experimenting with R.

R allows to create scripts which might be run later to reproduce your work. Actually,
R scripts could be written in any text editor!”.

In the appendix, there is much more about R scripts, but the following will help you
to create your own first one:

15p0es not work on graphical macOS.
16ynder graphical macOS, this command is not accessible, and you need to use application menu.
17¥ou can also use savehistory() command to make a “starter” script.
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1. Open the text editor, or just type file.edit("hello.r")!8
2. Write there the string
print("Hello, world!")
3. Save the file under hello.r name in your working directory
4. Call it from R using the command source("hello.r")
5. ... and you will see [1] "Hello, world!" in R console as if you typed it.

(In fact, you can even type in the script "Hello world!" without print(), R will
understand what to do.)

Then, every time you add any R command to the hello.r, you will see more and
more output. Try it.

To see input (commands) and output (results) together, type source("hello.r",
echo=TRUE).

Scripting is the “killer feature” of R. If all your data files are in place, and the R script
is made, you may easily return to your calculations years later! Moreover, others
can do exactly the same with your data and therefore your research becomes fully
reproducible. Even more, if you find that your data must be changed, you run the
same script and it will output results which take all changes into account.

Command source() allows to load commands not only from local file but also from
Internet. You only need to replace file name with URL.

2.8 R graphics

2.8.1 Graphical systems

One of the most valuable part of every statistical software is the ability to make di-
verse plots. R sets here almost a record. In the base, default installation, several
dozens of plot types are already present, more are from recommended lattice pack-
age, and much more are in the external packages from CRAN where more than a half
of them (several thousands!) is able to produce at least one unique type of plot.
Therefore, there are several thousands plot types in R. But this is not all. All these
plots could be enhanced by user! Here we will try to describe fundamental principles
of R graphics.

Let us look on this example (Fig. 2.3):

180n Windows and macOS, this will open internal editor; on Linux, it is better to set editor option
manually, e.g., file.edit("hello.r", editor="geany").
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> plot(1:20, main="Title")
> legend("topleft", pch=1, legend="My wonderful points")
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Figure 2.3: Example of the plot with title and legend.

(Curious reader will find here many things to experiment with. What, for example,
is pch? Change its number in the second row and find out. What if you supply 20:1
instead of 1:20? Please discover and explain.)

Command plot() draws the basic plot whereas the legend() adds some details to
the already drawn output. These commands represent two basic types of R plotting
commands:

1. high-level commands which create new plot, and
2. low-level commands which add features to the existing plot.

Consider the following example:
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> plot(1:20, type="n")

> mtext("Title", line=1.5, font=2)

> points(1:20)

> legend("topleft", pch=1, legend="My wonderful points")

(These commands make almost the same plot as above! Why? Please find out. And
what is different?)

Note also that type argument of the plot () command has many values, and some
produce interesting and potentially useful output. To know more, try p, 1, c, s, h
and b types; check also what example(plot) shows.

Naturally, the most important plotting command is the plot(). This is a “smart”
command!®. It means that plot() “understands” the type of the supplied object,
and draws accordingly. For example, 1:20 is a sequence of numbers (numeric vec-
tor, see below for more explanation), and plot() “knows” that it requires dots with
coordinates corresponding to their indices (x axis) and actual values (y axis). If you
supply to the plot () something else, the result most likely would be different. Here
is an example (Fig. 2.4):

> plot(cars)
> title(main="Cars from 1920s")

Here commands of both types are here again, but they were issued in a slightly dif-
ferent way. cars is an embedded dataset (you may want to call ?cars which give
you more information). This data is not a vector but data frame (sort of table) with
two columns, speed and distance (actually, stopping distance). Function plot()
chooses the scatterplot as a best way to represent this kind of data. On that scatter-
plot, x axis corresponds with the first column, and y axis—with the second.

We recommend to check what will happen if you supply the data frame with three
columns (e.g., embedded trees data) or contingency table (like embedded Titanic
or HairEyeColor data) to the plot().

There are innumerable ways to alter the plot. For example, this is a bit more fancy
“twenty points”:

> plot(1:20, pch=3, col=6, main="Title")

(Please run this example yourself. What are col and pch? What will happen if you
set pch=0? If you set col=0? Why?)

19The better term is generic command.
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Figure 2.4: Example of plot showing cars data.

Sometimes, default R plots are considered to be “too laconic”. This is simply wrong.
Plotting system in R is inherited from S where it was thoroughly developed on the
base of systematic research made by W.S. Cleveland and others in Bell Labs. There
were many experiments2?. For example, in order to understand which plot types
are easier to catch, they presented different plots and then asked to reproduce data
numerically. The research resulted in recommendations of how to make graphic
output more understandable and easy to read (please note that it is not always “more
attractive”!)

20¢leveland W. S., McGill R. 1985. Graphical perception and graphical methods for analyzing scientific
data. Science. 229(4716): 828-833.
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In particular, they ended up with the conclusion that elementary graphical percep-
tion tasks should be arranged from easiest to hardest like: position along a scale —
length — angle and slope — area — volume — color hue, color saturation and den-
sity. So it is easy to lie with statistics, if your plot employs perception tasks mostly
from the right site of this sequence. (Do you see now why pie charts are particularly
bad? This is the reason why they often called “chartjunk”.)

They applied this paradigm to S and consequently, in R almost everything (point
shapes, colors, axes labels, plotting size) in default plots is based on the idea of in-
telligible graphics. Moreover, even the order of point and color types represents the
sequence from the most easily perceived to less easily perceived features.

Look on the plot from Fig. 2.5. Guess how was it done, which commands were
used?

Many packages extend the graphical capacities of R. Second well-known R graphical
subsystem comes from the lattice package (Fig. 2.6):

> library(lattice)
> xyplot(1:20 ~ 1:20, main="title")

(We repeated 1:20 twice and added tilde because xyplot () works slightly differently
from the plot (). By default, lattice should be already installed in your system?!.)

Package lattice is by default already installed on your system. To know which pack-
ages are already installed, type library().

Next, below is what will happen with the same 1:20 data if we apply function gplot ()
from the third popular R graphic subsystem, ggplot22? package (Fig. 2.7):

> library(ggplot2)
> gplot(1:20, 1:20, main="title")

We already mentioned above that library() command loads the package. But what
if this package is absent in your installation? ggplot2 is not installed by default.

211attice came out of later ideas of W.S. Cleveland, trellis (conditional) plots (see below for more
examples).

22ggplotz is now the most fashionable R graphic system. Note, however, that it is based on the dif-
ferent “ideology” which related more with SYSTAT visual statistic software and therefore is alien to
R.
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Figure 2.5: Exercise: which commands were used to make this plot?

In that case, you will need to download it from Internet R archive (CRAN) and install.
This could be done with install.packages("ggplot2") command (note plural in
the command name and quotes in argument). During installation, you will be asked
first about preferable Internet mirror (it is usually good idea to choose the first).

Then, you may be asked about local or system-wide installation (local one works in
most cases).

Finally, R for Windows or macOS will simply unpack the downloaded archive whereas
R on Linux will compile the package from source. This takes a bit more time and
also could require some additional software to be installed. Actually, some packages
want additional software regardless to the system.
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title

15 ° -

1:20

Figure 2.6: Example of plot with a title made with xyplot () command from lattice
package.

It is also useful to know how to do reverse operations. If you want to remove (unload)
the package from R memory, use detach(package:...). If you want to remove the
package from disk, use remove.packages("..."). Finally, if you want to use the
package command only once, use package: :command(...)

Maximal length and maximal width of birds’ eggs are likely related. Please make
a plot from eggs . txt data and confirm (or deny) this hypothesis. Explanations of
characters are in companion eggs_c. txt file.
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Figure 2.7: Example of plot with a title made with gplot () command from ggplot2
package.

2.8.2 Graphical devices

This is the second important concept of R graphics. When you enter plot (), R opens
screen graphical device and starts to draw there. If the next command is of the same
type, R will erase the content of the device and start the new plot. If the next com-
mand is the “adding” one, like text(), R will add something to the existing plot.
Finally, if the next command is dev.off (), R will close the device.

Most of times, you do not need to call screen devices explicitly. They will open au-
tomatically when you type any of main plotting commands (like plot()). However,
sometimes you need more than one graphical window. In that case, open additional
device with dev.new() command.
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Apart from the screen device, there are many other graphical devices in R, and you
will need to remember the most useful. They work as follows:

> png(file="01_20.png", bg="transparent")
> plot(1:20)

> text(10, 20, "a")

> dev.off()

png() command opens the graphical device with the same name, and you may ap-
ply some options specific to PNG, e.g., transparency (useful when you want to put
the image on the Web page with some background). Then you type all your plotting
commands without seeing the result because it is now redirected to PNG file connec-
tion. When you finally enter dev.off (), connection and device will close, and file
with a name 01_20.png will appear in the working directory on disk. Note that R
does it silently so if there was the file with the same name, it will be overwritten!

So saving plots in R is as simple as to put elephant into the fridge in three steps
(Remember? lopen fridge - 2put elephant - 3close fridge.) Or as simple as to make
a sandwich. This “triple approach” (*open device — 2plot - 3close device) is the most
universal way to save graphics from R. It works on all systems and (what is really
important), from the R scripts.

For the beginner, however, difficult is that R is here tacit and does not output any-
thing until the very end. Therefore, it is recommended first to enter plotting com-
mands in a common way, and check what is going on the screen graphic device. Then
enter name of file graphic device (like png()), and using arrow up, repeat commands
in proper sequence. Finally, enter dev.off().

png() is good for, saying, Web pages but outputs only raster images which do not
scale well. It is frequently recommended to use vector images like PDF:

> pdf(file="01_20.pdf", width=8)
> plot(1:20)

> text(10, 20, "a")

> dev.off()

(Traditionally, PDF width is measured in inches. Since default is 7 inches, the com-
mand above makes a bit wider PDF.)

R also can produce files of SVG (scalable vector graphics) format?3.

Important is to always close the device! If you did not, there could be strange
consequences: for example, new plots do not appear or some files on disk become

23By the way, both PDF and SVG could be opened and edited with the freely available vector editor
Inkscape.
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inaccessible. If you suspect that it is the case, repeat dev.off () several times until
you receive an error like:

> dev.off()
Error in dev.off() : cannot shut down device 1 (the null device)

(This is not a dangerous error.)

It usually helps.

| Please create the R script which will make PDF plot by itself.

2.8.3 Graphical options

We already said that R graphics could be tuned in the almost infinite number of ways.
One way of the customization is the modification of graphical options which are pre-
set in R. This is how you, for example, can draw two plots, one under another, in the
one window. To do it, change graphical options first (Fig. 2.8):

> old.par <- par(mfrow=c(2, 1))
> hist(cars$speed, main="")

> hist(cars$dist, main="")

> par(old.par)

(hist () command creates histogram plots, which break data into bins and then count
number of data points in each bin. See more detailed explanations at the end of
“one-dimensional” data chapter.)

The key command here is par(). First, we changed one of its parameters, namely
mfrow which regulates number and position of plots within the plotting region. By
default mfrowisc(1, 1) which means “one plot vertically and one horizontally”. To
protect the older value of par(), we saved them in the object old.par. At the end,
we changed par () again to initial values.

The separate task is to overlay plots. That may be done in several ways, and one of
them is to change the default par(new=...) value from FALSE to TRUE. Then next
high-level plotting command will not erase the content of window but draw over the
existed content. Here you should be careful and avoid intersecting axes:

> hist(cars$speed, main="", xaxt="n", xlab="")
> old.par <- par(new=TRUE)
> hist(cars$dist, main="", axes=FALSE, xlab="", 1lty=2)

> par(old.par)
(Try this plot yourself.)
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Figure 2.8: Two histograms on the one plot.

2.8.4 Interactive graphics

Interactive graphics enhances the data analysis. Interactive tools trace particular
points on the plot to their origins in a data, add objects to the arbitrary spots, follow
one particular data point across different plots (“brushing”), enhance visualization
of multidimensional data, and much more.

The core of R graphical system is not very interactive. Only two interactive com-
mands, identify() and locator() come with the default installation.

With identify(), R displays information about the data point on the plot. In this
mode, the click on the default (left on Windows and Linux) mouse button near the
dot reveals its row number in the dataset. This continues until you right-click the
mouse (or Command-Click on macOS).
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> plot(1:20)
> identify(1:20)

Identifying points in 1:20 is practically useless. Consider the following:

> plot(USArrests[, c(1, 3)]1)
> identify(USArrests[, c(1, 3)], labels=row.names(USArrests))

By default, plot () does not name states, only print dots. Yes, this is possible to print
all state names but this will flood plot window with names. Command identify()
will help if you want to see just outliers.

Command locator () returns coordinates of clicked points. With locator() you can
add text, points or lines to the plot with the mouse?*. By default, output goes to the
console, but with the little trick you can direct it to the plot:

> plot(1:20)
> text(locator(), "My beloved point", pos=4)

(Again, left click (Linux & Windows) or click (macOS) will mark places; when you stop
this with the right click (Linux & Windows) or Command+Click (macOS), the text will
appear in previously marked place(s).)

How to save the plot which was modified interactively? The “triple approach” ex-
plained above will not work because it does not allow interaction. When your plot is
ready on the screen, use the following:

> dev.copy("pdf", "01_20.pdf"); dev.off()

This pair of commands (concatenated with command delimiter, semicolon, for the
compactness) copy existing plot into the specified file.

Plenty of interactive graphics is now available in R through the external packages
like iplot, Loon, manipulate, playwith, rggobi, rpanel, TeachingDemos and many
others.

2.9 Answers to exercises

Answer to the question of how to find the R command if you know only what it
should do (e.g., “anova”). In order to find this from within R, you may go in several
ways. First is to use double question marks command ??:

> ??anova

24Package shipunov has game-like command Miney(), based on locator(); it partly imitates the fa-
mous “minesweeper” game.
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Help files with alias or concept or title matching ‘anova’
using fuzzy matching:

stats::anova Anova Tables

stats::anova.glm Analysis of Deviance for Generalized
Linear Model Fits

stats::anova.lm ANOVA for Linear Model Fits

stats::stat.anova GLM Anova Statistics

Type '?PKG::FOO' to inspect entries 'PKG::F00', or
'"TYPE?PKG: :FOO' for entries like 'PKG::FOO-TYPE'.

(Output might be long because it includes all installed packages. Pay attention to
rows started with “base” and “stats”.)

Similar result might be achieved if you start the interactive (Web browser-based)
help with help.start() and then enter “anova” into the search box.

Second, even simpler wayj, is to use apropos():

> apropos("anova")

[1] "anova" ".__C__anova" ".__C__anova.glm"
[4] ".__C__anova.glm.null" "manova" "power.anova.test"
[7] "stat.anova" "summary .manova"

Sometimes, nothing helps:

> ??clusterization

No vignettes or demos or help files found with alias or concept or
title matching ‘clusterization’ using fuzzy matching.

> apropos("clusterization")

character(9)

Then start to search in the Internet. It might be done from within R:

> RSiteSearch("clusterization")
A search query has been submitted to http://search.r-project.org
The results page should open in your browser shortly

In the Web browser, you should see the new tab (or window) with the query results.

If nothing helps, as the R community. Command help.request() will guide you
through posting sequence.
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Answer to the plot question (Fig. 2.5):

> plot(1:20, col="green", xlab="", ylab="")
> points(20:1, pch=0)

(Here empty xlab and ylab were used to remove axes labels. Note that pch=0 is the
rectangle.)

Instead of col="green", one can use col=3. See below palette() command to un-
derstand how it works. To know all color names, type colors(). Argument col could
also have multiple values. Check what happen if you supply, saying, col=1:3 (pay at-
tention to the very last dots).

To know available point types, run example(points) and skip several plots to see
the table of points; or simply look on Fig. A.1 in this book (and read comments how
it was made).

Answer to the question about eggs. First, load the data file. To use read.table()
command, we need to know file structure. To know the structure, (1) we need to look
on this file from R with url. show() (or without R, in the Internet browser), and also
(2) to look on the companion file, eggs_c.txt.

From (1) and (2), we conclude that file has three nameless columns from which we
will need first and second (egg length and width in mm, respectively). Columns are
separated with large space, most likely the Tab symbol. Now run read.table():

> eggs <- read.table("data/eggs.txt")
Next step is always to check the structure of new object:

> str(eggs)

'data.frame': 555 obs. of 3 variables:

$ V1: int 51 48 44 48 46 43 48 46 49 45 ...

$ vV2: int 34 33 33 34 32 32 35 32 34 33 ...

$ V3: Factor w/ 18 levels "140","141","143",..: 55 ...

It is also the good idea to look on first rows of data:

> head(eggs)
V1 V2 V3

1 51 34 221

2 48 33 221
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3 44 33 221
4 48 34 221
5 46 32 221
6 43 32 221

Our first and second variables received names V1 (length) and V2 (width). Now we
need to plot variables to see possible relation. The best plot in that case is a scatter-
plot, and to make scatterplot in R, we simply use plot () command:

> plot(v2 ~ V1, data=eggs, xlab="Length, mm", ylab="wWidth, mm",
+ pch=21, bg="grey")

(Command plot(y ~ x) uses R formula interface. It is almost the same as plot(x,
y)25; but note the different order in arguments.)

Resulted “cloud” is definitely elongated and slanted as it should be in case of depen-
dence. What would make this more clear, is some kind of the “average” line showing
the direction of the relation. As usual, there are several possibilities in R (Fig. 2.9):

> abline(line(eggs$V1, eggs$v2), lty=2, lwd=1.5)

> lines(loess.smooth(eggs$Vv1, eggs$v2), col=2, lty=2, lwd=1.5)
> legend("topleft", lty=2, col=1:2, lwd=1.5, legend=c(

+ "Tukey's median-median line", "LOESS curve"))

(Note use of line(), lines() and abline()—all three are really different com-
mands. Lines() and abline() are low-level graphic commands which add line(s) to
the existing plot. First uses coordinates while the second uses coefficients. 1ine()
and loess.smooth() do not draw, they calculate numbers to use with drawing com-
mands. To see this in more details, run help() for every command.)

First 1ine() approach uses John Tukey’s algorithm based on medians (see below)
whereas loess.smooth() uses more complicated non-linear LOESS (LOcally wEigh-
ted Scatterplot Smoothing) which estimates the overall shape of the curve?°. Both
are approximate but robust, exactly what we need to answer the question. Yes, there
is a dependence between egg maximal width and egg maximal length.

There is one problem though. Look on the Fig. 2.9: many “eggs” are overlaid with
other points which have exact same location, and it is not easy to see how many data
belong to one point. We will try to access this in next chapter.

251n the case of our eggs data frame, the command of second style would be plot(eggs[, 1:2]) or
plot(eggs$V1, eggs$V2), see more explanations in the next chapter.

26 Another variant is to use high-level scatter.smooth() function which replaces plot(). Third al-
ternative is a cubic smoother smooth.spline() which calculates numbers to use with 1ines().
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Figure 2.9: Cloud of eggs: scatterplot.

Answer to the R script question. It is enough to create (with any text editor) the text
file and name it, for example, my_script1.r. Inside, type the following:

pdf ("my_plot1.pdf")
plot(1:20)
dev.off()

Create the subdirectory test and copy your script there. Then close R as usual, open
it again, direct it (through the menu or with setwd () command) to make the test
subdirectory the working directory, and run:

> source("my_script1.r", echo=TRUE)
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If everything is correct, then the file my_plot1.pdf will appear in the test directory.
Please do not forget to check it: open it with your PDF viewer. If anything went
wrong, it is recommended to delete directory test along with all content, modify the
master copy of script and repeat the cycle again, until results become satisfactory.
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Chapter 3

Types of data

To process data it is not enough just to obtain them. You need to convert it to the
appropriate format, typically to numbers. Since Galileo Galilei, who urged to “mea-
sure what can be measured, and make measurable what cannot be measured”, European
science aggregated tremendous experience in transferring surrounding events into
numbers. Most of our instruments are devices which translate environment features
(e.g., temperature, distance) to the numerical language.

3.1 Degrees, hours and kilometers: measurement data

It is extremely important that temperature and distance change smoothly and con-
tinuously. This means, that if we have two different measures of the temperature, we
can always imagine an intermediate value. Any two temperature or distance measure-
ments form an interval including an infinite amount of other possible values. Thus,
our first data type is called measurement, or interval. Measurement data is similar to
the ideal endless ruler where every tick mark corresponds to a real number.

However, measurement data do not always change smoothly and continuously from
negative infinity to positive infinity. For example, temperature corresponds to a ray
and not a line since it is limited with an absolute zero (0°K), and the agreement is
that below it no temperature is possible. But the rest of the temperature points along
its range are still comparable with real numbers.

It is even more interesting to measure angles. Angles change continuously, but after
359° goes 0°! Instead of a line, there is a segment with only positive values. This is
why exists a special circular statistics that deals with angles.

62



Sometimes, collecting measurement data requires expensive or rare equipment and
complex protocols. For example, to estimate the colors of flowers as a continuous
variable, you would (as minimum) have to use spectrophotometer to measure the
wavelength of the reflected light (a numerical representation of visible color).

Now let us consider another example. Say, we are counting the customers in a shop.
If on one day there were 947 people, and 832 on another, we can easily imagine val-
ues in between. It is also evident that on the first day there were more customers.
However, the analogy breaks when we consider two consecutive numbers (like 832
and 831) because, since people are not counted in fractions, there is no intermediate.
Therefore, these data correspond better to natural then to real numbers. These num-
bers are ordered, but not always allow intermediates and are always non-negative.
They belong to a different type of measurement data—not continuous, but discrete!.

*

Related with definition of measurement data is the idea of parametricity. With that
approach, inferential statistical methods are divided into parametric and nonpara-
metric. Parametric methods are working well if:

1. Data type is continuous measurement.
2. Sample size is large enough (usually no less then 30 individual observations).

3. Data distribution is normal or close to it. This data is often called “normal”, and
this feature—“normality”.

Should at least one of the above assumptions to be violated, the data usually requires
nonparametric methods. An important advantage of nonparametric tests is their abil-
ity to deal with data without prior assumptions about the distribution. On the other
hand, parametric methods are more powerful: the chance of find an existing pattern is
higher because nonparametric algorithms tend to “mask” differences by combining
individual observations into groups. In addition, nonparametric methods for two
and more samples often suffer from sensitivity to the inequality of sample distribu-
tions.

“Normal” data and even “parametric” data are of course jargonisms but these names
(together with their opposites) will be used throughout the text for simplicity. Please
remember that under “normal” we mean the data which distribution allows to guess
that parametric methods are appropriate ways to analyze it.

Let us create normal and non-normal data artificially:

IDiscrete measurement data are in fact more handy to computers: as you might know, processors are
based on 0/1 logic and do not readily understand non-integral, floating numbers.
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> rnorm(10)

[1] -0.7370785 0.6138769 -0.8237311 0.3089834 -0.1053840

[6] 1.0024135 0.6202694 -0.1562604 0.1493745 -1.2335308

> runif(10)

[1] 0.9468113 0.3505730 0.1066934 0.6470914 0.4819566 0.9502402
[7] 0.2079193 0.1849797 0.1964943 0.1410300

(First command creates 10 random numbers which come from normal distribution.
Second creates numbers from uniform distribution? Whereas first set of numbers
are concentrated around zero, like in darts game, second set are more or less equally
spaced.)

But how to tell normal from non-normal? Most simple is the visual way, with appro-
priate plots (Fig. 3.1):

> old.par <- par(mfrow=c(2, 1))

> hist(rnorm(100), main="Normal data")

> hist(runif(100), main="Non-normal data")
> par(old.par)

(Do you see the difference? Histograms are good to check normality but there are
better plots—see next chapter for more advanced methods.)

Note again that nonparametric methods are applicable to both “nonparametric” and
“parametric” data whereas the opposite is not true (Fig. 3.2).

By the way, this last figure (Euler diagram) was created with R by typing the following
commands:

library(plotrix)

plot(c(-1, 1), c(-1, 1), type="n", xlab="", ylab="", axes=FALSE)
draw.circle(-.2, 0, .4)

draw.circle(.1, 0, .9)

text(-.2, 0, "parametric", cex=1.5)

text(.1, 0.6, "nonparametric", cex=1.5)

V V V V Vv VvV

(We used plotrix package which has the draw.circle() command defined. As you
see, one may use R even for these exotic purposes. However, diagrams are better to
draw in specialized applications like Inkscape.)

2For unfamiliar words, please refer to the glossary in the end of book.
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Figure 3.1: Histograms of normal and non-normal data.

Measurement data are usually presented in R as numerical vectors. Often, one vector
corresponds with one sample. Imagine that we have data on heights (in cm) of the
seven employees in a small firm. Here is how we create a simple vector:

> x <- c(174, 162, 188, 192, 165, 168, 172.5)

As you learned from the previous chapter, x is the name of the R object, <- is an
assignment operator, and c() is a function to create vector. Every R object has a
structure:

> str(x)
num [1:7] 174 162 188 192 165 168 172.5
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nonparametric

parametric

Figure 3.2: Applicability of parametric and nonparametric methods: the Euler dia-
gram.

Function str() shows that x is a num, numerical vector. Here is the way to check if an
object is a vector:

> is.vector(x)
[1] TRUE

There are many is.something()-like functions in R, for example:

> is.numeric(x)
[1] TRUE

There are also multiple as.something()-like conversion functions.
To sort heights from smallest to biggest, use:

> sort(x)
[1] 162.0 165.0 168.0 172.5 174.0 188.0 192.0

To reverse results, use:

> rev(sort(x))
[1] 192.0 188.0 174.0 172.5 168.0 165.0 162.0
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*
ki

Measurement data is somehow similar to the common ruler, and R package vegan
has a ruler-like linestack() plot useful for plotting linear vectors:

One of simple but useful plots is the Linestack() timeline plot from vegan package
(Fig. 3.3):

> library(vegan)
> phanerozoic <- read.table("data/phanerozoic.txt")
> with(phanerozoic, linestack(541-V2, labels=paste(V1, V2), cex=1))

—— Quaternary 2.58
—— Neogene 23

—— Paleogene 66

—— Cretaceous 145

- Jurassic 201

- Triassic 252

—— Permian 299

—— Carboniferous 359

—— Devonian 419
— Silurian 444

—— Ordovician 485

L Cambrian 541

Figure 3.3: Timeline (Mya) of phanerozoic geological periods.
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In the open repository, file compositae.txt contains results of flowering heads
measurements for many species of aster family (Compositae). In particular, we
measured the overall diameter of heads (variable HEAD.D) and counted number of
rays (“petals”, variable RAYS, see Fig. 3.4). Please explore part of this data graphi-
cally, with scatterplot(s) and find out if three species (yellow chamomile, Anthemis
tinctoria; garden cosmos, Cosmos bipinnatus; and false chamomile, Tripleurosper-
mum inodorum) are different by combination of diameter of heads and number of
rays.

Figure 3.4: Chamomille, Tripleurospermum.: leaves and head (diameter shown) with
15 rays.

3.2 Grades and t-shirts: ranked data

Ranked (or ordinal) data do not come directly from measurements and do not easily
correspond to numbers.

For example, quality of mattresses could be estimated with some numbers, from bad
(“0”), to excellent (“5”). These assigned numbers are a matter of convenience. They
may be anything. However, they maintain a relationship and continuity. If we grade
the most comfortable one as “5”, and somewhat less comfortable as “4”, it is possi-
ble to imagine what is “4.5”. This is why many methods designed for measurement
variables are applicable to ranked data. Still, we recommend to treat results with
caution and keep in mind that these grades are arbitrary.

By default, R will identify ranked data as a regular numerical vector. Here are seven
employees ranked by their heights:
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>rr <-c(2, 1, 3, 3,1, 1, 2)
> str(rr)
num [1:7]1 2133112

Object rr is the same numerical vector, but numbers “1”, “2” and “3” are not mea-
surements, they are ranks, “places”. For example, “3” means that this person be-
longs to the tallest group.

Function cut () helps to make above three groups automatically:

> (hh <- cut(x, 3, labels=c(1:3), ordered_result=TRUE))
[1] 2133112
Levels: 1 < 2 < 3

Result is the ordered factor (see below for more explanations). Evenif ordered_result
is not specified, cut () will still arrange labels in proper order (not necessarily alpha-
betically as it is typical for factors).

Note that cut() is irreversible operation, and “numbers” which you receive are not
numbers (heights) you start from:

> X

[1] 174.0 162.0 188.0 192.0 165.0 168.0 172.5
> as.numeric(hh)

[1] 2133112

Ranked data always require nonparametric methods. If we still want to use para-
metric methods, we have to obtain the measurement data (which usually means de-
signing the study differently) and also check it for the normality. However, there
is a possibility to re-encode ranked data into the measurement. For example, with
the appropriate care the color description could be encoded as red, green and blue
channel intensity.

Suppose, we examine the average building height in various cities of the world.
Straightforward thing to do would be to put names of places under the variable “city”
(nominal data). It is, of cause, the easiest way, but such variable would be almost
useless in statistical analysis. Alternatively, we may encode the cities with letters
moving from north to south. This way we obtain the ranked data, open for many
nonparametric methods. Finally, we may record geographical coordinates of each
city. This we obtain the measurement data, which might be suitable for parametric
methods of the analysis.
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3.3 Colors, names and sexes: nominal data

Nominal, or categorical, data, unlike ranked, are impossible to order or align. They
are even farther away from numbers. For example, if we assign numerical values
to males and females (say, “1” and “2”), it would not imply that one sex is some-
how “larger” then the other. An intermediate value (like “1.5”) is also hard to imag-
ine. Consequently, nominal indices may be labeled with any letters, words or special
characters—it does not matter.

Regular numerical methods are just not applicable to nominal data. There are, how-
ever, ways around. The simplest one is counting, calculating frequencies for each
level of nominal variable. These counts, and other derived measures, are easier to
analyze.

3.3.1 Character vectors

R has several ways to store nominal data. First is a character (textual) vector:

> sex <- c("male", "female", "male", "male", "female", "male",
+ "male")
> is.character(sex)
[1] TRUE
> is.vector(sex)
[1] TRUE
> str(sex)
chr [1:7] "male" "female" "male" "male" "female" "male"

(Please note the function str() again. It is must be used each time when you deal
with new objects!)

By the way, to enter character strings manually, it is easier to start with something
like aa <- c(""""), then insert commas and spaces: aa <- c("", "") and finally
insert values: aa <- c("b", "c").

Another option is to enter scan(what="char") and then type characters without
quotes and commas; at the end, enter empty string.

Let us suppose that vector sex records sexes of employees in a small firm. This is
how R displays its content:

> sex
[1] "male" "female" "male" "male" "female" "male" "male"

To select elements from the vector, use square brackets:

> sex[2:3]
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[1] "female" "male"

Yes, square brackets are the command! They are used to index vectors and other R
objects. To prove it, run ?"[". Another way to check that is with backticks which
allow to use non-trivial calls which are illegal otherwise:

> “[“(sex, 2:3)
[1] "female" "male"

Smart, object-oriented functions in R may “understand” something about object
sex:

> table(sex)

sex

female male
2 5

Command table() counts items of each type and outputs the table, which is one
of few numerical ways to work with nominal data (next section tells more about
counts).

3.3.2 Factors

But plot () could do nothing with the character vector (check it yourself). To plot
the nominal data, we are to inform R first that this vector has to be treated as factor:

> sex.f <- factor(sex)

> sex.f

[1] male female male male female male male
Levels: female male

Now plot () will “see” what to do. It will invisibly count items and draw a barplot
(Fig. 3.5):

> plot(sex.f)

It happened because character vector was transformed into an object of a type spe-
cific to categorical data, a factor with two levels:

> is.factor(sex.f)
[1] TRUE
> is.character(sex.f)
[1] FALSE
> str(sex.f)
Factor w/ 2 levels "female","male": 212212 2
> levels(sex.f)
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female male

Figure 3.5: This is how plot () plots a factor.

[1] "female" "male"
> nlevels(sex.f)

[11 2

In R, many functions (including plot()) prefer factors to character vectors. Some
of them could even transform character into factor, but some not. Therefore, be
careful!

There are some other facts to keep in mind.

First (and most important), factors, unlike character vectors, allow for easy trans-
formation into numbers:

> as.numeric(sex.f)
[112122122
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But why is female 1 and male 2? Answer is really simple: because “female” is the first
in alphabetical order. R uses this order every time when factors have to be converted
into numbers.

Reasons for such transformation become transparent in a following example. Sup-
pose, we also measured weights of the employees from a previous example:

> w <- c(69, 68, 93, 87, 59, 82, 72)

We may wish to plot all three variables: height, weight and sex. Here is one possible
way (Fig. 3.6):

> plot(x, w, pch=as.numeric(sex.f), col=as.numeric(sex.f),
+ xlab="Height, cm", ylab="Weight, kg")
> legend("topleft", pch=1:2, col=1:2, legend=levels(sex.f))

o female A
A male

90

85

Weight, kg
65 70

60
|

I I I I I I
165 170 175 180 185 190

Height, cm

Figure 3.6: A plot with three variables.
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Parameters pch (from “print character”) and col (from “color”) define shape and
color of the characters displayed in the plot. Depending on the value of the variable
sex, data point is displayed as a circle or triangle, and also in black or in red. In
general, it is enough to use either shape, or color to distinguish between levels.

Note that colors were printed from numbers in accordance with the current palette.
To see which numbers mean which colors, type:

> palette()
[1] "black" "red" "ereen3" "blue" "cyan" "magenta"
[7] "yellow" "gray"

It is possible to change the default palette using this function with argument. For
example, palette(rainbow(8)) will replace default with 8 new “rainbow” colors.
To return, type palette("default"). It is also possible to create your own palette,
for example with function colorRampPalette() (see examples in next chapters) or
using the separate package (like RColorBrewer or cetcolor, the last allows to create
perceptually uniform palettes).

I How to color barplot from Fig. 3.5 in black (female) and red (male)?

If your factor is made from numbers and you want to convert it back into numbers
(this task is not rare!), convert it first to the characters vector, and only then—to
numbers:

> (ff <- factor(3:5))

[1] 3 4 5

Levels: 3 4 5

> as.numeric(ff) # incorrect!

[1] 1 2 3

> as.numeric(as.character(ff)) # correct!
[1] 3 45

Next important feature of factors is that subset of a factor retains by default the
original number of levels, even if some of the levels are not here anymore. Compare:

> sex.f[5:6]

[1] female male
Levels: female male
> sex.f[6:7]

[1] male male
Levels: female male
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There are several ways to exclude the unused levels, e.g. with droplevels() com-
mand, with drop argument, or by “back and forth” (factor to character to factor)
transformation of the data:

> droplevels(sex.f[6:7])

[1] male male

Levels: male

> sex.f[6:7, drop=T]

[1] male male

Levels: male

> factor(as.character(sex.f[6:7]))
[1] male male

Levels: male

Third, we may order factors. Let us introduce a fourth variable—T-shirt sizes for
these seven hypothetical employees:

> m <_ C("L", "S", IIXLII, IIXXLII, ”S", IIMll, IILII)
> m.f <- factor(m)
>m.f

[1] L S XL XXL S M L
Levels: L M S XL XXL

Here levels follow alphabetical order, which is not appropriate because we want S
(small) to be the first. Therefore, we must tell R that these data are ordered:

> m.o <- ordered(m.f, levels=c("sS", "M", "L", "XL", "XXL"))
> m.o

[1] L S XL XXL S M L

Levels: S < M < L < XL < XXL

(Now R recognizes relationships between sizes, and m. o variable could be treated as
ranked.)

In this section, we created quite a few new R objects. One of skills to develop is to
understand which objects are present in your session at the moment. To see them,
you might want to list objects:

> 1sQ)
[1] "aa" "bb" "cards" "coordinates" "dice"

If you want all objects together with their structure, use 1s.str() command.
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There is also a more sophisticated version of object listing, which reports objects in
a table:

> Ls() # shipunov

Name Mode Type Obs Vars Size
1 aa numeric vector 5 1 88 bytes
2 bb  numeric matrix 3 3 248 bytes
3 cards character vector 36 1 2 Kb
4  coordinates list data.frame 10000 2 92.2 Kb
5 dice character vector 36 1 2 Kb

(To use Ls(), install shipunov package first, see the preface for explanation.)

Ls() is also handy when you start to work with large objects: it helps to clean R
memory>.

3.3.3 Logical vectors and binary data

Binary data (do not mix with a binary file format) are a special case related with both
nominal and ranked data. A good example would be “yes” of “no” reply in a question-
naire, or presence vs. absence of something. Sometimes, binary data may be ordered
(as with presence/absence), sometimes not (as with right or wrong answers). Binary
data may be presented either as 0/1 numbers, or as logical vector which is the string
of TRUE or FALSE values.

Imagine that we asked seven employees if they like pizza and encoded their “yes”/“no”
answers into TRUE or FALSE:

> (likes.pizza <- c(T, T, F, F, T, T, F))
[1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE

Resulted vector is not character or factor, it is logical. One of interesting features
is that logical vectors participate in arithmetical operations without problems. It is
also easy to convert them into numbers directly with as.numeric(), as well as to
convert numbers into logical with as.logical():

> is.vector(likes.pizza)
[1] TRUE

> is.factor(likes.pizza)
[1] FALSE

> is.character(likes.pizza)

3By default, Ls() does not output functions. If required, this behavior could be changed with
Ls(exclude="none").
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[1] FALSE

> is.logical(likes.pizza)
[1] TRUE

> likes.pizza * 1
[M111001180

> as.logical(c(1, 1, 0))
[1] TRUE TRUE FALSE

> as.numeric(likes.pizza)
[111100110

This is the most useful feature of binary data. All other types of data, from measure-
ment to nominal (the last is most useful), could be converted into logical, and logical
is easy to convert into 0/1 numbers:

> Tobin(sex, convert.names=FALSE)
female male
[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]

Afterwards, many specialized methods, such as logistic regression or binary similar-
ity metrics, will become available even to that initially nominal data.

OO0 N OO0 A
A AN O NN

As an example, this is how to convert the character sex vector into logical:

> (is.male <- sex == "male")
[1] TRUE FALSE TRUE TRUE FALSE TRUE TRUE
> (is.female <- sex == "female")

[1] FALSE TRUE FALSE FALSE TRUE FALSE FALSE

(We applied logical expression on the right side of assignment using “is equal?” dou-
ble equation symbol operator. This is the second numerical way to work with nomi-
nal data. Note that one character vector with two types of values became two logical
vectors.)

Logical vectors are useful also for indexing:

> X > 170

[1] TRUE FALSE TRUE TRUE FALSE FALSE TRUE
> xX[x > 170]

[1] 174.0 188.0 192.0 172.5
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(First, we applied logical expression with greater sign to create the logical vector.
Second, we used square brackets to index heights vector; in other words, we selected
those heights which are greater than 170 cm.)

Apart from greater and equal signs, there are many other logical operators which
allow to create logical expressions in R (see Table 3.1):

-= | EQUAL
<= | EQUAL OR LESS
>= | EQUAL OR MORE
& | AND
| | OR
! | NOT
1= | NOT EQUAL
%in% | MATCH

Table 3.1: Some logical operators and how to understand them.

AND and OR operators (& and | ) help to build truly advanced and highly useful logical
expressions:

> ((x < 180) | (w <= 70)) & (sex=="female" | m=="8")
[1] FALSE TRUE FALSE FALSE TRUE FALSE FALSE

(Here we selected only those people which height is less than 170 cm or weight is
70 kg or less, these people must also be either females or bear small size T-shirts.
Note that use of parentheses allows to control the order of calculations and also
makes expression more understandable.)

Logical expressions are even more powerful if you learn how to use them together
with command ifelse() and operator if (the last is frequently supplied with else):

> ifelse(sex=="female", "pink", "blue")

[1] llb'Luell Ilp.'thll lIb'Luell Ilb‘Luell Ilp.i-nhll Ilb'Luell Ilb‘Luell
> if(sex[1]=="female") {

+ n p.'thll
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+ } else {

+ "blue"
+ }
[1] "blue"

(Command ifelse() is vectorized so it goes through multiple conditions at once.
Operator if takes only one condition.)

Note the use of curly braces it the last rows. Curly braces turn a number of expressions
into a single (combined) expression. When there is only a single command, the curly
braces are optional. Curly braces may contain two commands on one row if they are
separated with semicolon.

3.4 Fractions, counts and ranks: secondary data

These data types arise from modification of the “primary”, original data, mostly from
ranked or nominal data that cannot be analyzed head-on. Close to secondary data
is an idea of compositional data which are quantitative descriptions of the parts of
the whole (probabilities, proportions, percentages etc.)

Percentages, proportions and fractions (ratios) are pretty common and do not need
detailed explanation. This is how to calculate percentages (rounded to whole num-
bers) for our sex data:

> sex.t <- table(sex)
> round(100xsex.t/sum(sex.t))
sex
female male
29 71

Since it is so easy to lie with proportions, they must be always supplied with the
original data. For example, 50% mortality looks extremely high but if it is discovered
that there was only 2 patients, then impression is completely different.

Ratios are particularly handy when measured objects have widely varying absolute
values. For example, weight is not very useful in medicine while the height-to-
weight ratio allows successful diagnostics.

Counts are just numbers of individual elements inside categories. In R, the easiest
way to obtain counts is the table() command.

There are many ways to visualize counts and percentages. Bu default, R plots one-
dimensional tables (counts) with simple vertical lines (try plot(sex.t) yourself).
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More popular are pie-charts and barplots. However, they represent data badly. There
were multiple experiments when people were asked to look on different kinds of
plots, and then to report numbers they actually remember. You can run this experi-
ment yourself. Figure 3.7 is a barplot of top twelve R commands:

> load("data/com12.rd")

> exists("com12") # check if our object is here
[1] TRUE

> com12.plot <- barplot(com12, names.arg="")

> text(com12.plot, par("usr")[3]%2, srt=45, pos=2,
+ Xpd=TRUE, labels=names(com12))

(We Load()’ed binary file to avoid using commands which we did not yet learn; to
load binary file from Internet, use lLoad(url(...)). To make bar labels look bet-
ter, we applied here the “trick” with rotation. Much more simple but less aesthetic
solution is barplot(com12, las=2).)

Try looking at this barplot for 3—-5 minutes, then withdraw from this book and
report numbers seen there, from largest to smallest. Compare with the answer
from the end of the chapter.

In many experiments like this, researchers found that the most accurately under-
stood graphical feature is the position along the axis, whereas length, angle, area,
density and color are each less and less appropriate. This is why from the beginning
of R history, pie-charts and barplots were recommended to replace with dotcharts
(Fig. 3.8):

> dotchart(com12)

We hope you would agree that the dotchart is easier both to understand and to re-
member. (Of course, it is possible to make this plot even more understandable with
sorting like dotchart (rev(sort(com12)))—try it yourself. It is also possible to sort
bars, but even sorted barplot is worse then dotchart.)

Another useful plot for counts is the word cloud, the image where every item is mag-
nified in accordance with its frequency. This idea came out of text mining tools. To
make word clouds in R, one might use the wordcloud package (Fig. 3.9):

com80 <- read.table("data/com80.txt")
library(wordcloud)

set.seed(5) # freeze random number generator
wordcloud(words=com80[, 1], freg=com8o[, 2],
colors=brewer.pal(8, "Dark2"))

+ v v v v
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Figure 3.7: Barplot of 12 most frequent R commands.

(New com80 object is a data frame with two columns—check it with str() command.
Since wordcloud() “wants” words and frequencies separately, we supplied columns
of com80 individually to each argument. To select column, we used square brackets
with two arguments: e.g.,com80[, 1] isthe first column. See more about this in the
“Inside R” section.)

Command set.seed() needs more explanation. It freezes random number genera-
tor in such a way that immediately after its first use all random numbers are the same
on different computers. Word cloud plot uses random numbers, therefore in order
to have plots similar between Fig. 3.9 and your computer, it is better run set .seed()
immediately before plotting. Its argument should be single integer value, same on
all computers. To re-initialize random numbers, run set.seed (NULL).
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plot
length
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paste
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text
names
summary
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Figure 3.8: Dotchart, or Cleveland dot plot of 12 most frequent R commands.

By the way, NULL object is not just an emptiness, it is a really useful tool. For exam-
ple, it is easy to remove columns from data frame with command like trees[, 3]
<- NULL. If some command “wants” to plot but you do not need this feature, sup-
press plotting with pdf (file=NULL) command (do not forget to close device with

dev.off()).

Compare with your results:

> set.seed(1); rnorm(1)

[1] -0.6264538
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Figure 3.9: Example of word cloud: 80 important R commands.

Word cloud is a fashionable way to show counts but it has one big minus: whereas it
possible to tell which word in more frequent, it is impossible to tell how frequent it
is. Dotchart of com86 needs more space (it is better to plot is as big PDF) but there
will be both relative and absolute frequencies visible. Try it yourself:

> dotchart(log(com8@[, 2]), labels=com8@[, 1], cex=.6)
(We used logarithmic scale to make counts less dispersed and cex parameter to de-
crease font size.)

s
H, ok ok

While counts and percentages usually come from categorical (nominal) data, ranks
usually come from the measurement data, like our heights:

> X.ranks <- X
> names(x.ranks) <- rank(x)
> X.ranks
5 1 6 7 2 3 4
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174.0 162.0 188.0 192.0 165.0 168.0 172.5
> sort(x.ranks) # easier to spot

1 2 3 4 5 6 7
162.0 165.0 168.0 172.5 174.0 188.0 192.0

(The “trick” here was to use names to represent ranks. All R objects, along with
values, might bear names.)

Not only integers, but fractions too may serve as rank; the latter happens when there
is an even number of equal measurements (i.e., some items are duplicated):

> X.ranks2 <- c(x, x[3]) # duplicate the 3rd item
> names(x.ranks2) <- rank(x.ranks2)
> sort(x.ranks2)

1 2 3 4 5 6.5 6.5 8
162.0 165.0 168.0 172.5 174.0 188.0 188.0 192.0

In general, identical original measurements receive identical ranks. This situation
is called a “tie”, just as in sport. Ties may interfere with some nonparametric tests
and other calculations based on ranks:

> wilcox.test(x.ranks2)

Warning message:
In wilcox.test.default(x.ranks2) : cannot compute exact p-value
with ties

(If you did not see R warnings before, remember that they might appear even if there
is nothing wrong. Therefore, ignore them if you do not understand them. However,
sometimes warnings bring useful information.)

R always returns a warning if there are ties. It is possible to avoid ties adding small
random noise with jitter() command (examples will follow.)

Ranks are widely used in statistics. For example, the popular measure of central
tendency, median (see later) is calculated using ranks. They are especially suited for
ranked and nonparametric measurement data. Analyses based on ranks are usually
more robust but less sensitive.

3.5 Missing data

There is no such thing as a perfect observation, much less a perfect experiment. The
larger is the data, the higher is the chance of irregularities. Missing data arises from
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the almost every source due to imperfect methods, accidents during data recording,
faults of computer programs, and many other reasons.

Strictly speaking, there are several types of missing data. The easiest to understand
is “unknown”, datum that was either not recorded, or even lost. Another type, “both”
is a case when condition fits to more then one level. Imagine that we observed the
weather and registered sunny days as ones and overcast days with zeros. Intermit-
tent clouds would, in this scheme, fit into both categories. As you see, the presence
of “both” data usually indicate poorly constructed methods. Finally, “not applica-
ble”, an impossible or forbidden value, arises when we meet something logically in-
consistent with a study framework. Imagine that we study birdhouses and measure
beak lengths in birds found there, but suddenly found a squirrel within one of the
boxes. No beak, therefore no beak length is possible. Beak length is “not applicable”
for the squirrel.

In R, all kinds of missing data are denoted with two uppercase letters NA.

Imagine, for example, that we asked the seven employees about their typical sleeping
hours. Five named the average number of hours they sleep, one person refused to
answer, another replied “I do not know” and yet another was not at work at the time.
As a result, three NA’s appeared in the data:

> (hh <- c(8, 10, NA, NA, 8, NA, 8))
[11 8 10 NANA 8 NA 8

We entered NA without quotation marks and R correctly recognizes it among the
numbers. Note that multiple kinds of missing data we had were all labeled iden-
tically.

An attempt to just calculate an average (with a function mean()), will lead to this:

> mean(Chh)
[1] NA

Philosophically, this is a correct result because it is unclear without further instruc-
tions how to calculate average of eight values if three of them are not in place. If we
still need the numerical value, we can provide one of the following:

> mean(Chh, na.rm=TRUE)
[1] 8.5

> mean(na.omit(Chh))
[1] 8.5

The first one allows the function mean() to accept (and skip) missing values, while
the second creates a temporary vector by throwing NAs away from the original vector
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hh. The third way is to substitute (impute) the missing data, e.g. with the sample
mean:

> hh.old <- hh

> hh.old

[1] 8 10 NA NA 8 NA 8

> hh[is.na(hh)] <- mean(Chh, na.rm=TRUE)
> hh

[1] 8.0 10.06 8.5 8.5 8.0 8.5 8.0

Here we selected from hh values that satisfy condition is.na() and permanently re-
placed them with a sample mean. To keep the original data, we saved it in a vector
with the other name (hh.old). There are many other ways to impute missing data,
more complicated are based on bootstrap, regression and/or discriminant analysis.
Some are implemented in packages mice and cat.

Package shipunov has Missing.map() function which is useful to determine the
“missingness” (volume and relative location of missing data) in big datasets.

3.6 Outliers, and how to find them

Problems arising while typing in data are not limited to empty cells. Mistypes and
other kinds of errors are also common, and among them most notorious are outliers,
highly deviated data values. Some outliers could not be even mistypes, they come
from the highly heterogeneous data. Regardless of the origin, they significantly hin-
der the data analysis as many statistical methods are simply not applicable to the sets
with outliers.

The easiest way to catch outliers is to look at maximum and minimum for numerical
variables, and at the frequency table for character variables. This could be done
with handy summary () function. Among plotting methods, boxplot() (and related
boxplot.stats()) is probably the best method to visualize outliers.

While if it is easy enough to spot a value which differs from the normal range of
measurements by an order of magnitude, say “17” instead of “170” cm of height, a
typing mistake of “171” instead of “170” is nearly impossible to find. Here we rely
on the statistical nature of the data—the more measurements we have, the less any
individual mistake will matter.

There are multiple robust statistical procedures which are not so influenced from out-
liers. Many of them are also nonparametric, i.e. not sensitive to assumptions about
the distribution of data. We will discuss some robust methods later.
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Related with outliers is the common mistake in loading data—ignoring headers when
they actually exist:

> m1 <- read.table("data/mydata.txt", sep=";") # wrong!
> str(m1)
'data.frame': 4 obs. of 3 variables:

$ V1: Factor w/ 4 levels "1","4","7","a": 41 2 3

$ V2: Factor w/ 4 levels "2","5","8","b": 41 2 3

$ V3: Factor w/ 4 levels "3","6","9","c": 412 3

> m2 <- read.table("data/mydata.txt", sep=";", h=TRUE) # correct!
> str(m2)

'data.frame': 3 obs. of 3 variables:

$a:int 147

$b: int 2538

$c:int 369

Command read.table() converts whole columns to factors (or character vectors)
even if one data value is not a proper number. This behavior is useful to identify
mistypes, like “O” (letter O) instead of “0” (zero), but will lead to problems if headers
are not defined explicitly. To diagnose problem, use str(), it helps to distinguish
between the wrong and correct way. Do not forget to use str() all the time while
you work in R!

3.7 Changing data: basics of transformations

In complicated studies involving many data types: measurements and ranks, per-
centages and counts, parametric, nonparametric and nominal, it is useful to unify
them. Sometimes such transformations are easy. Even nominal data may be under-
stood as continuous, given enough information. For example, sex may be recorded
as continuous variable of blood testosterone level, possibly with additional mea-
surements. Another, more common way, is to treat discrete data as continuous—it
is usually safe, but sometimes may lead to unpleasant surprises.

Another possibility is to transform measurement data into ranked. R function cut ()
allows to perform this operation and create ordered factors.

What is completely unacceptable is transforming common nominal data into ranks.
If values are not, by their nature, ordered, imposing an artificial order can make the
results meaningless.
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Data are often transformed to make them closer to parametric and to homogenize
standard deviations. Distributions with long tails, or only somewhat bell-shaped (as
in Fig. 4.6), might be log-transformed. It is perhaps the most common transforma-
tion.

There is even a special argument plot(..., log="axis"), where axis” should be
substituted with x or y, presenting it in (natural) logarithmic scale. Another variant
is to simply calculate logarithm on the fly like plot(log(...).

Consider some widely used transformations and their implications in R (we assume
that your measurements are recorded in the vector data):

» Logarithmic: log(data + 1). It may normalize distributions with positive
skew (right-tailed), bring relationships between variables closer to linear and
equalize variances. It cannot handle zeros, this is why we added a single digit.

» Square root: sqrt(data). It is similar to logarithmic in its effects, but cannot
handle negatives.

« Inverse: 1/(data + 1). This one stabilizes variances, cannot handle zeros.

» Square: data~2. Together with square root, belongs to family of power trans-
formations. It may normalize data with negative skew (left-tailed) data, bring
relationships between variables closer to linear and equalize variances.

 Logit: log(p/(1-p)). It is mostly used on proportions to linearize S-shaped,
or sigmoid, curves. Along with logit, these types of data are sometimes treated
with arcsine transformation which is asin(sqrt(p)). In both cases, p must be
between 0 and 1.

While working with multiple variables, keep track of their dimensions. Try not to mix
them up, recording one variable in millimeters, and another in centimeters. Never-
theless, in multivariate statistics even data measured in common units might have
different nature. In this case, variables are often standardized, e.g. brought to the
same mean and/or the same variance with scale() function. Embedded trees data
is a good example:

> scale(trees)
Girth Height Volume
[1,] -1.57685421 -0.9416472 -1.20885469
[2,] -1.48125614 -1.7263533 -1.20885469
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[3,] -1.41752409 -2.0402357 -1.21493821
[4,] -0.87580169 -0.6277648 -0.83775985
[5,] -0.81206964 0.7847060 -0.69175532

3.7.1 How to tell the kind of data

At the end of data types explanation, we recommend to review a small chart which
could be helpful for the determination of data type (Fig. 3.10).

Is it possible to align the data with numeric axis (“ruler”)?

Are the data result Is it possible to use only
of measurements or counts? 0 and 1 for data representation?

AR

Ranked

Continuous? (ordinal) Binary nomlqal
data (categorical)
yes / \no data data
Continuous Discrete
measurement measurement
data data

Figure 3.10: How to tell the kind of data.

3.8 InsideR

Vectors in numeric, logical or character modes and factors are enough to represent
simple data. However, if the data is structured and/or variable, there is frequently a
need for more complicated R objects: matrices, lists and data frames.

3.8.1 Matrices

Matrix is a popular way of presenting tabular data. There are two important things to
know about them in R. First, they may have various dimensions. And second—there
are, in fact, no true matrices in R.

We begin with the second statement. Matrix in R is just a specialized type of vector with
additional attributes that help to identify values as belonging to rows and columns.
Here we create the simple 2 x 2 matrix from the numerical vector:
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>m<-1:4

>m

[11 12 3 4

> ma <- matrix(m, ncol=2, byrow=TRUE)
> ma

[, 11 [, 2]
[1, 1 1 2
(2, ] 3 4
> str(ma)
int [1:2, 1:2] 13 2 4
> str(m)
int [1:4]1 12 3 4

As str() command reveals, objects mand ma are very similar. What is different is the
way they are presented on the screen.

Equality of matrices and vectors in even more clear in the next example:

>mb <-m
> mb
[1] 12 3 4
> attr(mb, "dim") <- c(2, 2)
> mb
[,b 11 [, 2]

(1, 1 1 3
[2, 1] 2 4

In looks like a trick but underlying reason is simple. We assign attribute dim (“di-
mensions”, size) to the vector mb and state the value of the attribute as c(2, 2), as
2 rows and 2 columns.

I Why are matrices mb and ma different?

Another popular way to create matrices is binding vectors as columns or rows with
cbind() and rbind(). Related command t () is used to transpose the matrix, turn it
clockwise by 90°.

To index a matrix, use square brackets:

> ma[1, 2]
[1] 2
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The rule here is simple: within brackets, first goes first dimension (rows), and second
to columns. So to index, use matrix[rows, columns]. The same rule is applicable
to data frames (see below).

Empty index is equivalent to all values:

> mal, ]

[, 11 [, 2]
[1, 1 1 2
[2, 1 3 4

Common ways of indexing matrix do not allow to select diagonal, let alone L-shaped
(“knight’s move”) or sparse selection. However, R will satisfy even these exotic needs.
Let us select the diagonal values of ma:

> (mi <- matrix(c(1, 1, 2, 2), ncol=2, byrow=TRUE))
[, 11 [, 2]

1, 1] 1 1

2, 1] 2 2

> ma[mi]

[1]1 1 4

(Here mi is an indexing matrix. To index 2-dimensional object, it must have two
columns. Each row of indexing matrix describes position of the element to select.
For example, the second row of mi is equivalent of [2, 2]. As an alternative, there
is diag() command but it works only for diagonals.)

Much less exotic is the indexing with logical matrix. We already did similar indexing
in the example of missing data imputation. This is how it works in matrices:

> (mn <- matrix(c(NA, 1, 2, 2), ncol=2, byrow=TRUE))

[,1] [,2]
[1,1] NA 1
[2,] 2 2
> is.na(mn)

[,11 [,2]

[1,] TRUE FALSE
[2,] FALSE FALSE
> mn[is.na(mn)] <- 0@
> mn

[,11 [,2]
[1,] 0 1
[2,] 2 2
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Since matrices are vectors, all elements of matrix must be of the same mode: either
numerical, or character, or logical. If we change mode of one element, the rest of
them will change automatically:

> mean(ma)

[1] 2.5

> ma[1, 1] <- "a"

> mean(ma)

[1] NA

Warning message:

In mean.default(ma)

argument is not numeric or logical: returning NA

> ma

[, 11 [, 2]
[1’ ] ng"  mon
[2, ] ngmoomgn

Two-dimensional matrices are most popular, but there are also multidimensional
arrays:

>m3 <- 1:8
> dim(m3) <- c(2, 2, 2)
> m3
1’1
[, 11 [, 2]

[, 11 [, 2]
(1, 1 5 7
[2, ] 6 8

(Instead of attr(..., "dim") we used analogous dim(...) command.)

m3 is an array, “3D matrix”. It cannot be displayed as a single table, and R returns
it as a series of tables. There are arrays of higher dimensionality; for example, the
built-in dataset Titatic is the 4D array. To index arrays, R requires same square
brackets but with three or more elements within.

92



3.8.2 Lists

List is essentially the collection of anything:

> 1 <- list("R", 1:3, TRUE, NA, list("r", 4))
> 1

(0111
[1] IIRII

[[2]1]
[11 123

[[31]
[1] TRUE

[[4]]
[1] NA

[[5]]
[0511001]]
[1] llrll

[[5110[2]]
[1] 4

Here we see that list is a composite thing. Vectors and matrices may only include
elements of the same type while lists accommodate anything, including other lists.

List elements could have names:

> fred <- list(name="Fred", wife.name="Mary", no.children=3,
+ child.ages=c(1, 5, 9))
> fred

$name

[1] "Fred"

$wife

[1] "Mary"

$no.children

[1] 3

$child.ages

[1] 5 9
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Names feature is not unique to lists as many other types of R objects could also have
named elements. Values inside vectors, and rows and columns of matrices can have
their own unique names:

> names(w) <- c("Rick", "Amanda", "Peter", "Alex", "Kathryn",
+ "Ben", "George")
>w
Rick Amanda Peter Alex Kathryn Ben George
69 68 93 87 59 82 72
> row.names(ma) <- c("row1", "row2")
> colnames(ma) <- c("col1", "col2")
> ma
col1 col2
row1 1 2

row2 3 4
To remove names, use:

> names(w) <- NULL
> w
[1] 69 68 93 87 59 82 72

Let us now to index a list. As you remember, we extracted elements from vectors with
square brackets:

> hh[3]
[1] 8.5

For matrices/arrays, we used several arguments, in case of two-dimensional ones
they are row and column numbers:

> ma[2, 1]

[1]1 3

Now, there are at least three ways to get elements from lists. First, we may use the
same square brackets:

> 1[1]

[[1]1]

[1] IIRII
> str(l[1])
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List of 1
$ : chr "R"

Here the resulting object is also a list. Second, we may use double square brackets:

> 1[[1]1]
[1] IIRII
> str(LL[11D)
chr "R"
> str(LL[5]11)
List of 2
$ : chr "r"
$ : num 4

After this operation we obtain the content of the sub-list, object of the type it had
prior to joining into the list. The first object in this example is a character vector,
while the fifth is itself a list.

Metaphorically, square brackets take egg out of the basket whereas double square
brackets will also shell it.

Third, we may create names for the elements of the list and then call these names
with dollar sign:

> names(l) <- c("first", "second", "third", "fourth", "fifth")
> 1$first

[1] IIRII

> str(l$first)

chr "R"

Dollar sign is a syntactic sugar that allows to write L$first instead of more compli-
cated L[["first"]]. That last R piece might be regarded as a fourth way to index
list, with character vector of names.

Now consider the following example:

> 1$fir
[1] IIRII
> 1$fi
NULL

This happens because dollar sign (and default [[ too) allow for partial matching in
the way similar to function arguments. This saves typing time but could potentially
be dangerous.
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With a dollar sign or character vector, the object we obtain by indexing retains its
original type, just as with double square bracket. Note that indexing with dollar sign
works only in lists. If you have to index other objects with named elements, use
square brackets with character vectors:

> names(w) <- c("Rick", "Amanda", "Peter", "Alex", "Kathryn",

+ "Ben", "George")
> w["Jenny"]
Jenny

68

*
ki

Lists are so important to learn because many functions in R store their output as lists:

> x2.wilcox <- wilcox.test(x.ranks2)

> str(x2.wilcox)

List of 7

$ statistic : Named num 36
..— attr(x, "names")= chr "V"

$ parameter : NULL

$ p.value : num 0.0141

Therefore, if we want to extract any piece of the output (like p-value, see more in
next chapters), we need to use the list indexing principles from the above:

> x2.wilcox$p.value
[1] 0.0141474

3.8.3 Data frames

Now let us turn to the one most important type of data representation, data frames.
They bear the closest resemblance with spreadsheets and its kind, and they are most
commonly used in R. Data frame is a “hybrid”, “chimeric” type of R objects, unidi-
mensionizl list of same length vectors. In other words, data frame is a list of vectors-
columns*.

The following scheme (Fig. 3.11) illustrates relationships between most common R
data types.

4In fact, columns of data frames might be also matrices or non-atomic objects like lists or even other
data frames, but this feature is rarely useful.
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R data objects

SN

lists vectors

ﬂ ﬂ

data frames <—— matrices

Figure 3.11: Most important R data objects.

Each column of the data frame must contain data of the same type (like in vectors),
but columns themselves may be of different types (like in lists). Let us create a data
frame from our existing vectors:

> d <- data.frame(weight=w, height=x, size=m.o, sex=sex.f)

> row.names(d) <- c("Rick", "Amanda", "Peter", "Alex", "Kathryn",
+ "Ben", "George")
>d

weilght height size sex
Rick 69 174.0 L male
Amanda 68 162.0 S female
Peter 93 188.0 XL male
Alex 87 192.0 XXL male
Kathryn 59 165.0 S female
Ben 82 168.0 M male
George 72 172.5 L male

(It was not absolutely necessary to enter row.names () since our w object could still
retain names and they, by rule, will become row names of the whole data frame.)

This data frame represents data in short form, with many columns-features. Long
form of the same data could, for example, look like:

Rick weight 69
Rick height 174.0
Rick size L
Rick sex male
Amanda weight 68

In long form, features are mixed in one column, whereas the other column specifies
feature id. This is really useful when we finally come to the two-dimensional data
analysis.

97



Commands row.names () or rownames () specify names of data frame rows (objects).
For data frame columns (variables), use names () or colnames().

Alternatively, especially if objects w, x,m. o, or sex. f are for some reason absent from
the workspace, you can type:

> d <- read.table("data/d.txt", h=TRUE)
> d$size <- ordered(d$size, levels=c("S", "M", "L", "XL", "XXL"))

... and then immediately check the structure:

> str(d)

'data.frame’: 7 obs. of 4 variables:

$ weight: num 69 68 93 87 59 82 72

$ height: num 174 162 188 192 165 168 172.5

$ size : Ord.factor w/ 5 levels "S"<"M"<"L"<"XL"<..: 3 1 4
$ sex : Factor w/ 2 levels "female","male": 2122122

Since the data frame is in fact a list, we may successfully apply to it all indexing
methods for lists. More then that, data frames available for indexing also as two-
dimensional matrices:

> d[; 1]

[1] 69 68 93 87 59 82 72
> d[[1]]

[1] 69 68 93 87 59 82 72
> d$weight

[1] 69 68 93 87 59 82 72
> d[, "weight"]

[1] 69 68 93 87 59 82 72
> d[["weight"]]

[1] 69 68 93 87 59 82 72

To be absolutely sure that any of two these methods output the same, run:

> identical(d$weight, d[, 1]1)
[1] TRUE

To select several columns (all these methods give same results):

> d[, 2:4] # matrix method

height size sex
Rick 174.0 L male
Amanda 162.0 S female
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Peter 188.0 XL male

> d[, c("height", "size", "sex")]
height size sex

Rick 174.0 L male

Amanda 162.0 S female

Peter 188.0 XL male

> d[2:4] # list method
height size sex
Rick 174.0 L male
Amanda 162.0 S female
Peter 188.0 XL male

> subset(d, select=2:4)
height size sex
Rick 174.0 L male
Amanda 162.0 S female
Peter 188.0 XL male

George 172.5 L male

> d[, -1] # negative selection
height size sex

Rick 174.0 L male

Amanda  162.0 S female

Peter 188.0 XL male

(Three of these methods work also for this data frame rows. Try all of them and find
which are not applicable. Note also that negative selection works only for numerical
vectors; to use several negative values, type something like d[, -(2:4)]. Think
why the colon is not enough and you need parentheses here.)

Among all these ways, the most popular is the dollar sign and square brackets (Fig 3.12).
While first is shorter, the second is more universal.

column _TOW colymn
name index index

Figure 3.12: Two most important ways to select from data frame.
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Selection by column indices is easy and saves space but it requires to remember these
numbers. Here could help the Str() command (note the uppercase) which replaces
dollar signs with column numbers (and also indicates with star* sign the presence of
NAs, plus shows row names if they are not default):

'data.frame': 7 obs. of 4 variables:

1 weight: int 69 68 93 87 59 82 72

2 height: num 174 162 188 192 165 ...

3 size : Ord.factor w/ 5 levels "S"<"M"<"L"<"XL"<..: 3 1
4 sex : Factor w/ 2 levels "female","male": 212 2 1 2
row.names [1:7] "Rick" "Amanda" "Peter" "Alex" "Kathryn"

4
2

Now, how to make a subset, select several objects (rows) which have particular fea-
tures? One way is through logical vectors. Imagine that we are interesting only in
the values obtained from females:

> d[d$sex=="female", ]

weight height size sex
Amanda 68 162 S female
Kathryn 59 165 S female

(To select only rows, we used the logical expression d$sex==female before the comma.)
By itself, the above expression returns a logical vector:

> d$sex=="female"
[1] FALSE TRUE FALSE FALSE TRUE FALSE FALSE

This is why R selected only the rows which correspond to TRUE: 2nd and 5th rows.
The result is just the same as:

> d[c(2, 5), ]

weight height size sex
Amanda 68 162 S female
Kathryn 59 165 S female

Logical expressions could be used to select whole rows and/or columns:

> d[, names(d) != "weight"]
height size sex
Rick 174.0 L male

Amanda 162.0 S female
Peter 188.0 XL male
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It is also possible to apply more complicated logical expressions:

> d[d$size== "M" | d$size== "S", ]

weight height size sex
Amanda 68 162 S female
Kathryn 59 165 S female
Ben 82 168 M male

> d[d$size %in% c("M", "L") & d$sex=="male", ]
weight height size sex

Rick 69 174.0 L male
Ben 82 168.0 M male
George 72 172.5 L male

(Second example shows how to compare with several character values at once.)

If the process of selection with square bracket, dollar sign and comma looks too com-
plicated, there is another way, with subset () command:

> subset(d, sex=="female")

weight height size sex
Amanda 68 162 S female
Kathryn 59 165 S female

However, “classic selection” with [ is preferable (see the more detailed explanation
in ?subset).

*
ki

Selection does not only extract the part of data frame, it also allows to replace exist-
ing values:

> d.new <- d
> d.new[, 1] <- round(d.new[, 1] * 2.20462)

> d.new

weilght height size sex
Rick 152 174.0 L male
Amanda 150 162.0 S female
Peter 205 188.0 XL male

(Now weight is in pounds.)

Partial matching does not work with the replacement, but there is another interest-
ing effect:
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> d.new$he <- round(d.new$he * 0.0328084)

> d.new

weight height size sex he
Rick 152 174.0 L male 6
Amanda 150 162.0 S female 5
Peter 205 188.0 XL male 6

(A bit mysterious, is not it? However, rules are simple. As usual, expression works
from right to left. When we called d . new$he on the right, independent partial match-
ing substituted it with d.new$height and converted centimeters to feet. Then re-
placement starts. It does not understand partial matching and therefore d.new$he
on the left returns NULL. In that case, the new column (variable) is silently created.
This is because subscripting with $ returns NULL if subscript is unknown, creating a
powerful method to add columns to the existing data frame.)

Another example of “data frame magic” is recycling. Data frame accumulates shorter
objects if they evenly fit the data frame after being repeated several times:

> data.frame(a=1:4, b=1:2)
ab

11

2

1

2

H WD
H WD

The following table (Table 3.2) provides a summary of R subscripting with “[”:

subscript effect

positive numeric vector | selects items with those indices

negative numeric vector | selects all but those indices

character vector selects items with those names (or dimnames)
logical vector selects the TRUE (and NA) items
missing selects all

Table 3.2: Subscription with “[”.
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Command sort() does not work for data frames. To sort values in a d data frame,
saying, first with sex and then with height, we have to use more complicated opera-
tion:

> d[order(d$sex, d$height), 1]

weight height size sex
Amanda 68 162.0 S female
Kathryn 59 165.0 S female
Ben 82 168.0 M male
George 72 172.5 L male
Rick 69 174.0 L male
Peter 93 188.0 XL male
Alex 87 192.0 XXL male

The order () command creates a numerical, not logical, vector with the future order
of the rows:

> order(d$sex, d$height)
[11 2567134

I Useorder() to arrange the columns of the d matrix in alphabetic order.

3.8.4 Overview of data types and modes

This simple table (Table 3.3) shows the four basic R objects:

linear | rectangular

all the same type | vector matrix

mixed type list data frame

Table 3.3: Basic ojects.

(Most, but not all, vectors are also atomic, check it with is.atomic().)

You must know the type (matrix, data frame etc.) and mode (numerical, character
etc.) of object you work with. Command str() is especially good for that.

If any procedure wants object of some specific mode or type, it is usually easy to
convert into it with as.<something>() command.
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Sometimes, you do not need the conversion at all. For example, matrices are already
vectors, and all data frames are already lists (but the reverse is not correct!). On the
next page, there is a table (Table 3.4) which overviews R internal data types and lists
their most important features.
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Data type | What is it? How to subset? How to convert?

and mode

Vector: Sequence of numbers, With numbers like vector[1]. | matrix(), rbind(),

numeric, character strings, or With names (if named) like cbind(), t() to matrix;

character, | TRUE/FALSE. Made withc(), vector["Name"]. as.numeric() and

or logical colon operator :, scan(), With logical expression like as.character() convert
rep(), seq() etc. vector[vector > 3]. modes

Vector: Way of encoding vectors. Has Just like vector. Factors could c() to numeric vector,

factor values and levels (codes), and be also re-leveled or ordered droplevels() removes
sometimes also names. with factor(). unused levels

Matrix Vector with two dimensions. matrix[2, 3] isa cell; Matrix is a vector; c() or
All elements must be of the matrix[2:3, ] or dim(...) <- NULL
same mode. Made with matrix[matrix[, 1] > 3, 1] removes dimensions
matrix(), cbind() etc. rows; matrix[, 3] column

List Collection of anything. Could | list[2] or (if named) unlist() to vector,
be nested (hierarchical). Made | list["Name"] is element; data.frame() only if all
with 1ist (). Most of 1ist[[2]] or List$Name elements have same
statistical outputs are lists. content of the element length

Data frame | Named list of anything of Like matrix: df[2, 3] (with Data frame is a list;

same lengths but (possibly)
different modes. Data could be
short (ids are columns) and/or
long (ids are rows). Made with
read.table(), data.frame()
etc.

numbers) or df [, "Name"]
(with names) or df [df[, 1] >
3, 1 (logical).

Like list: df[1] or df$Name.
Also possible: subset (df,
Name > 3)

matrix() converts to
matrix (modes will be
unified); t () transposes
and converts to matrix

Table 3.4: Overview of the most important R internal data types and ways to work with them.




3.9 Answers to exercises

Answers to the barplot coloring question:
> plot(sex.f, col=1:2)

or

> plot(sex.f, col=1:nlevels(sex.f))

(Please try these commands yourself. The second answer is preferable because it
will work even in cases when factor has more than two levels.)

Answers to the barplot counts question. To see frequencies, from highest to small-
est, run:

> rev(sort(com12))
or

> sort(com12, decreasing=TRUE)

Answer to flowering heads question. First, we need to load the file into R. With
url.show() or simply by examining the file in the browser window, we reveal that
file has multiple columns divided with wide spaces (likely Tab symbols) and that the
first column contains species names with spaces. Therefore, header and separator
should be defined explicitly:

> comp <- read.table(
+ "http://ashipunov.info/shipunov/open/compositae.txt",
+ h=TRUE, sep="\t")

Next step is always to check the structure of new object:

> str(comp)
'data.frame': 1396 obs. of 8 variables:

$ SPECIES : Factor w/ 13 levels "Achillea cartilaginea",..: 1
$ PLANT : int 118 118 118 118 118 118 118 118 118 118 ...
$ HEIGHT : int 460 460 460 460 460 460 460 460 460 460 ...
$ N.CIRCLES: Factor w/ 5 levels "4","2","3","5" ..: 1 1 1

$ N.LEAVES : int 2222222222 ...
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$ HEAD.D :hum 78 8 810 7 8 93 9 10 ...
$ DISC.D :int 2233433333...
$ RAYS :int 77777888288 ...

Two columns (including species) are factors, others are numerical (integer or not).
The resulted object is a data frame.

Next is to select our species and remove unused levels:

> c3 <- comp[comp$SPECIES %in% c("Anthemis tinctoria",
+ "Cosmos bipinnatus", "Tripleurospermum inodorum"), ]
> C3$SPECIES <- droplevels(c3$SPECIES)

To select tree species in one command, we used logical expression made with #in%
operator (please see how it works with ?"%in%" command).

Removal of redundant levels will help to use species names for scatterplot:

> with(c3, plot(HEAD.D, RAYS, col=as.numeric(SPECIES),

+ pch=as.numeric(SPECIES),

+ xlab="Diameter of head, mm", ylab="Number of rays"))

> legend("topright", pch=1:3, col=1:3, legend=levels(c3$SPECIES))

Please make this plot yourself. The key is to use SPECIES factor as number, with
as.numeric() command. Function with() allows to ignore cc$ and therefore saves

typing.

However, there is one big problem which at first is not easy to recognize: in many
places, points overlay each other and therefore amount of visible data points is much
less then in the data file. What is worse, we cannot say if first and third species are
well or not well segregated because we do not see how many data values are located
on the “border” between them. This scatterplot problem is well known and there are
workarounds:

> with(c3, plot(jitter(HEAD.D), jitter(RAYS),
+ col=as.numeric(SPECIES), pch=as.numeric(SPECIES),
+ xlab="Diameter of head, mm", ylab="Number of rays"))

Please run this code yourself. Function jitter() adds random noise to variables and
shits points allowing to see what is below. However, it is still hard to understand the
amount of overplotted values.

There are also:

> with(c3, sunflowerplot(HEAD.D, RAYS))
> with(c3, smoothScatter(HEAD.D, RAYS))
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(Try these variants yourself. When you run the first line of code, you will see sun-
flower plot, developed exactly to such “overplotting cases”. It reflects how many
points are overlaid. However, it is not easy to make sunflowerplot() show over-
plotting separately for each species. The other approach, smoothScatter() suffers
from the same problem?.)

To overcome this, we developed PPoints() function (Fig. 3.13):

> with(c3, plot(HEAD.D, RAYS, type="n",

+ xlab="Diameter of head, mm", ylab="Number of rays"))

> with(c3, PPoints(SPECIES, HEAD.D, RAYS, scale=.9))

> legend("topright", pch=1:3, col=1:3, legend=levels(c3$SPECIES))
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Figure 3.13: Scatterplot which shows density of data points for each species.

SThere is also hexbin package which used hexagonal shapes and color shading.
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Finally, the answer. As one might see, garden cosmos is really separate from two
other species which in turn could be distinguished with some certainty, mostly be-
cause number of rays in the yellow chamomile is more than 20. This approach is
possible to improve. “Data mining” chapter tells how to do that.

Answer to the matrix question. While creating matrix ma, we defined byrow=TRUE,
i.e. indicated that elements should be joined into a matrix row by row. In case of
byrow=FALSE (default) we would have obtained the matrix identical to mb:

> ma <- matrix(m, ncol=2, byrow=FALSE)
> ma
[, 11 [, 2]
[1, 1 1 3
[2, ] 2 4

Answer to the sorting exercise. To work with columns, we have to use square brack-
ets with a comma and place commands to the right:

> d.sorted <- d[order(d$sex, d$height), 1]
> d.sorted[, order(names(d.sorted))]

height sex size weight
Amanda 162.0 female S 68
Kathryn 165.0 female S 59
Ben 168.0 male M 82
George 172.5 male L 72
Rick 174.0 male L 69
Peter 188.0 male XL 93
Alex 192.0 male XXL 87

Please note that we cannot just type order() after the comma. This command re-
turns the new order of columns, thus we gave it our column names (names () returns
column names for a given data frame). By the way, sort () would have worked here
too, since we only needed to rearrange a single vector.
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Chapter 4

One-dimensional data

4.1 How to estimate general tendencies

It is always tempting to describe the sample with just one number “to rule them
all”. Or only few numbers... This idea is behind central moments, two (or sometimes
four) numbers which represent the center or central tendency of sample and its scale
(variation, variability, instability, dispersion: there are many synonyms).

Third and fourth central moments are not frequently used, they represent asymme-
try (shift, skewness) and sharpness (“tailedness”, kurtosis), respectively.

4.1.1 Median is the best

Mean is a parametric method whereas median depends less on the shape of distribu-
tion. Consequently, median is more stable, more robust. Let us go back to our seven
hypothetical employees. Here are their salaries (thousands per year):

> salary <- c(21, 19, 27, 11, 102, 25, 21)

Dramatic differences in salaries could be explained by fact that Alex is the custodian
whereas Kathryn is the owner of company.

> mean(salary)
[1] 32.28571

> median(salary)
[1]1 21

We can see that mean does not reflect typical wages very well—it is influenced by
higher Kathryn’s salary. Median does a better job because it is calculated in a way
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radically different from mean. Median is a value that cuts off a half of ordered
sample. To illustrate the point, let us make another vector, similar to our salary:

> sort(salary1 <- c(salary, 22))
[1] 11 19 21 21 22 25 27 102
> median(salary1)

[1] 21.5

Vector salary1 contains an even number of values, eight, so its median lies in the
middle, between two central values (21 and 22).

There is also a way to make mean more robust to outliers, trimmed mean which is
calculated after removal of marginal values:

> mean(salary, trim=0.2)
[1] 22.6

This trimmed mean is calculated after 10% of data was taken from each end and it is
significantly closer to the median.

There is another measure of central tendency aside from median and mean. It is
mode, the most frequent value in the sample. It is rarely used, and mostly applied to
nominal data. Here is an example (we took the variable sex from the last chapter):

> sex <- c("male", "female", "male", "male", "female", "male",
+ "male")

> t.sex <- table(sex)

> mode <- names(t.sex[which.max(t.sex)])

> mode

[1] "male"

Here the most common value is male!l.

Often we face the task of calculating mean (or median) for the data frames. There
are at least three different ways:

> attach(trees)
> mean(Girth)
[1] 13.24839

> mean(Height)
[1] 76

> detach(trees)

1PackageDescTooLshasthehandyMode()functiontocalculatemode.
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The first way uses attach() and adds columns from the table to the list of “visi-
ble” variables. Now we can address these variables using their names only, omit-
ting the name of the data frame. If you choose to use this command, do not forget
to detach() the table. Otherwise, there is a risk of loosing track of what is and is
not attached. It is particularly problematic if variable names repeat across different
data frames. Note that any changes made to variables will be forgotten after you
detach().

The second way uses with()) which is similar to attaching, only here attachment
happens within the function body:

> with(trees, mean(Volume)) # Second way
[1] 30.17097

The third way uses the fact that a data frame is just a list of columns. It uses grouping
functions from apply() family?, for example, sapply() (“apply and simplify”):

> sapply(trees, mean)
Girth Height Volume
13.24839 76.00000 30.17097

What if you must supply an argument to the function which is inside sapply()? For
example, missing data will return NA without proper argument. In many cases this
is possible to specify directly:

> trees.n <- trees
> trees.n[2, 1] <- NA
> sapply(trees.n, mean)
Girth Height Volume
NA 76.00000 30.17097

> sapply(trees.n, mean, na.rm=TRUE)
Girth Height Volume
13.40333 76.00000 30.17097

In more complicated cases, you might want to define anonymous function (see below).

4.1.2 Quartiles and quantiles

Quartiles are useful in describing sample variability. Quartiles are values cutting the
sample at points of 0%, 25%, 50%, 75% and 100% of the total distribution®. Median is

ZWhile it is possible to run here a cycle using for operator, apply-like functions are always preferable.
5In the book, we include minimum and maximum into quartiles.
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nothing else then the third quartile (50%). The first and the fifth quartiles are minimum
and maximum of the sample.

The concept of quartiles may be expanded to obtain cut-off points at any desired
interval. Such measures are called quantiles (from quantum, an increment), with
many special cases, e.g. percentiles for percentages. Quantiles are used also to check
the normality (see later). This will calculate quartiles:

> quantile(salary, c(o, 0.25, 0.5, 0.75, 1))
0% 25% 50% 75% 100%
11 20 21 26 102

Another way to calculate them:

> fivenum(salary)
[1] 11 20 21 26 102

(These two functions sometimes output slightly different results, but this is insignif-
icant for the research. To know more, use help. Boxplots (see below) use fivenum().)

The third and most commonly used way is to run summary():

> summary(salary)
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 20.00 21.00 32.29 26.00 102.00

summary () function is generic so it returns different results for different object types
(e.g., for data frames, for measurement data and nominal data):

> summary(PlantGrowth)

weight group
Min. :3.590 ctrl:10
1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. 6.310

In addition, summary() shows the number of missing data values:

> summary (hh)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
8.0 8.0 8.0 8.5 8.5 10.0 3
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Command summary() is also very useful at the first stage of analysis, for example,
when we check the quality of data. It shows missing values and returns minimum
and maximum:

> err <- read.table("data/errors.txt", h=TRUE, sep="\t")

> str(err)

'data.frame': 7 obs. of 3 variables:

$ AGE : Factor w/ 6 levels "12","22","23",..: 3435162

$ NAME : Factor w/ 6 levels "","John","Kate",..: 2 31456 2

$ HEIGHT: num 172 163 161 16.1 132 155 183
> summary(err)

AGE NAME HEIGHT

12:1 1 Min. 1 16.1
22:1 John :2 1st Qu.:143.5
23:2 Kate :1 Median :161.0
24:1 Lucy :1 Mean :140.3
56:1 Penny:1 3rd Qu.:167.5
a :1 Sasha:1 Max. :183.0

We read the data file into a table and check its structure with str(). We see that vari-
able AGE (which must be the number) has unexpectedly turned into a factor. Out-
put of the summary() explains why: one of age measures was mistyped as a letter
a. Moreover, one of the names is empty—apparently, it should have contained NA.
Finally, the minimum height is 16.1 cm! This is quite impossible even for the new-
borns. Most likely, the decimal point was misplaced.

4.1.3 Variation
Most common parametric measures of variation are variance and standard deviation:

> var(salary); sqrt(var(salary)); sd(salary)
[1] 970.9048
[1] 31.15934
[1] 31.15934

(As you see, standard deviation is simply the square root of variance; in fact, this
function was absent from S language.)

Useful non-parametric variation measures are IQR and MAD:

> IQR(salary); mad(salary)
[1] 6
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[1] 5.9304

The first measure, inter-quartile range (IQR), the distance between the second and
the fourth quartiles. Second robust measurement of the dispersion is median abso-
lute deviation, which is based on the median of absolute differences between each
value and sample median.

To report central value and variability together, one of frequent approaches is to use
“center * variation”. Sometimes, they do mean * standard deviation (which mistak-
enly called “SEM”, ambiguous term which must be avoided), but this is not robust.
Non-parametric, robust methods are always preferable, therefore “median + IQR”,
“median = IQR/2” or “median * MAD” will do the best:

> with(trees, paste(median(Height), IQR(Height)/2, sep="%"))
[1] "76x4"

> paste(median(trees$Height), mad(trees$Height), sep="+")
[1] "76+5.9304"

(Do not forget to report exactly which measures were used.)

To report variation only, there are more ways. For example, one can use the interval
where 95% of sample lays:

> paste(quantile(trees$Height, c(0.025, 0.975)), collapse="-")
[1] "63.75-86.25"

Note that this is not a confidence interval because quantiles and all other descriptive
statistics are about sample, not about population! However, bootstrap (described in
Appendix) might help to use 95% quantiles to estimate confidence interval.

... or 95% range together with a median:

> paste(quantile(trees$Girth, c(0.025, 0.5, 0.975)), collapse="-")
[1] "8.525-12.9-18.65"

... or scatter of “whiskers” from the boxplot:

> paste(boxplot.stats(trees$Height)$stats[c(1, 5)], collapse="-")
[1] "63-87"

Related with scale measures are maximum and minimum. They are easy to obtain
with range () or separate min() and max() functions. Taking alone, they are not so
useful because of possible outliers, but together with other measures they might be
included in the report:

> HS <- fivenum(trees$Height)
> paste("(ll, HS[1], ll)ll’ HS[Z], ||_ll, HS[4], ”(”, HS[S], |l)||, sep:Hll)
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[1] "(63)72-80(87)"
(Here boxplot hinges were used for the main interval.)

The figure (Fig. 4.1) summarizes most important ways to report central tendency
and variation with the same Euler diagram which was used to show relation between
parametric and nonparametric approaches (Fig. 3.2).

median()+IQR()
median()xmad()

Figure 4.1: How to report center and variation in parametric (smaller circle) and all
other cases (bigger circle).

To compare the variability of characters (especially measured in different units) one
may use a dimensionless coefficient of variation. It has a straightforward calculation:
standard deviation divided by mean and multiplied by 100%. Here are variation co-
efficients for trees characteristics from a built-in dataset (trees):

> 100xsapply(trees, sd)/colMeans(trees)
Girth Height Volume
23.686948 8.383964 54.482331

(To make things simpler, we used colMeans () which calculated means for each col-
umn. It comes from a family of similar commands with self-explanatory names:
rowMeans (), colSums() and rowSums().)
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4.2 1-dimensional plots

Our firm has just seven workers. How to analyze the bigger data? Let us first imag-
ine that our hypothetical company prospers and hired one thousand new workers!
We add them to our seven data points, with their salaries drawn randomly from in-
terquartile range of the original sample (Fig. 4.2):

> new.1000 <- sample((median(salary) - IQR(salary)) :
+ (median(salary) + IQR(salary)), 1000, replace=TRUE)
> salary2 <- c(salary, new.1000)

> boxplot(salary2, log="y")

100
|
o

20

Figure 4.2: The boxplot.

In a code above we also see an example of data generation. Function sample()
draws values randomly from a distribution or interval. Here we used replace=TRUE,
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since we needed to pick a lot of values from a much smaller sample. (The argument
replace=FALSE might be needed for imitation of a card game, where each card may
only be drawn from a deck once.) Please keep in mind that sampling is random and
therefore each iteration will give slightly different results.

Let us look at the plot. This is the boxplot (“box-and-whiskers” plot). Kathryn’s
salary is the highest dot. It is so high, in fact, that we had to add the parameter
log="y" to better visualize the rest of the values. The box (main rectangle) itself
is bound by second and fourth quartiles, so that its height equals IQR. Thick line in
the middle is a median. By default, the “whiskers” extend to the most extreme data
point which is no more than 1.5 times the interquartile range from the box. Values
that lay farther away are drawn as separate points and are considered outliers. The
scheme (Fig. 4.3) might help in understanding boxplots*.
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Upper Quartile*
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Median x &2

(3rd Quartile) 4 i

5
Lower Quartile*
S
@
=
o
-
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° Outlier * adjusted

Figure 4.3: The structure of the boxplot (“box-and-whiskers” plot).

Numbers which make the boxplot might be returned with fivenum() command.
Boxplot representation was created by a famous American mathematician John W.

4f you want this boxplot scheme in your R, run command Ex.boxplot () from shipunov package
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Tukey as a quick, powerful and consistent way of reflecting main distribution-independent
characteristics of the sample. In R, boxplot() is vectorized so we can draw several
boxplots at once (Fig. 4.4):

> boxplot(scale(trees))

(Parameters of trees were measured in different units, therefore we scale()’d them.)

o —

'
| —_—

T T 1
Girth Height Volume

Figure 4.4: Three boxplots, each of them represents one column of the data.

Histogram is another graphical representation of the sample where range is divided
into intervals (bins), and consecutive bars are drawn with their height proportional
to the count of values in each bin (Fig. 4.5):

> hist(salary2, breaks=20, main="", xlab=0)

(By default, the command hist() would have divided the range into 10 bins, but
here we needed 20 and therefore set them manually.)
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Figure 4.5: Histogram of the 1007 hypothetical employees’ salaries.

Histogram is sometimes a rather cryptic way to display the data. CommandsHistp()
and Histr() from the shipunov package will plot histograms together with percent-
ages on the top of each bar, or overlaid them with curve (normal or density), respec-
tively. Please try them yourself.

A numerical analog of a histogram is the function cut ():

> table(cut(salary2, 20))
(10.9, 15.51 (15.5, 20] (20, 24.6] (24.6, 29.1] (29.1, 33.7]
76 391 295 244 0
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There are other graphical functions, conceptually similar to histograms. The first is
stem-and-leafs plot. stem() is a kind of pseudograph, text histogram. Let us see how
it treats the original vector salary:

> stem(salary, scale=2)
The decimal point is 1 digit(s) to the right of the |

11 19
2 | 1157
3
4 |
5 |
6 |
7 |
8 |
9 |
10 | 2

The bar | symbol is a “stem” of the graph. The numbers in front of it are leading
digits of the raw values. As you remember, our original data ranged from 11 to 102—
therefore we got leading digits from 1 to 10. Each number to the left comes from
the next digit of a datum. When we have several values with identical leading digit,
like 11 and 19, we place their last digits in a sequence, as “leafs”, to the left of the
“stem”. As you see, there are two values between 10 and 20, five values between
20 and 30, etc. Aside from a histogram-like appearance, this function performs an
efficient ordering.

Another univariate instrument requires more sophisticated calculations. Itis a graph
of distribution density, density plot (Fig. 4.6):

> plot(density(salary2, adjust=2), main="", xlab="", ylab="")
> rug(salary2)

(We used an additional graphic function rug() which supplies an existing plot with
a “ruler” which marks areas of highest data density.)

Here the histogram is smoothed, turned into a continuous function. The degree to
which it is “rounded” depends on the parameter ad just.

Aside from boxplots and a variety of histograms and alike, R and external packages
provide many more instruments for univariate plotting. Beeswarm plot requires the
external package. It is similar to the base R stripchart (see example(stripchart)
for the help) but has several advanced methods to disperse points, plus an ability to
control the type of individual points (Fig. 4.7):

> library(beeswarm)
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Figure 4.6: Distribution density of the 1007 hypothetical employees’ salaries.

> trees.s <- data.frame(scale(trees), class=cut(trees$Girth, 3,
+ labels=c("thin", "medium", "thick")))

> beeswarm(trees.s[, 1:3], cex=2, col=1:3,
pwpch=rep(as.numeric(trees.s$class), 3))

> bxplot(trees.s[, 1:3], add=TRUE)

> legend("top", pch=1:3, legend=levels(trees.s$class))

+

(Here with bxplot () command we added boxplot lines to a beehive graph in order
to visualize quartiles and medians. To overlay, we used an argument add=TRUE.)

And one more useful 1-dimensional plot. It is a similar to both boxplot and density
plot (Fig. 4.8):

> library(beanplot)
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Figure 4.7: Beeswarm plot with boxplot lines.

> beanplot(trees.s[, 1:3], col=1list(1, 2, 3),
+ border=1:3, beanlines="median")

4.3 Confidence intervals

We are ready now to make the first step in the world of inferential statistics and use
statistical tests. They were invented to solve the main question of statistical analysis
(Fig. 4.9): how to estimate anything about population using only its sample?

This sounds like a magic. How to estimate the whole population if we know nothing
about it? However, it is possible if we know some data law, feature which our popu-
lation should follow. For example, the population could exhibit one of standard data
distributions.

123



T T T
Girth Height Volume

Figure 4.8: Bean plot with overall line and median lines (default lines are means).

Let us first to calculate confidence interval. This interval predict with a given probabil-
ity (usually 95%) where the particular central tendency (mean or median) is located
within population. Do not mix it with the 95% quantiles, these measures have a
different nature.

We start from checking the hypothesis that the population mean is equal to 0. This is
our null hypothesis, Hy, that we wish to accept or reject based on the test results.

> t.test(trees$Height)

One Sample t-test

data: trees$Height

t = 66.41, df = 30, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to @
95 percent confidence interval:
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Figure 4.9: Graphic representation of the main statistical question: how to estimate
population (blue) from sample (red)? Red arrow relates with the confidence interval.
To answer “big red” question, one needs the p-value.

73.6628 78.3372
sample estimates:
mean of x

76

Here we used a variant of t-test for univariate data which in turn uses the standard
Student’s t-distribution. First, this test obtains a specific statistic from the original
data set, so-called t-statistic. The test statistic is a single measure of some attribute
of a sample; it reduces all the data to one value and with a help of standard distri-
bution, allows to re-create the “virtual population”.

Student test comes with some price: you should assume that your population is
“parametric”, “normal”, i.e. interpretable with a normal distribution (dart game dis-
tribution, see the glossary).

Second, this test estimates if the statistic derived from our data can reasonably come
from the distribution defined by our original assumption. This principle lies at the
heart of calculating p-value. The latter is the probability of obtaining our test statis-
tic if the initial assumption, null hypothesis was true (in the above case, mean tree
height equals 0).

What do we see in the output of the test? t-statistic equals 66.41 at 30 degrees of
freedom (df = 30). P-value is really low (2.2 x 107!¢), almost zero, and definitely
much lower then the “sacred” confidence level of 0.05.
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Therefore, we reject the null hypothesis, or our initial assumption that mean tree
height equals to 0 and consequently, go with the alternative hypothesis which is a
logical opposite of our initial assumption (i.e., “height is not equal to 0”):

p-value
<0.05 > 0.05
switch to stay
alternative with null

However, what is really important at the moment, is the confidence interval—a range
into which the true, population mean should fall with given probability (95%). Here
it is narrow, spanning from 73.7 to 78.3 and does not include zero. The last means
again that null hypothesis is not supported.

If your data does not go well with normal distribution, you need more universal (but
less powerful) Wilcoxon rank-sum test. It uses median instead of mean to calculate
the test statistic V. Our null hypothesis will be that population median is equal to zero:

> wilcox.test(salary, conf.int=TRUE)
Wilcoxon signed rank test with continuity correction
data: salary
V = 28, p-value = 0.02225
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
15.00002 64.49995
sample estimates:
(pseudo)median
23

(Please ignore warning messages, they simply say that our data has ties: two salaries
are identical.)

Here we will also reject our null hypothesis with a high degree of certainty. Pass-
ing an argument conf.int=TRUE will return the confidence interval for population
median—it is broad (because sample size is small) but does not include zero.

126



4.4 Normality

How to decide which test to use, parametric or non-parametric, t-test or Wilcoxon?
We need to know if the distribution follows or at least approaches normality. This
could be checked visually (Fig. 4.10):

> qgnorm(salary2, main=""); qqline(salary2, col=2)
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Figure 4.10: Graphical check for the normality.
How does QQ plot work? First, data points are ordered and each one is assigned to
a quantile. Second, a set of theoretical quantiles—positions that data points should

have occupied in a normal distribution—is calculated. Finally, theoretical and em-
pirical quantiles are paired off and plotted.
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We have overlaid the plot with a line coming through quartiles. When the dots follow
the line closely, the empirical distribution is normal. Here a lot of dots at the tails
are far. Again, we conclude, that the original distribution is not normal.

R also offers numerical instruments that check for normality. The first among them
is Shapiro-Wilk test (please run this code yourself):

> shapiro.test(salary)
> shapiro.test(salary2)

Here the output is rather terse. P-values are small, but what was the null hypoth-
esis? Even the built-in help does not state it. To understand, we may run a simple
experiment:

> set.seed(1638) # freeze random number generator
> shapiro.test(rnorm(100))

Shapiro-Wilk normality test

data: rnorm(100)

W = 0.9934, p-value = 0.9094

The command rnorm() generates random numbers that follow normal distribution,
as many of them as stated in the argument. Here we have obtained a p-value ap-
proaching unity. Clearly, the null hypothesis was “the empirical distribution is nor-
mal”.

Armed with this little experiment, we may conclude that distributions of both salary
and salary2 are not normal.

Kolmogorov-Smirnov test works with two distributions. The null hypothesis is that
both samples came from the same population. If we want to test one distribution
against normal, second argument should be pnorm:

> Rs.test(scale(salary2), "pnorm")
One-sample Kolmogorov-Smirnov test

data: scale(salary2)

D = 0.094707, p-value = 2.856e-08

alternative hypothesis: two-sided

(The result is comparable with the result of Shapiro-Wilk test. We scaled data be-
cause by default, the second argument uses scaled normal distribution.)

Function ks. test () accepts any type of the second argument and therefore could be
used to check how reliable is to approximate current distribution with any theoret-
ical distribution, not necessarily normal. However, Kolmogorov-Smirnov test often
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returns the wrong answer for samples which size is < 50, so it is less powerful then
Shapiro-Wilks test.

2.2e-16 us so-called exponential notation, the way to show really small numbers like
this one (2.2 x 10716). If this notation is not comfortable to you, there is a way to get
rid of it:

> old.options <- options(scipen=100)

> Rs.test(scale(salary2), "pnorm")
One-sample Kolmogorov-Smirnov test

data: scale(salary2)

D = 0.094707, p-value = 0.00000002856

alternative hypothesis: two-sided

> options(old.options)
(Option scipen equals to the maximal allowable number of zeros.)

Most of times these three ways to determine normality are in agreement, but this is
not a surprise if they return different results. Normality check is not a death sen-
tence, it is just an opinion based on probability.

Again, if sample size is small, statistical tests and even quantile-quantile plots fre-
quently fail to detect non-normality. In these cases, simpler tools like stem plot or
histogram, would provide a better help.

4.5 How to create your own functions

Shapiro-Wilk test is probably the fastest way to check normality but its output is not
immediately understandable. It is also not easy to apply for whole data frames. Let
us create the function which overcomes these problems:

> Normality <- function(a)

+ {

+ ifelse(shapiro.test(a)$p.value < 0.05, "NOT NORMAL", "NORMAL")
+

3

(We used here the fact that in R, test output is usually a list and each component is
possible to extract using $-name approach described in previous chapter. How to
know what to extract? Save test output into object and run str(obj)!)

Package shipunov contains slightly more advanced version of the Normality() which
takes into account that Shapiro-Wilks test is not so reliable for small size (< 25) sam-
ples.
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To make this Normality() function work, you need to copy the above text into R
console, or into the separate file (preferably with %.r extension), and then load it
with source() command. Next step is to call the function:

> Normality(salary) # shipunov
> sapply(trees, Normality)
> sapply(log(trees+0.01), Normality)

(Note that logarithmic conversion could change the normality. Check yourself if
square root does the same.)

This function not only runs Shapiro-Wilks test several times but also outputs an
easily readable result. Most important is the third row which uses p-value extracted
from the test results. Extraction procedure is based on the knowledge of the internal
structure of shapiro.test() output.

How to know the structure of shapiro.test() output object without going into
help?

In many cases, “stationary”, named function is not necessary as user need some piece
of code which runs only once (but runs in relatively complicated way). Here helps
the anonymous function. It is especially useful within functions of apply() family.
This is how to calculate mode simultaneously in multiple columns:

> sapply(chickuwts,
+ function(.x) names(table(.x))[which.max(table(.x))])
weight feed

"248" "soybean"

(Here we followed the agreement that in the anonymous functions, argument names
must start with a dot.)

Even more useful—simultaneous confidence intervals:

> old.options <- options(warn=-1)

> sapply(trees,

+ function(.x) wilcox.test(.x, conf.int=TRUE)$conf.1int)
Girth Height Volume

[1,] 11.84995 73.50001 22.00000

[2,] 14.44990 78.50003 36.05001

> options(old.options)
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(Here we suppressed multiple “ties” warnings. Do not do it yourself without a strong
reason!)

File betula.txt in the open data repository contains measurements of several
birch morphological characters. Are there any characters which could be analyzed
with parametric methods?

Please make the user function CV() which calculates coefficient of variation (CV)
and apply it to betula data. Which character is most variable? (Filebetula_c.txt
contains explanation of variables.)

In the first chapter, we used dact . txt data to illustrate situation when it is really
hard to say anything about data without statistical analysis. Now, time came to
make this analysis. Provide as many relevant description characteristics as possi-
ble, calculate the appropriate confidence interval and plot this data.

In the open repository, file nymphaeaceae.txt contains counts of flower parts
taken from two members of water lily family (Nymphaeaceae), Nuphar lutea (yel-
low water lily) and Nymphaea candida (white water lily). Using plots and, more
importantly, confidence intervals, find which characters (except SEPALS) distin-
guish these species most. Provide the answer in the form “if the character is ...,
then species is ..”..

4.6 How good is the proportion?

So far, out methods are good for measurement data (and to some extent, for ranked
data). But how about categorical data? There are two possible ways to convert them
into numbers: either make dummy binary variables or simply count entries of each
type, tabulate them:

> table(sex)
sex
female male

2 5
> table(sex)/length(sex)
sex
female male

0.2857143 0.7142857
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So we found that proportion of females in our small firm is about 29%. Now we need
to ask the main statistical question: what is the proportion of females in the whole
population (all similar firms)? Can we estimate it from our sample?

> prop.test(table(sex))

1-sample proportions test with continuity correction
data: table(sex), null probability 0.5
X-squared = 0.57143, df = 1, p-value = 0.4497
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.05112431 0.69743997

sample estimates:

p

0.2857143
Warning message:

In prop.test(table(sex)) : Chi-squared approximation may be incorrect

The test of proportions tried to find the confidence interval for the proportion of fe-
males and also to check the null hypothesis if this proportion might be 50% (just a
half). As you see, confidence interval is really broad and it is better to stay with null.
Despite the first impression, it is possible that firms of this type have equal number
of male and female employees.

Here is another example. In hospital, there was a group of 476 patients undergo-
ing specific treatment and 356 among them are smokers (this is the old data). In
average, proportion of smokers is slightly less than in our group (70% versus 75%,
respectively). To check if this difference is real, we can run the proportions test:

> prop.test(x=356, n=476, p=0.7, alternative="two.sided")
1-sample proportions test with continuity correction
data: 356 out of 476, null probability 0.7
X-squared = 4.9749, df = 1, p-value = 0.02572
alternative hypothesis: true p is not equal to 0.7
95 percent confidence interval:
0.7059174 0.7858054
sample estimates:

p
0.7478992

(We used two . sided option to check both variants of inequality: larger and smaller.
To check one of them (“one tail”), we need greater or less®.)

5Note that these options must be set a priori, before you run the test. It is not allowed to change
alternatives in order to find a better p-values.

132



Confidence interval is narrow. Since the null hypothesis was that “true probability
of is equal to 0.7” and p-value was less than 0.05, we reject it in favor to alternative
hypothesis, “true probability of is not equal to 0.7”. Consequently, proportion of
smokers in our group is different from their proportion in the whole hospital.

Now to the example from foreword. Which candidate won, A or B? Here the propor-
tion test will help again®:

> prop.test(x=0.52%262, n=262, p=0.5, alternative="greater")
1-sample proportions test with continuity correction
data: 0.52 % 262 out of 262, null probability 0.5
X-squared = 0.34302, df = 1, p-value = 0.279
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:
0.4673901 1.0000000
sample estimates:

P
0.52

According to the confidence interval, the real proportion of people voted for candi-
date A varies from 100% to 47%. This might change completely the result of elec-
tions!

Large p-value suggests also that we cannot reject the null hypothesis. We must con-
clude that “true p is not greater then 0.5”. Therefore, using only that data it is im-
possible to tell if candidate A won the elections.

All in all, proportion tests and more advanced methods (like Chi-square test, see
below) help to avoid stereotyping errors.

This exercise is related with phyllotaxis (Fig. 4.11), botanical phenomenon when
leaves on the branch are distributed in accordance to the particular rule. Most
amazingly, this rule (formulas of phyllotaxis) is quite often the Fibonacci rule, kind
of fraction where numerators and denominators are members of the famous Fi-
bonacci sequence. We made R function Phyllotaxis() which produces these
fractions:

> sapply(1:10, Phyllotaxis) # shipunov
[1] Il1/2l| |I1/3|I l|2/5l| "3/8" l|5/13l| "8/21"
[7] "13/34" "21/55" "34/839" '"55/144"

6Look also into the end of this chapter.
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In the open repository, there is a data file phyllotaxis.txt which contains mea-
surements of phyllotaxis in nature. Variables N.CIRCLES and N.LEAVES are nu-
merator and denominator, respectively. Variable FAMILY is the name of plant
family. Many formulas in this data file belong to “classic” Fibonacci group (see
above), but some do not. Please count proportions of non-classic formulas per
family, determine which family is the most deviated and check if the proportion
of non-classic formulas in this family is statistically different from the average
proportion (calculated from the whole data).

Figure 4.11: Phyllotaxis. From left to right: leaves arranged by !4, 15 and 2%; formulas
of phyllotaxis.

4.7 Answers to exercises

Answer to the question of shapiro.test() output structure. First, we need to recol-
lect that almost everything what we see on the R console, is the result of print()’ing
some lists. To extract the component from a list, we can call it by dollar sign and
name, or by square brackets and number (if component is not named). Let us check
the structure with str():

> str(shapiro.test(rnorm(100)))
List of 4
$ statistic: Named num 0.992
..—- attr(x, "names")= chr "W"
$ p.value : num 0.842
$ method : chr "Shapiro-Wilk normality test"
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$ data.name: chr "rnorm(100)"
- attr(*, "class")= chr "htest"

Well, p-value most likely comes from the p.value component, this is easy. Check it:

> set.seed(1683)
> shapiro.test(rnorm(100))$p.value
[1] 0.8424077

This is what we want. Now we can insert it into the body of our function.

Answer to the “birch normality” exercise. First, we need to check the data and un-
derstand its structure, for example with url.show(). Then we can read it into R,
check its variables and apply Normality () function to all appropriate columns:

> betula <- read.table(
+ "http://ashipunov.info/shipunov/open/betula.txt", h=TRUE)
> Str(betula) # shipunov

'data.frame': 229 obs. of 10 variables:

1 LOC cint 1111111111

2 LEAF.L : int 50 44 45 35 41 53 50 47 52 42 ...

3 LEAF.W :int 37 29 37 26 32 37 40 36 39 40 ...

4 LEAF.MAXW: int 23 20 19 15 18 25 21 21 23 19 ...

5 PUB :int 01000000180 ...

6 PAPILLAE : int 1111111111

7 CATKIN :int 31 25 21 20 24 22 40 25 14 27 ...

8 SCALE.L : num 43 45.5556555 ...

9 LOBES *1nt 0010000010

10 WINGS *int 0000001001
> sapply(betulal, c(2:4, 7:8)], Normality) # shipunov

LEAF.L LEAF.W LEAF .MAXW CATKIN SCALE.L

"NOT NORMAL" "NOT NORMAL" "NOT NORMAL" "NORMAL" "NOT NORMAL"

(Note how only non-categorical columns were selected for the normality check. We
used Str() because it helps to check numbers of variables, and shows that two vari-
ables, LOBES and WINGS have missing data. There is no problem in using str() in-
stead.)

Only CATKIN (length of female catkin) is available to parametric methods here. It is
a frequent case in biological data.
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What about the graphical check for the normality, histogram or QQ plot? Yes, it
should work but we need to repeat it 5 times. However, lattice package allows to
make it in two steps and fit on one trellis plot (Fig. 4.12):

> betula.s <- stack(betula[, c(2:4, 7:8)])
> qgmath(~ values | ind, data=betula.s,
+ panel=function(x) {panel.qgmathline(x); panel.qgmath(x)})

(Library lattice requires long data format where all columns stacked into one and data
supplied with identifier column, this is why we used stack() function and formula
interface.

There are many trellis plots. Please check the trellis histogram yourself:

> bwtheme <- standard.theme("pdf", color=FALSE)
> histogram(~ values | ind, data=betula.s, par.settings=bwtheme)

(There was also an example of how to apply grayscale theme to these plots.)

As one can see, SCALE . L could be also accepted as “approximately normal”. Among
others, LEAF .MAXW is “least normal”.

Answer to the birch characters variability exercise. To create a function, it is good
to start from prototype:

> CV <- function(x) {}

This prototype does nothing, but on the next step you can improve it, for example,
with fix(CV) command. Then test CV() with some simple argument. If the result is
not satisfactory, fix(CV) again. At the end of this process, your function (actually,
it “wraps” CV calculation explained above) might look like:

> CV <- function(x)

{
100xsd(x, na.rm=TRUE)/mean(x, na.rm=TRUE)

+}

Then sapply() could be used to check variability of each measurement column:

+ +

> sapply(betulal, c(2:4, 7:8)], CV)
LEAF.L LEAF.W LEAF.MAXW CATKIN SCALE.L
17.93473 20.38630 26.08806 24.17354 24.72061
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Figure 4.12: Normality QQ trellis plots for the five measurement variables in betula
dataset (variables should be read from bottom to top).

As one can see, LEAF .MAXW (location of the maximal leaf width) has the biggest vari-
ability. In the shipunov package, there is CVs() function which implements this and
three other measurements of relative variation.

Answer to question about dact.txt data. Companion file dact_c.txt describes it
as arandom extract from some plant measurements. From the first chapter, we know
that it is just one sequence of numbers. Consequently, scan() would be better than
read.table(). First, load and check:

> dact <- scan("data/dact.txt")
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Read 48 items
> str(dact)
num [1:48] 88 22 52 31 51 63 32 57 68 27 ...

Now, we can check the normality with our new function:

> Normality(dact) # shipunov
[1] "NOT NORMAL"

Consequently, we must apply to dact only those analyses and characteristics which
are robust to non-normality:

> summary(dact)[-4] # no mean
Min. 1st Qu. Median 3rd Qu. Max.
0.00 22.00 33.50 65.25 108.00
> IQR(dact)
[1] 43.25
> mad(dact)
[1] 27.4281

Confidence interval for the median:

> wilcox.test(dact, conf.int=TRUE)$conf.int
[1] 34.49995 53.99997

attr(,"conf.level")

[1] 0.95

Warning messages:

(Using the idea that every test output is a list, we extracted the confidence interval
from output directly. Of course, we knew beforehand that name of a component we
need is conf . int; this knowledge could be obtained from the function help (section
“Value”). The resulted interval is broad.)

To plot single numeric data, histogram (Fig. 4.13) is preferable (boxplots are better
for comparison between variables):

> Histr(dact, xlab="", main="") # shipunov
Similar to histogram is the steam-and-leaf plot:

> stem(dact)
The decimal point is 1 digit(s) to the right of the |
0 | 0378925789
2 | 0224678901122345
4 | 471127
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Figure 4.13: Histogram with overlaid normal distribution curve for dact data.

6 | 035568257
8 | 2785
10 | 458

In addition, here we will calculate skewness and kurtosis, third and fourth central
moments (Fig. 4.14). Skewness is a measure of how asymmetric is the distribution,
kurtosis is a measure of how spiky is it. Normal distribution has both skewness and
kurtosis zero whereas “flat” uniform distribution has skewness zero and kurtosis ap-
proximately —1.2 (check it yourself).

What about dact data? From the histogram (Fig. 4.13) and stem-and-leaf we can
predict positive skewness (asymmetricity of distribution) and negative kurtosis (dis-
tribution flatter than normal). To check, one need to load library e1071 first:

> library(e1071)
> skewness(dact)
[1] 0.5242118
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Figure 4.14: Central moments (left to right, top to bottom): default, different scale,
different skewness, different kurtosis.

> Rurtosis(dact)
[1] -0.8197875

Answer to the question about water lilies. First, we need to check the data, load it
into R and check the resulted object:

> ny <- read.table(
+ "http://ashipunov.info/shipunov/open/nymphaeaceae.txt",
+ h=TRUE, sep="\t")
> Str(ny) # shipunov

'data.frame': 267 obs. of 5 variables:

1 SPECIES: Factor w/ 2 levels "Nuphar lutea",..: 11 11
SEPALS : int 4555555555 ...
PETALS : int 14 10 10 11 11 11 12 12 12 12 ...
STAMENS* int 131 104 113 106 111 119 73 91 102 109 ...
STIGMAS* int 13 12 12 11 13 15 10 12 12 11

(S0 VLR \ ]

(Function Str() shows column numbers and the presence of NA.)
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One of possible ways to proceed is to examine differences between species by each
character, with four paired boxplots. To make them in one row, we will employ for ()
cycle:

> oldpar <- par(mfrow=c(2, 2))
> for (1 in 2:5) boxplot(ny[, 1] ~ ny[, 1], main=names(ny)[i])
> par(oldpar)

(Not here, but in many other cases, for() in R is better to replace with commands
of apply() family. Boxplot function accepts “ordinary” arguments but in this case,
formula interface with tilde is much more handy.)

Please review this plot yourself.

It is even better, however, to compare scaled characters in the one plot. First variant
is to load lattice library and create trellis plot similar to Fig. 7.8 or Fig. 7.7:

> library(lattice)

> ny.s <- stack(as.data.frame(scale(ny[ ,2:5]1)))
> ny.s$SPECIES <- ny$SPECIES

> bwplot(SPECIES ~ values | ind, ny.s, xlab="")

(As usual, trellis plots “want” long form and formula interface.)
Please check this plot yourself.

Alternative is the Boxplots() (Fig. 4.15) command. It is not a trellis plot, but de-
signed with a similar goal to compare many things at once:

> Boxplots(ny[, 2:5], ny[, 1], srt=0, adj=c(.5, 1)) # shipunov

(By default, Boxplots() rotates character labels, but this behavior is not necessary
with 4 characters. This plot uses scale() so y-axis is, by default, not provided.)

Or, with even more crisp Linechart() (Fig. 4.16):

Linechart
> Linechart(ny[, 2:5], ny[, 1], se.lwd=2) # shipunov

(Sometimes, IQRs are better to percept if you add grid() to the plot. Try it yourself.
By the way, if you have just one species, use Dotchart3() function.)

Evidently (after SEPALS), PETALS and STAMENS make the best species resolution. To
obtain numerical values, it is better to check the normality first.

Note that species identity is the natural, internal feature of our data. Therefore, it is
theoretically possible that the same character in one species exhibit normal distri-
bution whereas in another species does not. This is why normality should be checked
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Figure 4.15: Grouped boxplots with Boxplots() function.

per character per species. This idea is close to the concept of fixed effects which are
so useful in linear models (see next chapters). Fixed effects oppose the random ef-
fects which are not natural to the objects studied (for example, if we sample only one
species of water lilies in the lake two times).

> aggregate(ny[, 3:4], by=1list(SPECIES=ny[, 1]), Normality) # shipunov
SPECIES PETALS STAMENS

1 Nuphar lutea NOT NORMAL NOT NORMAL

2 Nymphaea candida NOT NORMAL NOT NORMAL

(Function aggregate() does not only apply anonymous function to all elements
of its argument, but also splits it on the fly with by list of factor(s). Similar is
tapply() but it works only with one vector. Another variant is to use split() and
then apply() reporting function to the each part separately.)
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Figure 4.16: Grouped medians and IQRs with Linechart() function.

By the way, the code above is good for learning but in our particular case, normality
check is not required! This is because numbers of petals and stamens are discrete
characters and therefore must be treated with nonparametric methods by definition.

Thus, for confidence intervals, we should proceed with nonparametric methods:

v

aggregate(ny[, 3:4],

+ +

by=1ist (SPECIES=ny[, 1]),
function(.x) wilcox.test(.x, conf.int=TRUE)$conf.int)

SPECIES PETALS.1 PETALS.2 STAMENS.1 STAMENS.2

N
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Nymphaea candida 25.49997 27.00001

73.99995 78.49997



Confidence intervals reflect the possible location of central value (here median). But
we still need to report our centers and ranges (confidence interval is not a range!).
We can use either summary () (try it yourself), or some customized output which, for
example, can employ median absolute deviation:

> aggregate(ny[, 3:4], by=1ist(SPECIES=ny[, 1]), function(.x)

+ paste(median(.x, na.rm=TRUE), mad(.x, na.rm=TRUE), sep="x"))
SPECIES PETALS STAMENS

1 Nuphar lutea 14£1.4826 119%£19.2738

2 Nymphaea candida 26+2.9652 77+10.3782

Now we can give the answer like “if there are 12—16 petals and 100-120 stamens, this
is likely a yellow water lily, otherwise, if there are 23-29 petals and 66—88 stamens,
this is likely a white water lily”.

Answer to the question about phyllotaxis. First, we need to look on the data file, ei-
ther with url.show(), or in the browser window and determine its structure. There
are four tab-separated columns with headers, and at least the second column con-
tains spaces. Consequently, we need to tell read.table() about both separator and
headers and then immediately check the “anatomy” of new object:

> phx <- read.table(
+ "http://ashipunov.info/shipunov/open/phyllotaxis.txt",
+ h=TRUE, sep="\t")

> str(phx)

'data.frame': 6032 obs. of 4 variables:

$ FAMILY : Factor w/ 11 levels "Anacardiaceae",..: 11111 ...
$ SPECIES : Factor w/ 45 levels "Alnus barbata",..: 99999 ...

$ N.CIRCLES: int 2222222222 ...
$ N.LEAVES : int 4455555555 ...

As you see, we have 11 families and therefore 11 proportions to create and analyze:

> phx1@ <- sapply(1:10@, Phyllotaxis)

> phx.all <- paste(phx$N.CIRCLES, phx$N.LEAVES, sep="/")

> phx.tbl <- table(phx$FAMILY, phx.all %in% phx10)

> dotchart(sort(phx.tbl[,"FALSE"]/(rowSums(phx.tb1)))) # shipunov

(Here we used Dotchart () function which is a modified variant of classic dotchart ()
with better defaults and improved margins.)

Here we created 10 first classic phyllotaxis formulas (ten is enough since higher
order formulas are extremely rare), then made these formulas (classic and non-
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Figure 4.17: Dotchart shows proportions of non-classic formulas of phyllotaxis.

classic) from data and finally made a table from the logical expression which checks
if real world formulas are present in the artificially made classic sequence. Dotchart
(Fig. 4.17) is probably the best way to visualize this table. Evidently, Onagraceae
(evening primrose family) has the highest proportion of FALSE’s. Now we need ac-
tual proportions and finally, proportion test:

> mean.phx.prop <- sum(phx.tbl[, 1])/sum(phx.tb1l)

> prop.test(phx.tbl["Onagraceae", 1], sum(phx.tbl["Onagraceae", 1),
+ mean.phx.prop)

1-sample proportions test with continuity correction

data: phx.tbl["Onagraceae", 1] out of sum(phx.tbl["Onagraceae", 1),
null probability mean.phx.prop

X-squared = 227.9, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.2712202

95 percent confidence interval:

0.6961111 0.8221820
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sample estimates:

P
0.7647059

As you see, proportion of non-classic formulas in Onagraceae (almost 77%) is sta-
tistically different from the average proportion of 27%.

Answer to the exit poll question from the “Foreword”. Here is the way to calculate
how many people we might want to ask to be sure that our sample 48% and 52% are
“real” (represent the population):

> power.prop.test(p1=0.48, p2=0.52, power=0.8)
Two-sample comparison of proportions power calculation

n = 2451.596
p1 = 0.48
p2 = 0.52
sig.level = 0.05
power = 0.8

alternative = two.sided
NOTE: n is number in xeachx group

We need to ask almost 5,000 people!

To calculate this, we used a kind of power test which are frequently used for planning
experiments. We made power=0.8 since it is the typical value of power used in social
sciences. The next chapter gives definition of power (as a statistical term) and some
more information about power test output.
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Chapter 5

Two-dimensional data:
differences

All methods covered in this chapter based on the idea of statistical test and side-by-
side comparison. If even there are methods which seemingly accept multiple sam-
ples (like ANOVA or analysis of tables), they internally do the same: compare two
pooled variations, or expected and observed frequencies.

5.1 What is a statistical test?

Suppose that we compared two sets of numbers, measurements which came from
two samples. From comparison, we found that they are different. But how to know
if this difference did not arise by chance? In other words, how to decide that our two
samples are truly different, i.e. did not come from the one population?

These samples could be, for example, measurements of systolic blood pressure. If
we study the drug which potentially lowers the blood pressure, it is sensible to mix
it randomly with a placebo, and then ask members of the group to report their blood
pressure on the first day of trial and, saying, on the tenth day. Then the difference
between two measurements will allow to decide if there is any effect:

> bpress <- read.table("data/bpress.txt", h=TRUE)
> head(bpress)
PLACEBO.1 PLACEBO.10 DRUG.1 DRUG.10

1 180 170 140 120
2 140 150 120 100
3 160 155 180 140
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4 170 180 160 140

5 150 150 160 160

> drug.d <- bpress$DRUG.10 - bpress$DRUG.1

> placebo.d <- bpress$PLACER0.10 - bpress$PLACEBO.1
> mean(drug.d - placebo.d)

[1] -21

> boxplot(bpress)

Now, there is a promising effect, sufficient difference between blood pressure differ-
ences with drug and with placebo. This is also visible well with boxplots (check it
yourself). How to test it? We already know how to use p-value, but it is the end of
logical chain. Let us start from the beginning.

5.1.1 Statistical hypotheses

Philosophers postulated that science can never prove a theory, but only disprove it.
If we collect 1000 facts that support a theory, it does not mean we have proved it—it
is possible that the 1001st piece of evidence will disprove it.

This is why in statistical testing we commonly use two hypotheses. The one we are
trying to prove is called the alternative hypothesis (H;). The other, default one, is
called the null hypothesis (Hy). The null hypothesis is a proposition of absence of
something (for example, difference between two samples or relationship between
two variables). We cannot prove the alternative hypothesis, but we can reject the
null hypothesis and therefore switch to the alternative. If we cannot reject the null
hypothesis, then we must stay with it.

5.1.2 Statistical errors

With two hypotheses, there are four possible outcomes (Table 5.1).

The first (a) and the last (d) outcomes are ideal cases: we either accept the null hy-
pothesis which is correct for the population studied, or we reject Hy when it is wrong.

If we have accepted the alternative hypothesis, when it is not true, we have com-
mitted a Type I statistical error—we have found a pattern that does not exist. This
situation is often called “false positive”, or “false alarm”. The probability of com-
mitting a Type I error is connected with a p-value which is always reported as one
of results of a statistical test. In fact, p-value is a probability to have same or
greater effect if the null hypothesis is true.

Imagine security officer on the night duty who hears something strange. There are
two choices: jump and check if this noise is an indication of something important,
or continue to relax. If the noise outside is not important or even not real but officer
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Population

Null is true Alternative is true
Sample

(@) (©
Accept null .'..--_.' :..° . h

(b) (d
Accept alternative _.' -‘., . ' . e ' -"' .

Table 5.1: Statistical hypotheses, including illustrations of (b) Type I and (c) Type II
errors. Bigger dots are samples, all dots are population(s).

jumped, this is the Type I error. The probability to hear the suspicious noise when
actually nothing happens in a p-value.

For the security officer, it is probably better to commit Type I error than to skip some-
thing important. However, in science the situation is opposite: we always stay with
the Hy when the probability of committing a Type I error is too high. Philosophically,
this is a variant of Occam’s razor: scientists always prefer not to introduce anything
(i.e., switch to alternative) without necessity.

This approach could be found also in other spheres of our life. Read the Wikipedia ar-
ticle about Stanislav Petrov (https://en.wikipedia.org/wiki/Stanislav_Petrov);
this is another example when false alarm is too costly.

The obvious question is what probability is “too high”? The conventional answer
places that threshold at 0.05—the alternative hypothesis is accepted if the p-value
is less than 5% (more than 95% confidence level). In medicine, with human lives
as stake, the thresholds are set even more strictly, at 1% or even 0.1%. Contrary, in
social sciences, it is frequent to accept 10% as a threshold. Whatever was chosen
as a threshold, it must be set a priori, before any test. It is not allowed to modify
threshold in order to find an excuse for statistical decision in mind.

Accept the null hypothesis when in fact the alternative is true is a Type II statistical
error—failure to detect a pattern that actually exists. This is called “false negative”,
“carelessness”. If the careless security officer did not jump when the noise outside
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>

Reject H,

Figure 5.1: Scheme of statistical decision (for 1-tailed test). « is the probability of
Type I error, 5—of Type II error. Before the test, we must set «, usually to 0.05. Then
we use original data to calculate statistic (guess location of black vertical line). Next,
we use statistic to calculate p-value. Finally, if p-value is less then «, we reject the
null hypothesis.

is really important, this is Type II error. Probability of committing type II error is
expressed as power of the statistical test (Fig. 5.1). The smaller is this probability,
the more powerful is the test.

5.2 Is there a difference? Comparing two samples

5.2.1 Two sample tests

Studying two samples, we use the same approach with two hypotheses. The typical
null hypothesis is “there is no difference between these two samples”—in other words,
they are both drawn from the same population. The alternative hypothesis is “there
is a difference between these two samples”. There are many other ways to say that:

e Null: difference equal to 0 ~ samples similar ~ samples related ~ samples
came from the same population

« Alternative: difference not equal to 0 ~ samples different ~ samples non-
related ~ samples came from different populations

And, in terms of p-value:
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p-value

T

< 0.05 > 0.05
difference no
exists difference

s Sk ok

If the data are “parametric”, then a parametric t-test is required. If the variables that
we want to compare were obtained on different objects, we will use a two-sample
t-test for independent variables, which is called with the command t.test():

> sapply(data.frame(placebo.d, drug.d), Normality) # shipunov
placebo.d drug.d
"NORMAL" "NORMAL"

> t.test(placebo.d, drug.d)
Welch Two Sample t-test
data: placebo.d and drug.d
t = 2.8062, df = 6.7586, p-value = 0.02726
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
3.175851 38.824149
sample estimates:
mean of x mean of Yy
1 -20

There is a long output. Please note the following:
» Apart from the normality, there is a second assumption of the classic t-test,
homogeneity of variances. However, R by default performs more complicated

Welch test which does not require homogeneity. This is why degrees of freedom
are not a whole number.

» t is a t statistic and df are degrees of freedom (related with number of cases),
they both needed to calculate the p-value.

» Confidence interval is the second most important output of the R t.test(). Itis
recommended to supply confidence intervals and effect sizes (see below) wher-
ever possible. If zero is within the confidence interval, there is a difference.
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« p-valueis small, therefore the probability to “raise the false alarm” when “noth-
ing happens” is also small. Consequently, we reject the null hypothesis (“noth-

ing happens”, “no difference”, “no effect”) and therefore switch to the alter-
native hypothesis (“there is a difference between drugs”.)

We can use the following order from most to least important:
1. p-value is first because it helps to make decision;
2. confidence interval,
3. t statistic;
4. degrees of freedom.

Results of t-test did not come out of nowhere. Let us calculate the same thing manu-
ally (actually, half-manually because we will use degrees of freedom from the above
test results):

> df <- 6.7586

> v1 <- var(placebo.d)

> v2 <- var(drug.d)

> (t.stat <- (mean(placebo.d) - mean(drug.d))/sqrt(v1/5 + v2/5))
[1] 2.806243

> (p.value <- 2xpt(-abs(t.stat), df))

[1] 0.02725892

(Function pt () calculates values of the Student distribution, the one which is used
for t-test. Actually, instead of direct calculation, this and similar functions estimate
p-values using tables and approximate formulas. This is because the direct calcu-
lation of exact probability requires integration, determining the square under the
curve, like o from Fig. 5.1.)

Using t statistic and degrees of freedom, one can calculate p-value without running
test. This is why to report result of t-test (and related Wilcoxon test, see later), most
researchers list statistic, degrees of freedom (for t-test only) and p-value.

Instead of “short form” from above, you can use a “long form” when the first column
of the data frame contains all data, and the second indicates groups:

> long <- stack(data.frame(placebo.d, drug.d))
> head(long)

values ind
1 -10 placebo.d
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2 10 placebo.
3 -5 placebo.
4 10 placebo.
5 0 placebo.
6 -20 drug.
> t.test(values ~ ind, data=long)
. Welch Two Sample t-test
data: wvalues by ind
t = -2.8062, df = 6.7586, p-value = 0.02726

O 0 oo aQ

(Note the formula interface which usually comes together with a long form.)

Long form is handy also for plotting and data manipulations (check the plot your-
self):

> boxplot(values ~ ind, data=long)

> tapply(long$values, long$ind, sd)
drug.d placebo.d

14.142136 8.944272

> aggregate(values ~ ind, range, data=long)
ind values.1 values.?2

1 drug.d -40 0

2 placebo.d -10 10

Another example of long form is the embedded beaver2 data:

> tapply(beaver2$temp, beaver2$activ, Normality) # shipunov
0 1

"NORMAL" "NORMAL"

> boxplot(temp ~ activ, data=beaver2)

> t.test(temp ~ activ, data=beaver2)

Welch Two Sample t-test

data: temp by activ

t = -18.548, df = 80.852, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to @

95 percent confidence interval:

-0.8927106 -0.7197342

sample estimates:

mean in group @ mean in group 1
37.09684 37.90306
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(Check the boxplot yourself. We assumed that temperature was measured ran-
domly.)

Again, p-value is much less than 0.05, and we must reject the null hypothesis that
temperatures are not different when beaver is active or not.

To convert long form into short, use unstack() function:

> uu <- unstack(beaver2, temp ~ activ)

> str(uu)

List of 2

$ 0: num [1:38] 36.6 36.7 36.9 37.1 37.2 ...
$ 1: num [1:62] 38 38 38 38.2 38.1

(Note that result is a list because numbers of observations for active and inactive
beaver are different. This is another plus of long form: it can handle subsets of un-
equal size.)

If measurements were obtained on one object, a paired t-test should be used. In
fact, it is just one-sample t-test applied to differences between each pair of mea-
surements. To do paired t-test in R, use the parameter paired=TRUE. It is not illegal
to choose common t-test for paired data, but paired tests are usually more powerful:

> sapply(bpress, Normality) # shipunov
PLACEBO.1 PLACEBO.10 DRUG.1 DRUG.10
"NORMAL" "NORMAL" "NORMAL" "NORMAL"
> attach(bpress)
> t.test(DRUG.1, DRUG.10, paired=TRUE)
Paired t-test
data: DRUG.1 and DRUG.10
t = 3.1623, df = 4, p-value = 0.03411
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
2.440219 37.559781
sample estimates:
mean of the differences
20

> t.test(DRUG.10 - DRUG.1, mu=0) # same results

t = -3.1623, df = 4, p-value = 0.03411
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> t.test(DRUG.1, DRUG.10) # non-paired
Welch Two Sample t-test

t = 1.3868, df = 8, p-value = 0.2029 # much larger!

> detach(bpress)

If the case of blood pressure measurements, common t-test does not “know” which
factor is responsible more for the differences: drug influence or individual variation
between people. Paired t-test excludes individual variation and allows each person
to serve as its own control, this is why it is more precise.

Also more precise (if the alternative hypothesis is correctly specified) are one-tailed
tests:

> attach(bpress)

> t.test(PLACEBO.10, DRUG.10, alt="greater") # one-tailed test
Welch Two Sample t-test
data: PLACEBR0.10 and DRUG.10
t = 2.4509, df = 6.4729, p-value = 0.0234
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:

6.305348 Inf

sample estimates:
mean of x mean of y

161 132

> t.test(PLACERO.10, DRUG.10) # "common" test

Welch Two Sample t-test

data: PLACEBO.10 and DRUG.10

t = 2.4509, df = 6.4729, p-value = 0.04681 # larger!

> detach(bpress)

(Here we used another alternative hypothesis: instead of guessing difference, we
guessed that blood pressure in “placebo” group was greater on 10th day.)

Highly important note: all decisions related with the statistical tests (parametric
or nonparametric, paired or non-paired, one-sided or two-sided, 0.05 or 0.01) must
be done a priori, before the analysis.

The “hunting for the p-value” is illegal!
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If we work with nonparametric data, nonparametric Wilcoxon test (also known as a
Mann-Whitney test) is required, under the command wilcox.test():

> tapply(ToothGrowth$len, ToothGrowth$supp, Normality) # shipunov
0J vC

"NOT NORMAL" "NORMAL"

> boxplot(len ~ supp, data=ToothGrowth, notch=TRUE)

> wilcox.test(len ~ supp, data=ToothGrowth)

Wilcoxon rank sum test with continuity correction

data: 1len by supp

W = 575.5, p-value = 0.06449

alternative hypothesis: true location shift is not equal to @

(Please run the boxplot code and note the use of notches. It is commonly accepted
that overlapping notches is a sign of no difference. And yes, Wilcoxon test supports
that. Notches are not default because in many cases, boxplots are visually not over-
lapped. By the way, we assumed here that only supp variable is present and ignored
dose (see ?ToothGrowth for more details).)

And yes, it is really tempting to conclude something except “stay with null” if p-value
is 0.06 (Fig. 5.2) but no. This is not allowed.

Like in the t-test, paired data requires the parameter paired=TRUE:

> W0 <- ChickWeight$weight[ChickWeight$Time == 0]
> w2 <- ChickWeight$weight[ChickWeight$Time == 2]
> sapply(data.frame(wo, w2), Normality)
wo w2
"NOT NORMAL" "NOT NORMAL"
> boxplot(wo, w2)
> wilcox.test(we, w2, paired=TRUE)
Wilcoxon signed rank test with continuity correction
data: w@ and w2
V = 8, p-value = 1.132e-09
alternative hypothesis: true location shift is not equal to @

(Chicken weights are really different between hatching and second day! Please check
the boxplot yourself.)

Nonparametric tests are generally more universal since they do not assume any par-
ticular distribution. However, they are less powerful (prone to Type II error, “care-
lessness”). Moreover, nonparametric tests based on ranks (like Wilcoxon test) are
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Figure 5.2: How not to interpret p-values (taken from XKCD, https://xkcd.com/
1478/)

sensitive to the heterogeneity of variances!. All in all, parametric tests are prefer-

able when data comply with their assumptions. Table 5.2 summarizes this simple
procedure.

Paired: one object, two measures Non-paired
Normal t.test(..., paired=TRUE) t.test(...)
Non-normal | wilcox.test(..., paired=TRUE) | wilcox.test(...)

Table 5.2: How to choose two-sample test in R. This table should be read from the
top right cell.

Embedded in R is the classic data set used in the original work of Student (the
pseudonym of mathematician William Sealy Gossett who worked for Guinness brew-

IThere is a workaround though, robust rank order test, look for the functionRro.test () in the shipunov
package.
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ery and was not allowed to use his real name for publications). This work was con-
cerned with comparing the effects of two drugs on the duration of sleep for 10 pa-
tients.

In R these data are available under the name sleep (Fig. 5.3 shows corresponding
boxplots). The data is in the long form: column extra contains the increase of the
sleep times (in hours, positive or negative) while the column group indicates the

group (type of drug).
> plot(extra ~ group, data=sleep)

T T
1 2

Figure 5.3: The average increase of the sleep with two drugs.
(Plotting uses the “model formula”: in this case, extra ~ group. R is smart enough

to understand that group is the “splitting” factor and should be used to make two
boxplots.)
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The effect of each drug on each person is individual, but the average length by
which the drug prolongs sleep can be considered a reasonable representation of the
“strength” of the drug. With this assumption, we will attempt to use a two sample
test to determine whether there is a significant difference between the means of the
two samples corresponding to the two drugs. First, we need to determine which test
to use:

> tapply(sleep$extra, sleep$group, Normality) # shipunov
1 2
"NORMAL" "NORMAL"

(Data in the long form is perfectly suitable for tapply() which splits first argument
in accordance with second, and then apply the third argument to all subsets.)

Since the data comply with the normality assumption, we can now employ paramet-
ric paired t-test:

> t.test(extra ~ group, data=sleep, paired=TRUE)

Paired t-test

data: extra by group

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:
mean of the differences

-1.58

(Yes, we should reject null hypothesis about no difference.)

How about the probability of Type II errors (false negatives)? It is related with sta-
tistical power, and could be calculated through power test:

> power.t.test(n=10, sig.level=0.05, d=1.58)
Two-sample t test power calculation

n=10
delta = 1.58
sd = 1
sig.level = 0.05
power = 0.9160669
alternative = two.sided

Therefore, if we want the level of significance 0.05, sample size 10 and the effect
(difference between means) 1.58, then probability of false negatives should be ap-
proximately 1 -0.92 = 0.08 which is really low. Altogether, this makes close to 100%
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our positive predictive value (PPV), probability of our positive result (observed differ-
ence) to be truly positive for the whole statistical population. Package caret is able
to calculate PPV and other values related with statistical power.

It is sometimes said that t-test can handle the number of samples as low as just
four. This is not absolutely correct since the power is suffering from small sample
sizes, but it is true that main reason to invent t-test was to work with small samples,
smaller then “rule of 30” discussed in first chapter.

Both t-test and Wilcoxon test check for differences only between measures of central
tendency (for example, means). These homogeneous samples

> (aa <- 1:9)
[11123456789
> (bb <- rep(5, 9))
[1] 555555555

have the same mean but different variances (check it yourself), and thus the differ-
ence would not be detected with t-test or Wilcoxon test. Of course, tests for scale
measures (like var.test()) also exist, and they might find the difference. You might
try them yourself. The third homogeneous sample complements the case:

> (xx <- 51:59)
[1] 51 52 53 54 55 56 57 58 59

as differences in centers, not in ranges, will now be detected (checkr it).

There are many other two sample tests. One of these, the sign test, is so simple that
it does not exist in R by default. The sign test first calculates differences between
every pair of elements in two samples of equal size (it is a paired test). Then, it con-
siders only the positive values and disregards others. The idea is that if samples were
taken from the same distribution, then approximately half the differences should
be positive, and the proportions test will not find a significant difference between
50% and the proportion of positive differences. If the samples are different, then
the proportion of positive differences should be significantly more or less than half.

Come up with R code to carry out sign test, and test two samples that were men-
tioned at the beginning of the section.
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The standard data set airquality contains information about the amount of ozone
in the atmosphere around New York City from May to September 1973. The con-
centration of ozone is presented as a rounded mean for every day. To analyze it
conservatively, we use nonparametric methods.

Determine how close to normally distributed the monthly concentration mea-
surements are.

Let us test the hypothesis that ozone levels in May and August were the same:

> wilcox.test(0zone ~ Month, data=airquality,
+ subset = Month %in% c(5, 8), conf.int=TRUE)
Wilcoxon rank sum test with continuity correction
data: Ozone by Month
W = 127.5, p-value = 0.0001208
alternative hypothesis: true location shift is not equal to @
95 percent confidence interval:

-52.99999 -14.99998

sample estimates:
difference in location

-31.99996

Warning messages:

1:

(Since Month is a discrete variable as the “number” simply represents the month, the
values of 0zone will be grouped by month. We used the parameter subset with the
operator #in%, which chooses May and August, the 5th and 8th month. To obtain the
confidence interval, we used the additional parameter conf.int. W is the statistic
employed in the calculation of p-values. Finally, there were warning messages about
ties which we ignored.)

The test rejects the null hypothesis, of equality between the distribution of ozone
concentrations in May and August, fairly confidently. This is plausible because the
ozone level in the atmosphere strongly depends on solar activity, temperature and
wind.

Differences between samples are well represented by box plots (Fig. 5.4):

> boxplot(0zone ~ Month, data=airquality,
+ subset=Month %in% c(5, 8), notch=TRUE)
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Figure 5.4: Distribution of ozone in May and June.

(Note that in the boxplot() command we use the same formula as the statistical
model. Option subset is alternative way to select from data frame.)

It is conventionally considered that if the boxes overlap by more than a third of their
length, the samples are not significantly different.

The last example in this section is related with the discovery of argon. At first, there
was no understanding that inert gases exist in nature as they are really hard to dis-
cover chemically. But in the end of XIX century, data start to accumulate that some-
thing is wrong with nitrogen gas (N3). Physicist Lord Rayleigh presented data which
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show that densities of nitrogen gas produced from ammonia and nitrogen gas pro-
duced from air are different:

> ar <- read.table("data/argon.txt")
> unstack(ar, form=vV2 ~ V1)
air chemical

1 2.31017 2.30143
2 2.30986 2.29890
3 2.31010 2.29816
4 2.31001 2.30182
5 2.31024 2.29869
6 2.31010 2.29940
7 2.31028 2.29849
8 NA 2.29869

As one might see, the difference is really small. However, it was enough for chemist
Sir William Ramsay to accept it as a challenge. Both scientists performed series of
advanced experiments which finally resulted in the discovery of new gas, argon. In
1904, they received two Nobel Prizes, one in physical science and one in chemistry.
From the statistical point of view, most striking is how the visualization methods
perform with this data:

means <- tapply(ar$v2, ar$v1, mean, na.rm=TRUE)
oldpar <- par(mfrow=1:2)

boxplot(V2 ~ V1, data=ar)

barplot(means)

par(oldpar)

VvV V V Vv Vv

The Figure 5.5 shows as clear as possible that boxplots have great advantage over
traditional barplots, especially in cases of two-sample comparison.

We recommend therefore to avoid barplots, and by all means avoid so-called “dyna-
mite plots” (barplots with error bars on tops). Beware of dynamite!

Their most important disadvantages are (1) they hide primary data (so they are not
exploratory), and in the same time, do not illustrate any statistical test (so they are
not inferential); (2) they (frequently wrongly) assume that data is symmetric and
parametric; (3) they use space inefficiently, have low data-to-ink ratio; (4) they cause
an optical illusion in which the reader adds some of the error bar to the height of
the main bar when trying to judge the heights of the main bars; (5) the standard
deviation error bar (typical there) has no direct relation even with comparing two
samples (see above how t-test works), and has almost nothing to do with comparison
of multiple samples (see below how ANOVA works). And, of course, they do not help
Lord Rayleigh and Sir William Ramsay to receive their Nobel prizes.
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Figure 5.5: Which of these two plots would help Lord Rayleigh and Sir William Ram-
say more to receive their Nobel Prizes? (The idea from Tukey, 1977.)

Please check the Lord Rayleigh data with the appropriate statistical test and re-
port results.

So what to do with dynamite plots? Replace them with boxplots. The only disadvan-
tage of boxplots is that they are harder to draw with hand which sounds funny in the
era of computers. This, by the way, explains partly why there are so many dynamite
around: they are sort of legacy pre-computer times.

A supermarket has two cashiers. To analyze their work efficiency, the length of
the line at each of their registers is recorded several times a day. The data are
recorded in kass . txt. Which cashier processes customers more quickly?
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5.2.2 Effect sizes

Statistical tests allow to make decisions but do not show how different are samples.
Consider the following examples:

> wilcox.test(1:10, 1:10 + 0.001, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: 1:10 and 1:10 + 0.001

V = 0, p-value = 0.005355

alternative hypothesis: true location shift is not equal to @

> wilcox.test(1:10, 1:10 + 0.0001, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: 1:10 and 1:10 + 1e-04

V = 0, p-value = 0.004237

alternative hypothesis: true location shift is not equal to 0

(Here difference decreases but p-value does not grow!)

One of the beginner’s mistakes is to think that p-values measure differences, but
this is really wrong.

P-values are probabilities and are not supposed to measure anything. They could be used
only in one, binary, yes/no way: to help with statistical decisions.

In addition, the researcher can almost always obtain a reasonably good p-value, even
if effect is minuscule, like in the second example above.

To estimate the extent of differences between populations, effect sizes were invented.
They are strongly recommended to report together with p-values.

Package effsize calculates several effect size metrics and provides interpretations
of their magnitude.

Cohen’s d is the parametric effect size metric which indicates difference between two
means:

> library(effsize)

> cohen.d(extra ~ group, data=sleep)
Cohen's d

d estimate: -0.8321811 (large)

95 percent confidence interval:
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inf sup
-1.8691015 0.2047393

(Note that in the last example, effect size is large with confidence interval including
zero; this spoils the “large” effect.)

If the data is nonparametric, it is better to use Cliff’s Delta:

> cliff.delta(1:10, 1:10+0.001)

ClLiff's Delta

delta estimate: -0.1 (negligible)

95 percent confidence interval:
inf sup

-0.5344426 0.3762404

> cliff.delta(Ozone ~ Month, data=airquality,
+ subset = Month %in% c(5, 8))
ClLiff's Delta
delta estimate: -0.2991453 (small)
95 percent confidence interval:
inf sup
-0.6255598 0.1163964

Now we have quite a few measurements to keep in memory. The simple table below
emphasizes most frequently used ones:

Center Scale Test Effect
Parametric Mean | Standard deviation t-test Cohen’s D
Non-parametric | Median IOR, MAD Wilcoxon test | Cliff’s Delta

Table 5.3: Most frequently used numerical tools, both for one and two samples.

There are many measures of effect sizes. In biology, useful is coefficient of divergence
(K) discovered by Alexander Lyubishchev in 1959, and related with the recently in-
troduced squared strictly standardized mean difference (SSSMD):
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> K(extra ~ group, data=sleep) # shipunov

0.3462627

> summary(K(extra ~ group, data=sleep))

Lyubishchev's K Effect
0.35 Weak

Lyubishchev noted that good biological species should have K > 18, this means no
transgression.

Coefficient of divergence is robust to allometric changes:

> summary(K(aax3, aa%x10)) # shipunov
Lyubishchev's K Effect
1.5 Fairly moderate

> cliff.delta(aa*x3, aax10)
ClLiff's Delta
delta estimate: -0.7777778 (large)
95 percent confidence interval:

inf sup
-0.9493811 -0.2486473

There is also MAD-based nonparametric variant of K:

> summary(K(1:10, 1:10+0.001, mad=TRUE)) # shipunov
Lyubishchev's K Effect

0 Extremely weak
> (dd <- K(0Ozone ~ Month,
+ data=airquality[airquality$Month %in% c(5, 8), 1,
+ mad=TRUE)) # shipunov

0.6141992

> summary(dd)

Lyubishchev's K Effect
0.61 Fairly weak

In the data file grades.txt are the grades of a particular group of students for
the first exam (in the column labeled A1) and the second exam (A2), as well as the
grades of a second group of students for the first exam (B1). Do the A class grades
for the first and second exams differ? Which class did better in the first exam, A
or B? Report significances, confidence intervals and effect sizes.

In the open repository, file aegopodium. txt contains measurements of leaves of
sun and shade Aegopodium podagraria (ground elder) plants. Please find the char-
acter which is most different between sun and shade and apply the appropriate
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I statistical test to find if this difference is significant. Report also the confidence
interval and effect size.

5.3 If there are more than two samples: ANOVA
5.3.1 One way

What if we need to know if there are differences between three samples? The first
idea might be to make the series of statistical tests between each pair of the sample.
In case of three samples, we will need three t-tests or Wilcoxon tests. What is un-
fortunate is that number of required tests will grow dramatically with the number of
samples. For example, to compare six samples we will need to perform 15 tests!

Even more serious problem is that all tests are based on the idea of probability. Con-
sequently, the chance to make of the Type I error (false alarm) will grow every time
we perform more simultaneous tests on the same sample.

For example, in one test, if null hypothesis is true, there is usually only a 5% chance
to reject it by mistake. However, with 20 tests (Fig. E.2), if all corresponding null
hypotheses are true, the expected number of incorrect rejections is 1! This is called
the problem of multiple comparisons.

One of most striking examples of multiple comparisons is a “dead salmon case”. In
2009, group of researches published results of MRI testing which detected the brain
activity in a dead fish! But that was simply because they purposely did not account for
multiple comparisons?.

The special technique, ANalysis Of VAriance (ANOVA) was invented to avoid multi-
ple comparisons in case of more than two samples.

In R formula language, ANOVA might be described as
response ~ factor

where response is the measurement variable. Note that the only difference from
two-sample case above is that factor in ANOVA has more then two levels.

2Bennett C.M., Wolford G.L., Miller M.B. 2009. The principled control of false positives in neuroimag-
ing. Social cognitive and affective neuroscience 4(4): 417-422, https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2799957/
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The null hypothesis here is that all samples belong to the same population (“are not
different”), and the alternative hypothesis is that at least one sample is divergent,
does not belong to the same population (“samples are different”).

In terms of p-values:

p-value
\
> 0.05/ <0.05
stay w}th null abandon null, glo to alternative
all saj;nples at leait one
are not different sample is divergent

The idea of ANOVA is to compare variances: (1) grand variance within whole dataset,
(2) total variance within samples (subsets in long form or columns in short form) and
(3) variance between samples (columns, subsets). Figure 5.6 explains it on example
of multiple apple samples mixed with divergent tomato sample.

If any sample came from different population, then variance between samples should
be at least comparable with (or larger then) variation within samples; in other words,
F-value (or F-ratio) should be > 1. To check that inferentially, F-test is applied. If
p-value is small enough, then at least one sample (subset, column) is divergent.

ANOVA does not reveal which sample is different. This is because variances in ANOVA
are pooled. But what if we still need to know that? Then we should apply post hoc
tests. In is not required to run them after ANOVA; what is required is to perform
them carefully and always apply p-value adjustment for multiple comparisons. This
adjustment typically increases p-value to avoid accumulation from multiple tests.
ANOVA and post hoc tests answer different research questions, therefore this is up to
the researcher to decide which and when to perform.

ANOVA is a parametric method, and this typically goes well with its first assump-
tion, normal distribution of residuals (deviations between observed and expected
values). Typically, we check normality of the whole dataset because ANOVA uses
pooled data anyway. It is also possible to check normality of residuals directly (see
below). Please note that ANOVA tolerates mild deviations from normality, both in
data and in residuals. But if the data is clearly nonparametric, it is recommended to
use other methods (see below).

169



within
Figure 5.6: Core idea of ANOVA: compare within and between variances.

Second assumption is homogeinety of variance (homoscedasticity), or, simpler, sim-
ilarity of variances. This is more important and means that sub-samples were col-
lected with similar methods.

Third assumption is more general. It was already described in the first chapter: in-
dependence of samples. “Repeated measurements ANOVA” is however possible, but
requires more specific approach.

All assumptions must be checked before analysis.

*
*®

The best way of data organization for the ANOVA is the long form explained above:
two variables, one of them contains numerical data, whereas the other describes
grouping (in R terminology, it is a factor). Below, we create the artificial data which
describes three types of hair color, height (in cm) and weight (in kg) of 90 persons:

> hwc <- read.table("data/hwc.txt", h=TRUE)
> str(hwc)
'data.frame': 90 obs. of 3 variables:
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$ COLOR : Factor w/ 3 levels "black","blond",..: 1 1 1

$ WEIGHT: int 80 82 79 80 81 79 82 83 78 80 ...

$ HEIGHT: int 166 170 170 171 169 171 169 170 167 166 ...
> boxplot (WEIGHT ~ COLOR, data=hwc, ylab="Weight, Rg")

(Note that notches and other “bells and whistles” do not help here because we want
to estimate joint differences; raw boxplot is probably the best choice.)

> sapply(Chwc[sapplyChwc, is.numeric)], Normality) # shipunov
WEIGHT HEIGHT
"NORMAL" "NORMAL"
> tapply(hwc$WEIGHT, hwc$COLOR, var)
black blond brown
8.805747 9.219540 8.896552

(Note the use of double sapply () to check normality only for measurement columns.)

It looks like both assumptions are met: variance is at least similar, and variables are
normal. Now we run the core ANOVA:

> wc.aov <- aov(WEIGHT ~ COLOR, data=hwc)
> summary (wc.aov)

Df Sum Sq Mean Sq F value Pr(>F)
COLOR 2 435.1 217.54 24.24 4.29e-09 *x*x%x
Residuals 87 780.7 8.97

Signif. codes: @ ‘%xx’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

This output is slightly more complicated then output from two-sample tests, but
contains similar elements (from most to least important):

1. p-value (expressed as Pr(>F)) and its significance;
2. statistic (F value);
3. degrees of freedom (Df)
All above numbers should go to the report. In addition, there are also:
4. variance within columns (Sum Sq for Residuals);
5. variance between columns (Sum Sq for COLOR);
6. mean variances (Sum Sq divided by Df)

(Grand variance is just a sum of variances between and within columns.)
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If degrees of freedom are already known, it is easy enough to calculate F value and
p-value manually, step by step:

> df1 <- 2

> df2 <- 87

> group.size <- 30

> (sq.between <- sum(tapply(Chwc$WEIGHT, hwc$COLOR,
function(.x) (mean(.x) - mean(hwc$WEIGHT))~2))*group.size)
[1] 435.0889

> (mean.sq.between <- sq.between/df1)

[1] 217.5444

> (sq.within <- sum(tapply(hwc$WEIGHT, hwc$COLOR,
+ function(.x) sum((.x - mean(.x))~2))))

[1] 780.7333

> (mean.sq.within <- sq.within/df2)

[1] 8.973946

> (f.value <- mean.sq.between/mean.sq.within)

[1] 24.24178

> (p.value <- (1 - pf(f.value, df1, df2)))

[1] 4.285683e-09

+

Of course, R calculates all of that automatically, plus also takes into account all pos-
sible variants of calculations, required for data with another structure. Related to
the above example is also that to report ANOVA, most researches list three things:
two values for degrees of freedom, F value and, of course, p-value.

All in all, this ANOVA p-value is so small that Hjy should be rejected in favor of the
hypothesis that at least one sample is different. Remember, ANOVA does not tell
which sample is it, but boxplots (Fig. 5.7) suggest that this might be people with
black hairs.

s Sk sk

To check the second assumption of ANOVA, that variances should be at least similar,
homogeneous, it is sometimes enough to look on the variance of each group with
tapply() as above or with aggregate():

> aggregate(hwc[,-1], by=1ist(COLOR=hwc[, 1]), var)
COLOR WEIGHT HEIGHT

1 black 8.805747 9.154023

2 blond 9.219540 8.837931

3 brown 8.896552 9.288506
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Figure 5.7: Is there a weight difference between people with different hair color?
(Artificial data.)

But better is to test if variances are equal with, for example, bartlett.test() which
has the same formula interface:

> bartlett.test(WEIGHT ~ COLOR, data=hwc)

Bartlett test of homogeneity of variances

data: WEIGHT by COLOR

Bartlett's K-squared = 0.016654, df = 2, p-value = 0.9917

(The null hypothesis of the Bartlett test is the equality of variances.)
Alternative is nonparametric Fligner-Killeen test:

> fligner.test(WEIGHT ~ COLOR, data=hwc)
Fligner-Killeen test of homogeneity of variances
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data: WEIGHT by COLOR
Fligner-Killeen:med chi-squared = 1.1288, df = 2, p-value = 0.5687

(Null is the same as in Bartlett test.)
The first assumption of ANOVA could also be checked here directly:

> Normality(wc.aov$residuals)
[1] "NORMAL"

Effect size of ANOVA is called 7;? (eta squared). There are many ways to calculate eta
squared but simplest is derived from the linear model (see in next sections). It is
handy to define n? as a function:

> Eta2 <- function(aov)

+ {

+ summary.lm(aov)$r.squared
+ }

and then use it for results of both classic ANOVA and one-way test (see below):

> (ewc <- Eta2(wc.aov))
[1] 0.3578557

> Mag(ewc) # shipunov
[1 ] "high"

The second function is an interpreter for 7% and similar effect size measures (like r
correlation coefficient or R? from linear model).

If there is a need to calculate effect sizes for each pair of groups, two-sample effect
size measurements like coefficient of divergence (Lyubishchev’s K) are applicable.

One more example of classic one-way ANOVA comes from the data embedded in R
(make boxplot yourself):

> Normality(chickwts$weight)

[1] "NORMAL"

> bartlett.test(weight ~ feed, data=chickwts)
Bartlett test of homogeneity of variances

data: weight by feed

Bartlett's K-squared = 3.2597, df = 5, p-value = 0.66
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> boxplot(weight ~ feed, data=chickwts)
> chicks.aov <- aov(weight ~ feed, data=chickwts)
> summary(chicks.aov)

Df Sum Sqg Mean Sq F value Pr(>F)
feed 5 231129 46226 15.37 5.94e-10 *xx%x
Residuals 65 195556 3009
Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1
> Eta2(chicks.aov)
[1] 0.5416855
> Mag(Eta2(chicks.aov)) # shipunov
[1] "very high"

Consequently, there is a very high difference between weights of chickens on differ-
ent diets.

If there is a goal to find the divergent sample(s) statistically, one can use post hoc
pairwise t-test which takes into account the problem of multiple comparisons de-
scribed above; this is just a compact way to run many t-tests and adjust resulted
p-values:

> pairwise.t.test Chwc$WEIGHT, hwc$COLOR)
Pairwise comparisons using t tests with pooled SD
data: hwc$WEIGHT and hwc$COLOR
black  blond
blond 1.7e-08 -
brown 8.4e-07 0.32
P value adjustment method: holm

(This test uses by default the Holm method of p-value correction. Another way is
Bonferroni correction explained below. All available ways of correction are accessi-
ble trough the p.adjust() function.)

Similar to the result of pairwise t-test (but more detailed) is the result of Tukey Hon-
est Significant Differences test (Tukey HSD):

> TukeyHSD(wc.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = WEIGHT ~ COLOR, data=hwc)
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$COLOR

diff lwr upr p adj
blond-black -5.0000000 -6.844335 -3.155665 0.0000000
brown-black -4.2333333 -6.077668 -2.388999 0.0000013
brown-blond 0.7666667 -1.077668 2.611001 0.5843745

I Are our groups different also by heights? If yes, are black-haired still different?

Post hoc tests output p-values so they do not measure anything. If there is a need
to calculate group-to-group effect sizes, two samples effect measures (like Lyu-
bishchev’s K) are generally applicable. To understand pairwise effects, you might
want to use the custom function pairwise.Eff () whichis based on double sapply():

> pairwise.Eff Chwc$WEIGHT, hwc$COLOR, eff="cohen.d") # shipunov
black blond brown

black

blond 1.67 (large)

brown 1.42 (large) -0.25 (small)

Next example is again from the embedded data (make boxplot yourself):

> Normality(PlantGrowth$weight)

[1] "NORMAL"

> bartlett.test(weight ~ group, data=PlantGrowth)
Bartlett test of homogeneity of variances

data: weight by group

Bartlett's K-squared = 2.8786, df = 2, p-value = 0.2371

> plants.aov <- aov(weight ~ group, data=PlantGrowth)
> summary(plants.aov)

Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886

Signif. codes: @ ‘%xx’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 * ’ 1
> Eta2(plants.aov)

[1] 0.2641483
> Mag(Eta2(plants.aov)) # shipunov
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[1] "high"

> boxplot(weight ~ group, data=PlantGrowth)
> with(PlantGrowth, pairwise.t.test(weight, group))
Pairwise comparisons using t tests with pooled SD
data: weight and group
ctrl trt1
trt1 0.194 -
trt2 0.175 0.013
P value adjustment method: holm

As a result, yields of plants from two treatment condition are different, but there is
no difference between each of them and the control. However, the overall effect size
if this experiment is high.

If variances are not similar, then oneway.test() will replace the simple (one-way)
ANOVA:

> hwc2 <- read.table("data/hwc2.txt", h=TRUE)
> boxplot (WEIGHT ~ COLOR, data=hwc2)
> sapply(Chwc2[, 2:3], Normality) # shipunov
WEIGHT HEIGHT
"NORMAL" "NORMAL"
> tapply(hwc2$WEIGHT, hwc2$COLOR, var)
black blond brown
62.27126 23.45862 31.11379 # suspicious!
> bartlett.test(WEIGHT ~ COLOR, data=hwc2)
Bartlett test of homogeneity of variances
data: WEIGHT by COLOR
Bartlett's K-squared = 7.4914, df = 2, p-value = 0.02362 # bad!

> oneway.test (WEIGHT ~ COLOR, data=hwc2)

One-way analysis of means (not assuming equal variances)

data: WEIGHT and COLOR

F = 7.0153, num df = 2.000, denom df = 56.171, p-value = 0.001907

> (e2 <- Eta2(aov(WEIGHT ~ COLOR, data=hwc2)))

[1] 0.1626432

> Mag(e2)

[1] "medium"

> pairwise.t.test(hwc2$WEIGHT, hwc2$COLOR) # most applicable post hoc
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. # check results yourself

(Here we used another data file where variables are normal but group variances are
not homogeneous. Please make boxplot and check results of post hoc test yourself.)

What if the data is not normal?

The first workaround is to apply some transformation which might convert data into
normal:

> Normality(InsectSprays$count) # shipunov
[1] "NOT NORMAL"

> Normality(sqrt(InsectSprays$count))

[1] "NORMAL"

However, the same transformation could influence variance:

> bartlett.test(sqrt(count) ~ spray, data=InsectSprays)$p.value
[1] 0.5855673 # bad for ANOVA, use one-way test

Frequently, it is better to use the nonparametric ANOVA replacement, Kruskall-
Wallis test:

> hwe3 <- read.table("data/hwc3.txt", h=TRUE)

> boxplot (WEIGHT ~ COLOR, data=hwc3)

> sapply(Chwc3[, 2:3], Normality) # shipunov
WEIGHT HEIGHT

"NOT NORMAL" "NOT NORMAL"

> kRruskal.test(WEIGHT ~ COLOR, data=hwc3)

Kruskal-Wallis rank sum test

data: WEIGHT by COLOR

Kruskal-Wallis chi-squared = 32.859, df = 2, p-value = 7.325e-08

(Again, another variant of the data file was used, here variables are not even normal.
Please make boxplot yourself.)

Effect size of Kruskall-Wallis test could be calculated with €?:

Epsilon2 <- function(kw, n) # n is the number of cases

>
+ {

+ unname(kRw$statistic/((n~2 - 1)/(n+1)))
+

>

}
Rw <- Rruskal.test(WEIGHT ~ COLOR, data=hwc3)
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> Epsilon2(kw, nrow(Chwc3))

[1] 0.3691985

> Mag(Epsilon2(kw, nrow(Chwc3))) # shipunov
[1 ] "high"

The overall efefct size is high, it also visible well on the boxplot (make it yourself):
> boxplot (WEIGHT ~ COLOR, data=hwc3)
To find out which sample is deviated, use nonparametric post hoc test:

> pairwise.wilcox.test (hwc3$WEIGHT, hwc3$COLOR)
Pairwise comparisons using Wilcoxon rank sum test
data: hwc3$WEIGHT and hwc3$COLOR

black blond
blond 1.1e-06 -
brown 1.6e-05 0.056
P value adjustment method: holm

(There are multiple warnings about ties. To get rid of them, replace the first argu-
ment with jitter (hwc3$HEIGHT). However, since jitter () adds random noise, it is
better to be careful and repeat the analysis several times if p-values are close to the
threshold like here.)

Another post hoc test for nonparametric one-way layout is Dunn’s test. There is a
separate dunn.test package:

> library(dunn.test)
> dunn.test (hwc3$WEIGHT, hwc3$COLOR, method="holm", altp=TRUE)
Kruskal-Wallis rank sum test
data: x and group
Kruskal-Wallis chi-squared = 32.8587, df = 2, p-value = 0
Comparison of x by group

(Holm)
Col Mean-|
Row Mean | black blond
_________ e
blond | 5.537736
| 0.0000%
|
brown | 4.051095 -1.486640
I 0.0001% 0.1371
alpha = 0.05

Reject Ho if p <= alpha
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(Output is more advanced but overall results are similar. More post hoc tests like
Dunnett’s test exist in the multcomp package.)

It is not necessary to check homogeneity of variance before Kruskall-Wallis test, but
please note that it assumes that distribution shapes are not radically different be-
tween samples. If it is not the case, one of workarounds is to transform the data
first, either logarithmically or with square root, or to the ranks>, or even in the more
sophisticated way. Another option is to apply permutation tests (see Appendix). As
a post hoc test, is is possible to use pairwise.Rro.test() from shipunov package
which does not assume similarity of distributions.

*
ki

Next figure (Fig. 5.8) contains the Euler diagram which summarizes what was said
above about different assumptions and ways of simple ANOVA-like analyses. Please
note that there are much more post hoc tests procedures then listed, and many of
them are implemented in various R packages.

The typical sequence of procedures related with one-way analysis is listed below:

» Check if data structure is suitable (head(), str(), summary()), is it long or
short

» Plot (e.g., boxplot(), beanplot())
» Normality, with plot or Normality()-like function

» Homogeneity of variance (homoscedasticity) (with bartlett.test()
or fligner.test())

» Core procedure (classic aov(), oneway.test() or Rruskal.test())
« Optionally, effect size (n? or €2 with appropriate formula)

* Post hoc test, for example TukeyHSD(), pairwise.t.test(), dunn.test()
or pairwise.wilcox.test()

In the open repository, data file melampyrum. txt contains results of cow-wheat
(Melampyrum spp.) measurements in multiple localities. Please find if there is a
difference in plant height and leaf length between plants from different localities.
Which localities are divergent in each case? To understand the structure of data,
use companion file melampyrum_c. txt.

SLike it is implemented in the ARTool package; there also possible to use multi-way nonparametric
designs.
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normal,
variances
similar:
aov()
TukeyHSD()

normal,
variances different:

oneway.test()
pairwise.t.test()

not normal:
kruskal.test()

paiwise.wilcox.test()

or dunn.test()

Figure 5.8: Applicability of different ANOVA-like procedures and related post hoc.

tests. Please read it from bottom to the top.

All in all, if you have two or more samples represented with measurement data, the

following table will help to research differences:

5.3.2 More then one way

Simple, one-way ANOVA uses only one factor in formula. Frequently, however, we
need to analyze results of more sophisticated experiments or observations, when

data is split two or more times and possibly by different principles.

Our book is not intended to go deeper, and the following is just an introduction to
the world of design and analysis of experiment. Some terms, however, are important
to explain:

Two-way This is when data contains two independent factors. See, for example,
?ToothGrowth data embedded in R. With more factors, three- and more ways

layouts are possible.
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two samples more then two samples

Step 1. Graphic boxplot(); beanplot()

Step 2. Normality etc. | Normality(); hist(); gqgnorm() and qqine();
optionally: bartlett.test() or
fligner.test()

Step 3. Test t.test(); aov();oneway.test();
wilcoxon.test() kRruskal.test()
Step 4. Effect cohen.d(); optionally: Eta2();
cliff.delta() Epsilon2()
Step 5. Pairwise NA TukeyHSD();
pairwise.t.test();
dunn.test()

Table 5.4: How to research differences between numerical samples in R.

Repeated measurements This is analogous to paired two-sample cases, but with
three and more measurements on each subject. This type of layout might re-
quire specific approaches. See ?0range or ?Loblolly data.

Unbalanced When groups have different sizes and/or some factor combinations are
absent, then design is unbalanced; this sometimes complicates calculations.

Interaction If there are more than one factor, they could work together (interact)
to produce response. Consequently, with two factors, analysis should include
statistics for each of them plus separate statistic for interaction, three values
in total. We will return to interaction later, in section about ANCOVA (“Many
lines”). Here we only mention the useful way to show interactions visually,
with interaction plot (Fig. 5.9):

> with(ToothGrowth, interaction.plot(supp, dose, len))

(It is, for example, easy to see from this interaction plot that with dose 2, type
of supplement does not matter.)

Random and fixed effects Some factors are irrelevant to the research but partici-
pate in response, therefore they must be included into analysis. Other factors
are planned and intentional. Respectively, they are called random and fixed
effects. This difference also influences calculations.
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Figure 5.9: Interaction plot for ToothGrowth data.

5.4 Is there an association? Analysis of tables

5.4.1 Contingency tables

How do you compare samples of categorical data? These frequently are text only,
there are have no numbers, like in classic “Fisher’s tea drinker” example*. A British
woman claimed to be able to distinguish whether milk or tea was added to the cup
first. To test, she was given 8 cups of tea, in four of which milk was added first:

> tea <- read.table("data/tea.txt", h=TRUE)
> head(tea)
GUESS REALITY
1 Milk MilR
2 Milk Milk

4Fisher R.A. 1971. The design of experiments. 9th ed. P. 11.
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3 Milk Milk
4 MilR Tea
5 Tea Tea
6 Tea Tea

The only way is to convert it to numbers, and the best way to convert is to count
cases, make contingency table:

> (tea.t <- table(tea))
REALITY
GUESS M1ilk Tea
Milk 3 1
Tea 1 3

Contingency table is not a matrix or data frame, it is the special type of R object
called “table”.

In R formula language, contingency tables are described with simple formula
~ factor(s)
To use this formula approach, run xtabs() command:

> xtabs(~ GUESS + REALITY, data=tea)

REALITY
GUESS MilR Tea
Milk 3 1
Tea 1 3

(More than one factors have to be connected with + sign.)

s Sk sk

If there are more than two factors, R can build a multidimensional table and print it
as a series of two-dimensional tables. Please call the embedded Titanic data to see
how 3-dimensional contingency table looks. A “flat” contingency table can be built
if all the factors except one are combined into one multidimensional factor. To do
this, use the command ftable():

> ftable(Titanic)
Survived No Yes
Class Sex Age

1st Male Child 0 5
Adult 118 57
Female Child 0 1
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Adult 4 140

2nd Male Child 0 11
Adult 154 14

Female Child 0 13

Adult 13 80

3rd Male Child 35 13
Adult 387 75

Female Child 17 14

Adult 89 76

Crew Male Child ] ]
Adult 670 192

Female Child 0 0

Adult 3 20

The function table can be used simply for calculation of frequencies (including
missing data, if needed):

> d <- rep(LETTERS[1:3], 10)
> is.na(d) <- 3:4
>d
[1] llAll IIBII NA NA llBII llcll
> table(d, useNA="ifany")
d
A B C <NA>
9 10 9 2

The function mosaicplot () creates a graphical representation of a contingency ta-
ble (Fig. 5.10):

> titanic <- apply(Titanic, c(1, 4), sum)
> titanic
Survived

Class No Yes

1st 122 203

2nd 167 118

3rd 528 178

Crew 673 212
> mosaicplot(titanic, col=c("#485392", "#204F15"),
+ main="", cex.axis=1)

(We used mosaicplot () command because apply() outputted a matrix. If the data
is a “table” with more than one dimension, object, plot() command will output
mosaic plot by default.)
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Figure 5.10: Survived on the “Titanic”

Yes

Contingency tables are easy enough to make even from numerical data. Suppose
that we need to look on association between month and comfortable temperatures

in New York. If the temperatures from 64 to 86°F (from 18 to 30°C) are comfort
temperatures, then:

> comfort <- ifelse(airquality$Temp < 64 | airquality$Temp > 86,
+ "uncomfortable", "comfortable")

Now we have two categorical variables, comfort and airquality$Month and can pro-
ceed to the table:

> comf.month <- table(comfort, airquality$Month)
> comf.month

comfort 5 6 7 8 9
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comfortable 18 25 24 21 24
uncomfortable 13 5 7 10 6

Spine plot (Fig. 5.11) is good for this kind of table, it looks like a visually advanced
“hybrid” between histogram, barplot and mosaic plot:

> spineplot(t(comf.month))
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Figure 5.11: Spine plot: when is better to visit New York City.
(Another variant to plot these two-dimensional tables is the dotchart(), please try
it yourself. Dotchart is good also for 1-dimensional tables, but sometimes you might

need to use the replacement Dotchart1() from shipunov package—it keeps space
for y axis label.)
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5.4.2 Table tests

To find if there is an association in a table, one should compare two frequencies in
each cell: predicted (theoretical) and observed. The serious difference is the sign of
association. Null and alternative hypotheses pairs are typically:

» Null: independent distribution of factors &~ no pattern present ~ no associa-
tion present

« Alternative: concerted distribution of factors ~ pattern present ~ there is an
association

In terms of p-values:

p-value
<0.05 > 0.05
association no
exists association

Functionchisq.test() runs a chi-squared test, one of two most frequently used tests
for contingency tables. Two-sample chi-squared (or x2) test requires either contin-
gency table or two factors of the same length (to calculate table from them first).

Now, what about the table of temperature comfort? assocplot(comf.month) shows
some “suspicious” deviations. To check if these are statistically significant:

> chisq.test(comf.month)

Pearson's Chi-squared test

data: comf.month

X-squared = 6.6499, df = 4, p-value = 0.1556

No, they are not associated. As before, there is nothing mysterious in these numbers.
Everything is based on differences between expected and observed values:

> df <- 4
> (expected <- outer(rowSums(comf.month),
+ colSums(comf.month), "%")/sum(comf.month))

5 6 7 8 9
comfortable 22.69281 21.960784 22.69281 22.69281 21.960784
uncomfortable 8.30719 8.039216 8.30719 8.30719 8.039216
> (chi.squared <- sum((comf.month - expected)~2/expected))
[1] 6.649898
> (p.value <- 1 - pchisq(chi.squared, df))
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[1] 0.1555872

(Note how expected values calculated and how they look: expected (null) are equal
proportions between both rows and columns. June and September have 30 days each,
hence slight differences in values—but not in expected proportions.)

Let us see now whether hair color and eye color from the 3-dimensional embedded
HairEyeColor data are associated. First, we can examine associations graphically
with assocplot() (Fig. 5.12):

> (HE <- margin.table(HairEyeColor, 1:2))

Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

> assocplot(HE)

(Instead of apply() used in the previous example, we employed margin.table()
which essentially did the same job.)

Association plot shows several things: the height of bars reflects the contribution
of each cell into the total chi-squared, this allows, for example, to detect outliers.
Square of rectangle corresponds with difference between observed and expected
value, thus big tall rectangles indicate more association (to understand this better,
compare this current plot with assocplot (comf.month)). Color and position of rect-
angle show the sign of the difference.

Overall, it is likely that there is an association. Now we need to check this hypothesis
with a test:

> chisq.test(HE)

Pearson's Chi-squared test

data: HE

X-squared = 138.29, df = 9, p-value < 2.2e-16

The chi-squared test takes as null hypothesis “no pattern”, “no association”. There-
fore, in our example, since we reject the null hypothesis, we find that the factors are
associated.

And what about survival on the “Titanic”?

> chisq.test(titanic)
Pearson's Chi-squared test
data: titanic
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Figure 5.12: Association between hair color and eye color.

X-squared = 190.4, df = 3, p-value < 2.2e-16

Yes (as reader might remember from the famous movie), survival was associated with
being in the particular class.

General chi-squared test shows only if asymmetry presents anywhere in the table.
This means that if it is significant, then at least one group of passengers has the dif-
ference in survival. Like ANOVA, test does not show which one. Post hoc, or pairwise
table test is able do show this:

> pairwise.Table2.test(titanic) # shipunov
Pairwise comparisons using Pearson's Chi-squared test
data: titanic

1st 2nd 3rd
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2nd 4.7e-07 - -

3rd < 2e-16 8.3e-07 -

Crew < 2e-16 3.9e-08 0.6

P value adjustment method: BH

From the table of p-values, it is apparent that 3rd class and crew members were not
different by survival rates. Note that post hoc tests apply p-value adjustment for mul-
tiple comparisons; practically, it means that because 7 tests were performed simulta-
neously, p-values were magnified with some method (here, Benjamini & Hochberg
method is default).

The file seedlings.txt contains results of an experiment examining germination
of seeds infected with different types of fungi. In all, three fungi were tested, 20
seeds were tested for each fungus, and therefore with the controls 80 seeds were
tested. Do the germination rates of the infected seeds differ?

Let us examine now the more complicated example. A large group of epidemiolo-
gists gathered for a party. The next morning, many woke up with symptoms of food
poisoning. Because they were epidemiologists, they decided to remember what each
of them ate at the banquet, and thus determine what was the cause of the illness.
The gathered data take the following format:

> tox <- read.table("data/poisoning.txt", h=TRUE)

> head(tox)

ILL CHEESE CRABDIP CRISPS BREAD CHICKEN RICE CAESAR TOMATO
1 1 1 1 2 1 1 1 1

2 1 1 1 2 1 2 2 2
1 2 2 1 2 1 2 1 2
1 1 2 1 1 1 2 1 2

H WN -

ICECREAM CAKE JUICE WINE COFFEE
1 1 1 1 1

1 1 2
2 1 2
2 1 2

H WD -

1 1
1 1
1 1

(We used head () here because the table is really long.)

The first variable (ILL) tells whether the participant got sick or not (1 or 2 respec-
tively); the remaining variables correspond to different foods.
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A simple glance at the data will not reveal anything, as the banquet had 45 partici-
pants and 13 different foods. Therefore, statistical methods must be used. Since the
data are nominal, we will use contingency tables:

tox.1 <- lapply(tox[,-1], function(.x) table(tox[, 1], .x))
tox.2 <- array(unlist(tox.1),

dim=c(dim(tox.1[[1]]1), length(tox.1))) # or simply c(2, 2, 13)
dimnames(tox.2) <- list(c("ill","not ill"),

c("tooR","didn't take"), names(tox.1))

+ v + v v

(First, we ran ILL variable against every column and made a list of small contingency
tables. Second, we converted list into 3-dimensional array, just like the Titanic data
is, and also made sensible names of dimensions.)

Now our data consists of small contingency tables which are elements of array:

> tox.2[,,"TOMATO"]

took didn't take
ill 24 5
not ill 6 10

(Note two commas which needed to tell R that we want the third dimension of the
array.)

Now we need a kind of stratified (with every type of food) table analysis. Since every
elementinthe tox.2 is 2 x 2 table, fourfold plot will visualize this data well (Fig. 5.13):

> fourfoldplot(tox.2, conf.level=0, col=c("yellow","black"))

(In fourfold plots, association corresponds with the difference between two pairs of
diagonal sectors. Since we test multiple times, confidence rings are suppressed.)

There are some apparent differences, especially for CAESAR, BREAD and TOMATO. To
check their significance, we will at first apply chi-squared test multiple times and
check out p-values:

> cbind(apply(tox.2, 3, function(.x) chisq.test(.x)$p.value))

[, 1]
CHEESE  0.8408996794
CRABDIP ©0.9493138514
CRISPS 1.0000000000
BREAD 0.3498177243
CHICKEN 0.3114822175
RICE 0.5464344359
CAESAR  0.0002034102
TOMATO 0.0059125029
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Figure 5.13: Association between food taken and illness.
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ICECREAM 0.5977125948
CAKE 0.8694796709
JUICE 1.0000000000
WINE 1.0000000000

COFFEE 0.7265552461
Warning messages:
1: In chisq.test(.x) : Chi-squared approximation may be incorrect

(An apply() allows us not to write the code for the test 13 times. You may omit
cbind() since it used only to make output prettier. There were multiple warnings,
and we will return to them soon.)

The result is that two foods exhibit significant associations with illness—Caesar
salad and tomatoes. The culprit is identified! Almost. After all, it is unlikely that
both dishes were contaminated. Now we must try to determine what was the main
cause of the food poisoning. We will return to this subject later.

Let us discuss one more detail. Above, we applied chi-squared test simultane-
ously several times. To account for multiple comparisons, we must adjust p-
values, magnify them in accordance with the particular rule, for example, with
widely known Bonferroni correction rule, or with (more reliable) Benjamini and
Hochberg correction rule like in the following example:

> p.adjust(c(@.005, 0.05, 0.1), method="BH")
[1] 9.015 0.075 0.100

Now you know how to apply p-value corrections for multiple comparisons. Try to
do this for our toxicity data. Maybe, it will help to identify the culprit?

s Sk sk

The special case of chi-squared test is the goodness-of-fit test, or G-test. We will apply
it to the famous data, results of Gregor Mendel first experiment. In this experiment,
he crossed pea plants which grew out of round and angled seeds. When he counted
seeds from the first generation of hybrids, he found that among 7,324 seeds, 5,474
were round and 1850 were angled. Mendel guessed that true ratio in this and six
other experiments is 3:1°:

>Mendel G. 1866. Versuche iiber Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines
in Briinn. Bd. 4, Abhandlungen: 12. http://biodiversitylibrary.org/page/40164750
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> chisq.test(c(5474, 1850), p=c(3/4, 1/4))
Chi-squared test for given probabilities
data: c¢(5474, 1850)

X-squared = 0.26288, df = 1, p-value = 0.6081

Goodness-of-fit test uses the null that frequencies in the first argument (interpreted
as one-dimensional contingency table) are not different from probabilities in the
second argument. Therefore, 3:1 ratio is statistically supported. As you might note,
it is not radically different from the proportion test explained in the previous chap-
ter.

Without p parameter, G-test simply checks if probabilities are equal. Let us check,
for example, if numbers of species in supergroups of living organisms on Earth are
equal:

sp <- read.table("data/species.txt", sep="\t")

species <- sp[, 2]

names(species) <- sp[, 1]

dotchart(rev(sort(logl1e(species))),

xlab="Decimal logarithm of species number", pch=19, pt.cex=1.2)
> chisq.test(species)

Chi-squared test for given probabilities

data: species

X-squared = 4771700, df = 7, p-value < 2.2e-16

+ v v v v

Naturally, numbers of species are not equal between supergroups. Some of them like
bacteria (supergroup Monera) have surprisingly low number of species, others like
insects (supergroup Ecdysozoa)—really large number (Fig. 5.14).

Chi-squared test works well when the number of cases per cell is more then 5. If
there are less cases, R gives at least three workarounds.

First, instead of p-value estimated from the theoretical distribution, there is a way
to calculate it directly, with Fisher exact test. Tea drinker table contains less then 5
cases per cell so it is a good example:

> fisher.test(tea.t)

Fisher's Exact Test for Count Data

data: tea.t

p-value = 0.4857

alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
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Figure 5.14: Numbers of species in supergroups of living organisms.

0.2117329 621.9337505
sample estimates:
odds ratio
6.408309

Fisher test checks the null if odds ratio is just one. Although in this case, calculation
gives odds ratio (3 : 1)/(1 : 3) = 9, there are only 8 observations, and confidence
interval still includes one. Therefore, contrary to the first impression, the test does
not support the idea that aforementioned woman is a good guesser.

Fourfold plot (please check it yourself) gives the similar result:

> fourfoldplot(tea.t)
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While there is apparent difference between diagonals, confidence rings significantly
intersect.

Fisher test is computationally intensive so it is not recommended to use it for large
number of cases.

The second workaround is the Yates continuity correction which in R is default for
chi-squared test on 2 x 2 tables. We use now data from the original Yates (1934)°
publication, data is taken from study of the influence of breast and artificial feeding
on teeth formation:

> ee <- read.table("data/teeth.txt", h=T)
> chisq.test(table(ee))
Pearson's Chi-squared test with Yates' continuity correction
data: table(ee)
X-squared = 1.1398, df = 1, p-value = 0.2857
Warning message:
In chisq.test(table(ee)) :
Chi-squared approximation may be incorrect

(Note the warning in the end.)
Yates correction is not a default for the summary.table() function:

> summary(table(ee)) # No correction in summary.table()
Number of cases in table: 42

Number of factors: 2

Test for independence of all factors:

Chisq = 2.3858, df = 1, p-value = 0.1224

Chi-squared approximation may be incorrect

(Note different p-value: this is an effect of no correction. For all other kind of tables
(e.g., non 2 x 2), results of chisq.test() and summary.table() should be similar.)

The third way is to simulate chi-squared test p-value with replication:

> chisq.test(table(ee), simulate.p.value=T)

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: table(ee)

X-squared = 2.3858, df = NA, p-value = 0.1754

(Note that since this algorithm is based on random procedure, p-values might differ.)

bYates F. 1934. Contingency tables involving small numbers and the x? test. Journal of the Royal
Statistical Society. 1(2): 217-235.
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How to calculate an effect size for the association of categorical variables? One of
them is odds ratio from the Fisher test (see above). There are also several different
effect size measures changing from 0 (no association) to (theoretically) 1 (which is
an extremely strong association). If you do not want to use external packages, one
of them, ¢ coefficient is easy to calculate from the y-squared statistic.

> sqrt(chisq.test(tea.t, correct=FALSE)$statistic/sum(tea.t))

0.5

® coefficient works only for two binary variables. If variables are not binary, there
are Tschuprow’s T and Cramer’s V coefficients. Now it is better to use the external
code from the shipunov package:

> (x <- margin.table(Titanic, 1:2))
Sex
Class Male Female
1st 180 145
2nd 179 106
3rd 510 196

Crew 862 23
> VTcoeffs(x) # shipunov
coefficients values comments

1 Cramer's V 0.3987227 medium
2 Cramer's V (corrected) 0.3970098 medium
3 Tschuprow's T 0.3029637
4 Tschuprow's T (corrected) 0.3016622

R package vcd has function assocstats () which calculates odds ratio, ¢, Cramer’s
V and several other effect measures.

In the open repository, file cochlearia.txt contains measurements of morpho-
logical characters in several populations (locations) of scurvy-grass, Cochlearia.
One of characters, binary IS.CREEPING reflects the plant life form: creeping or
upright stem. Please check if numbers of creeping plants are different between
locations, provide effect sizes and p-values.

There are many table tests. For example, test of proportions from the previous chap-
ter could be easily extended for two samples and therefore could be used as a table
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test. There is also mcnemar. test () which is used to compare proportions when they
belong to same objects (paired proportions). You might want to check the help (and
especially examples) in order to understand how they work.

In the betula (see above) data, there are two binary characters: LOBES (position
of lobes on the flower bract) and WINGS (the relative size of fruit wings). Please
find if proportions of plants with 0 and 1 values of LOBES are different between
location 1 and location 2.

I Are proportions of LOBES and WING values different in the whole dataset?

The typical sequence of procedures related with analysis of tables is listed below:
» Check the phenomenon of association: table(), xtabs()
 Plot it first: mosaicplot(), spineplot(), assocplot()
» Decideisassociationis statistically significant: chisq.test(), fisher.test()
» Measure how strong is an association: VTCoeffs()

» Optionally, if there are more then two groups per case involved, run post hoc
pairise tests with the appropriate correction: pairwise.Table2.test()

To conclude this “differences” chapter, here is the Table 5.5 which will guide the
reader through most frequently used types of analysis. Please note also the much
more detailed Table 6.1 in the appendix.

5.5 Answers to exercises

5.5.1 Two sample tests, effect sizes

Answer to the sign test question. It is enough to write:

> aa <-c(1, 2, 3, 4, 5, 6, 7, 8, 9)
> bb <- ¢(5, 5, 5,5, 5,5, 5,5, 5)
> dif <- aa - bb
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Normal Non-normal

measurement or | nominal
ranked

= 2 samples | Student’s test Wilcoxon test Chi-squared test

> 2 samples | ANOVA or one-way | Kruskall-Wallis + | (+ post-hoc test)
+ some post hoc test | some post hoc test

Table 5.5: Methods, most frequently used to analyze differences and patterns. This
is the simplified variant of Table 6.1.

> pos.dif <- dif[dif > o]
> prop.test(length(pos.dif), length(dif))
1-sample proportions test with continuity correction
data: 1length(pos.dif) out of length(dif), null probability 0.5
X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.1534306 0.7734708
sample estimates:

P
0.4444444

Here the sign test failed to find obvious differences because (like t-test and Wilcoxon
test) it considers only central values.

Answer to the ozone question. To know if our data are normally distributed, we can
apply the Normality() function:

> ozone.month <- airquality[, c("Ozone","Month")]
> ozone.month.list <- unstack(ozone.month)
> sapply(ozone.month.list, Normality) # shipunov
5 6 7 8 9
"NOT NORMAL" "NORMAL" "NORMAL" "NORMAL" "NOT NORMAL"

(Here we applied unstack() function which segregated our data by months.)
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Answer to the argon question. First, we need to check assumptions:

> sapply(unstack(ar, form=v2 ~ V1), Normality)
air chemical
"NORMAL" "NOT NORMAL"

It is clear that in this case, nonparametric test will work better:

> wilcox.test(jitter(v2) ~ V1, data=ar)

Wilcoxon rank sum test

data: jitter(V2) by V1

W = 56, p-value = 0.0003108

alternative hypothesis: true location shift is not equal to @

(We used jitter() to break ties. However, be careful and try to check if this random
noise does not influence the p-value. Here, it does not.)

And yes, boxplots (Fig. 5.5) told the truth: there is a statistical difference between
two set of numbers.

s Sk sk

Answer to the cashiers question. Check normality first:

> cashiers <- read.table("data/cashiers.txt", h=TRUE)
> head(cashiers)
CASHIER.1 CASHIER.2

1 3 12
2 12 12
3 13 9
4 5 6
] 4 2
6 11 9

> sapply(cashiers, Normality) # shipunov
CASHIER.1 CASHIER.2
"NORMAL" "NORMAL"

Now, we can compare means:

> (cashiers.m <- sapply(cashiers, mean))
CASHIER.1 CASHIER.2
8.380952 7.809524
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It is likely that first cashier has generally bigger lines:

> with(cashiers, t.test(CASHIER.1, CASHIER.2, alt="greater"))
Welch Two Sample t-test

data: CASHIER.1 and CASHIER.2

t = 0.43577, df = 39.923, p-value = 0.3327

alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:

-1.636702 Inf

sample estimates:

mean of x mean of Yy

8.380952 7.809524

The difference is not significant.

Answer to the grades question. First, check the normality:

> grades <- read.table("data/grades.txt")
> classes <- split(grades$Vv1, grades$v2)
> sapply(classes, Normality) # shipunov
A1 A2 B1
"NOT NORMAL" "NOT NORMAL" "NOT NORMAL"

(Function split() created three new variables in accordance with the grouping fac-
tor; it is similar to unstack() from previous answer but can accept groups of unequal
size.)

Check data (it is also possible to plot boxplots):

> sapply(classes, median, na.rm=TRUE)
A1 A2 B1
4 4 5

It is likely that the first class has results similar between exams but in the first exam,
the second group might have better grades. Since data is not normal, we will use
nonparametric methods:

> wilcox.test(classes$A1, classes$A2, paired=TRUE, conf.int=TRUE)
Wilcoxon signed rank test with continuity correction
data: classes$A1 and classes$A2

V = 15.5, p-value = 0.8605
alternative hypothesis: true location shift is not equal to 0
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95 percent confidence interval:
-1.499923 1.500018
sample estimates:
(pseudo)median
0
Warning messages:

> wilcox.test(classes$B1, classes$A1, alt="greater", conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: classes$B1 and classes$A1
W = 306, p-value = 0.02382

alternative hypothesis: true location shift is greater than @
95 percent confidence interval:

6.957242e-05 Inf

sample estimates:

difference in location

6.160018e-05

Warning messages:

For the first class, we applied the paired test since grades in first and second exams
belong to the same people. To see if differences between different classes exist, we
used one-sided alternative hypothesis because we needed to understand not if the
second class is different, but if it is better.

As aresult, grades of the first class are not significantly different between exams, but
the second class performed significantly better than first. First confidence interval
includes zero (as it should be in the case of no difference), and second is not of much
use.

Now effect sizes with suitable nonparametric Cliff’s Delta:
> cliff.delta(classes$A1, classes$A2)

ClLiff's Delta

delta estimate: 0.03557312 (negligible)

95 percent confidence interval:

inf sup
-0.2620344 0.3270022

> cliff.delta(classes$B1, classes$Al)

203



ClLiff's Delta

delta estimate: 0.2670807 (small)

95 percent confidence interval:
inf sup

-0.01307644 0.50835763

Therefore, results of the second class are only slightly better which could even be
negligible since confidence interval includes 0.

Answer to the question about ground elder leaves (Fig. 5.15).

Figure 5.15: Leaf of Aegopodium podagraria., ground elder. Scale bar is approxi-
mately 10 mm.

First, check data, load it and check the object:

> aa <- read.table(
+ "http://ashipunov.info/shipunov/open/aegopodium.txt", h=TRUE)
> aa$SUN <- factor(aa$SUN, labels=c("shade","sun"))
> Str(aa)
'data.frame': 100 obs. of 5 variables:
1 PET.L : num 25.5 24.1 27.4 24.9 26.2 37.4 18 30.3 26.1
2 TERM.L: num 8.9 5.8 8.2 6.8 8.2 13.1 7.2 7.8 7.15.8 ...
3 LEAF.L: num 34.4 29.9 35.6 31.7 34.4 50.5 25.2 38.1 33.2 ...
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4 BLADES: int 5777747677 ...
5 SUN : Factor w/ 2 levels "shade","sun": 11111111

(We also converted SUN variable into factor and supplied the proper labels.)
Let us check the data for the normality and for the most different character (Fig. 5.16):
> aggregate(aal[,-5], list(light=aa[,5]), Normality) # shipunov

light PET.L TERM.L LEAF.L BLADES
1 shade NORMAL NORMAL NORMAL NOT NORMAL
2 sun NORMAL NOT NORMAL NORMAL NOT NORMAL
> Linechart(aa[, 1:4], aa[, 5], xmarks=FALSE, lcolor=1,
+ se.lwd=2, mad=TRUE) # shipunov
PET.L
sun e
Shade | c—————————————————————————
TERM.L
sun OO
shade
LEAF.L
sun OO
shade | -
BLADES
sun B .

Figure 5.16: Medians with MADs in leaves data.
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TERM. L (Iength of the terminal leaflet, it is the rightmost one on Fig. 5.15), is likely
most different between sun and shade. Since this character is normal, we will run
more precise parametric test:

> t.test(LEAF.L ~ SUN, data=aa)
Welch Two Sample t-test
data: LEAF.L by SUN
t = 14.846, df = 63.691, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
14.20854 18.62746
sample estimates:
mean in group shade mean in group sun
35.534 19.116

To report t-test result, one needs to provide degrees of freedom, statistic and p-
value, e.g., like “in a Welch test, t statistic is 14.85 on 63.69 degrees of freedom,
p-value is close to zero, thus we rejected the null hypothesis”.

Effect sizes are usually concerted with p-values but provide additional useful infor-
mation about the magnitude of differences:

> library(effsize)
> cohen.d(LEAF.L ~ SUN, data=aa)
Cohen's d
d estimate: 2.969218 (large)
95 percent confidence interval:
inf sup
2.384843 3.553593
> summary(K(LEAF.L ~ SUN, data=aa))
Lyubishchev's K Effect
4.41 Strong

Both Cohen’s d and Lyubishchev’s K (coefficient of divergence) are large.

5.5.2 ANOVA

Answer to the height and color questions. Yes on both questions:

> summary(aov(HEIGHT ~ COLOR, data=hwc))

Df Sum Sq Mean Sq F value Pr(>F)
COLOR 2 2787.3 1393.6 153.3 <2e-16 ***
Residuals 87 791.1 9.1
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Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

> pairwise.t.test Chwc$HEIGHT, hwc$COLOR)
Pairwise comparisons using t tests with pooled SD
data: hwc$HEIGHT and hwc$COLOR
black  blond
blond < 2e-16 -
brown 1.7e-10 3.3e-16
P value adjustment method: holm

There are significant differences between all three groups.

Answer to the question about differences between cow-wheats (Fig. 5.17) from seven
locations.

Figure 5.17: Top of the cow-wheat plant, Melampyrum sp. Size of fragment is ap-
proximately 10 cm.

Load the data and check its structure:

> mm <- read.table(
+ "http://ashipunov.info/shipunov/open/melampyrum.txt", h=TRUE)
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> Str(mm)
'data.frame': 126 obs. of 9 variables:
1 LOC cint 1111111111
P.HEIGHT : int 246 235 270 260 300 250 205 190 275 215 ...
NODES * int NA NA NA NA NA NA NA NA NA NA ...
V.NODES * int NA NA NA NA NA NA NA NA NA NA ...
LEAF.L * int 23 27 35 20 38 46 17 22 42 26 ...
LEAF.W * int 5
LEAF .MAXWx int 3
TEETH * int 3
TOOTH.L * int 4

Plot it first (Fig. 5.18):

> old.par <- par(mfrow=c(2, 1), mai=c(0.5, 0.5, 0.1, 0.1))

> boxplot(P.HEIGHT ~ LOC, data=mm, col=grey(0.8))

> boxplot (LEAF.L ~ LOC, data=mm, col=rgb(173, 204, 90, max=255))
> par(old.par)

W o NOoON Ol bW

Check assumptions:

> sapply(mm[, c(2, 5)], Normality)
P.HEIGHT LEAF.L
"NORMAL" "NOT NORMAL"
> bartlett.test(P.HEIGHT ~ LOC, data=mm)
Bartlett test of homogeneity of variances
data: P.HEIGHT by LOC
Bartlett's K-squared=17.014, df=6, p-value=0.00923

Consequently, leaf length must be analyzed with non-parametric procedure, and
plant height—with parametric which does not assume homogeneity of variance (one-
way test):

> oneway.test(P.HEIGHT ~ LOC, data=mm)

One-way analysis of means (not assuming equal variances)

data: P.HEIGHT and LOC

F = 18.376, num df = 6.000, denom df = 49.765, p-value = 4.087e-11

> pairwise.t.test(mm$P.HEIGHT, mm$LOC)
Pairwise comparisons using t tests with pooled SD
data: mm$P.HEIGHT and mm$LOC
1 2 3 4 5 6
2 0.05381 - - - - -
3 0.00511 1.1e-08 - - - -
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Figure 5.18: Cow-wheat stem heights (top) and leaf lengths (bottom) across seven
different locations.

4 1.00000 0.00779 0.00511 - - -

5 1.00000 0.04736 0.00041 1.00000 - -

6 4.2e-05 1.8e-11 0.62599 2.3e-05 1.1e-06 -

7 0.28824 1.9e-05 0.39986 0.39986 0.09520 0.01735
P value adjustment method: holm

Now the leaf length:

> Rruskal.test(LEAF.L ~ LOC, data=mm)

Kruskal-Wallis rank sum test

data: LEAF.L by LOC

Kruskal-Wallis chi-squared = 22.6, df = 6, p-value = 0.0009422
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> pairwise.wilcox.test(mm$LEAF.L, mm$LOC)
Pairwise comparisons using Wilcoxon rankR sum test
data: mm$LEAF.L and mm$LOC

1 2 3 4 5 6
2 0.6249 - - - - -
3 1.0000 0.1538 - - - -
4 0.4999 0.0064 1.0000 - - -
5 1.0000 0.5451 1.0000 1.0000 - -
6 0.6599 1.0000 0.1434 0.0028 0.5451 -
7 1.0000 1.0000 1.0000 0.5904 1.0000 1.0000

P value adjustment method: holm
There were 21 warnings (use warnings() to see them)

All in all, location pairs 2—-4 and 4-6 are divergent statistically in both cases. This
is visible also on boxplots (Fig. 5.18). There are more significant differences in plant
heights, location #6, in particular, is quite outstanding.

5.5.3 Contingency tables
Answer to the seedlings question. Load data and check its structure:

> pr <- read.table("data/seedlings.txt", h=TRUE)

> str(pr)
'data.frame': 80 obs. of 2 variables:
$ CID : int 63 63 63 63 63 63 63 63 63 63 ...

$ GERM.14: int 1111111111

Now, what we need is to examine the table because both variables only look like
numbers; in fact, they are categorical. Dotchart (Fig. 5.19) is a good way to explore
2-dimensional table:

> (pr.t <- table(pr))
GERM.14
CID 0 1
0 119
63 3 17
80 17 3
105 10 10
> dotchart(t(pr.t), pch=19, gcolor=2)

To explore possible associations visually, we employ vcd package:

> library(vcd)
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Figure 5.19: Dotchart to explore table made from seedlings data.

> assoc(pr.t, shade=TRUE, gp=shading_Friendly2,
+ gp_args=Llist(interpolate=c(1, 1.8)))

Both table output and vcd association plot (Fig. 5.20) suggest some asymmetry (es-
pecially for CID80) which is a sign of possible association. Let us check it numeri-
cally, with the chi-squared test:

> chisq.test(pr.t, simulate=TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: pr.t

X-squared = 33.443, df = NA, p-value = 0.0004998
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GERM.14
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residuals:

3.3
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Figure 5.20: Advanced association plot of seedlings data.

Yes, there is an association between fungus (or their absence) and germination. How
to know differences between particular samples? Here we need a post hoc test:

> pairwise.Table2.test(table(pr), exact=TRUE)
Pairwise comparisons using Fisher's Exact Test
data: table(pr)
0 63 80
63 0.6050 - -
80 2.4e-06 5.8e-05 -
105 0.0067 0.0489 0.0489
P value adjustment method: BH

(Exact Fisher test was used because some counts were really small.)

It is now clear that germination patterns form two fungal infections, CID80 and
CID105, are significantly different from germination in the control (CIDO). Also,
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significant association was found in the every comparison between three infections;
this means that all three germination patterns are statistically different. Finally, one
fungus, CID63 produces germination pattern which is not statistically different from
the control.

Answer to the question about multiple comparisons of toxicity. Here we will go the
slightly different way. Instead of using array, we will extract p-values right from the
original data, and will avoid warnings with the exact test:

> tox <- read.table("data/poisoning.txt", h=TRUE)
> tox.p.values <- apply(tox[,-11, 2,
+ function(.x) fisher.test(table(tox[, 1], .x))$p.value)

(We cannot use pairwise.Table2.test() from the previous answer since our com-
parisons have different structure. But we used exact test to avoid warnings related
with small numbers of counts.)

Now we can adjust p-values:

> round(p.adjust(tox.p.values, method="BH"), 3)
CHEESE CRABDIP CRISPS BREAD CHICKEN
0.985 0.985 1.000 0.985 0.985
RICE CAESAR TOMATO
0.985 0.001 0.021
ICECREAM CAKE JUICE WINE COFFEE
0.985 0.985 1.000 1.000 0.985

Well, now we can say that Caesar salad and tomatoes are statistically supported as
culprits. But why table tests always show us two factors? This could be due to the
interaction: in simple words, it means that people who took the salad, frequently
took tomatoes with it.

s Sk sk

Answer to the scurvy-grass question. Check the data file, load and check result:

cc <-read.table(
"http://ashipunov.info/shipunov/open/cochlearia.txt", h=TRUE)
cc$LOC <- factor(cc$LOC, labels=pasted("loc", levels(cc$LOC)))
cc$IS.CREEPING <- factor(cc$IS.CREEPING,

labels=c("upright", "creeping"))

+ v v + v
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> str(cc)
'data.frame': 174 obs. of 8 variables:

$ LOC : Factor w/ 8 levels "loc1","loc2",..: 1 11

$ STEM :lnt 162 147 170 432 146 207 91 166 204 172 ...

$ IS.CREEPING: Factor w/ 2 levels "upright","creeping": 1 1 1

$ LATERAL :int 000 00000O0O0 ...

$ PETAL.L : num NA NA NA NA NA NA NA 3 NA NA ...

$ FRUIT.L :int 67977676738 ...

$ FRUIT.W :int 4375454455

$ SEED.S tint 2211111211

(In addition, we converted LOC and IS.CREEPING to factors and provided new level

labels.)
Next step is the visual analysis (Fig. 5.21):

> s.cols <- colorRampPalette(c("white", "forestgreen"))(5)[3:4]
> spineplot(IS.CREEPING ~ LOC, data=cc, col=s.cols)

Some locations look different. To analyze, we need contingency table:

> (cc.lc <- xtabs(~ LOC + IS.CREEPING, data=cc))
IS.CREEPING
LocC upright creeping

loc1 15 24
loc2 39 0
loc3 0 1
loc4 5 0
loc5 15 0
locé 46 0
loc7 15 0
loc8 7 7

Now the test and effect size:

> chisq.test(cc.lc, simulate.p.value=TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: cc.lc

X-squared = 89.177, df = NA, p-value = 0.0004998

> VTcoeffs(cc.lc)[2, ] # shipunov

coefficients values comments
2 Cramer's V (corrected) 0.6872265 large
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Figure 5.21: Spine plot: locality vs. life form of scurvy-grass.

(Run pairwise.Table2.test(cc.lc) yourself to understand differences in details.)

Yes, there is a large, statistically significant association between locality and life
form of scurvy-grass.

*
*
*

Answer to the question about equality of proportions of LOBES character in two birch
localities. First, we need to select these two localities (1 and 2) and count proportions
there. The shortest way is to use the table() function:

> (betula.ll <- table(betula[betula$LOC < 3, c("LOC","LOBES")]1))
LOBES
LOC 0 1
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Spine plot (Fig. 5.22) helps to make differences in the table even more apparent:

> birch.cols <- colorRampPalette(c("black", "forestgreen"))(5)[3:4]
> spineplot(betula.ll, col=birch.cols)

(Please also note how to create two colors intermediate between black and dark
green.)

0.8 1.

LOBES
0.6

0.4

0.2

0.0

LOC

Figure 5.22: Spine plot of two birch characters.

The most natural choice is prop.test () which is applicable directly to the table()
output:

> prop.test(betula.ll)
2-sample test for equality of proportions with continuity correction
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data: betula.ll
X-squared = 4.7384, df = 1, p-value = 0.0295
alternative hypothesis: two.sided
95 percent confidence interval:
0.05727638 0.62843791
sample estimates:
prop 1 prop 2
0.8095238 0.4666667

Instead of proportion test, we can use Fisher exact:

> fisher.test(betula.ll)
Fisher's Exact Test for Count Data
data: betula.ll
p-value = 0.01987
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.156525 23.904424
sample estimates:
odds ratio
4.704463

... or chi-squared with simulation (note that one cell has only 4 cases), or with de-
fault Yates’ correction:

> chisq.test(betula.ll)

Pearson's Chi-squared test with Yates' continuity correction
data: betula.ll

X-squared = 4.7384, df = 1, p-value = 0.0235

All in all, yes, proportions of plants with different position of lobes are different
between location 1 and 2.

And what about effect size of this association?

> VTcoeffs(betula.ll)[2, ] # shipunov
coefficients values comments
2 Cramer's V (corrected) 0.3159734 medium

Answer to the question about proportion equality in the whole betula dataset.
First, make table:

> (betula.lw <- table(betula[, c("LOBES","WINGS")]1))
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WINGS
LOBES 0 1
0 61 69
1 50 45

There is no apparent asymmetry. Since betula.lwis 2 x 2 table, we can apply four-
fold plot. It shows differences not only as different sizes of sectors, but also allows
to check 95% confidence interval with marginal rings (Fig. 5.23):

> fourfoldplot(betula.lw, col=birch.cols)

LOBES: O

WINGS: 0
WINGS: 1

LOBES: 1

Figure 5.23: Fourfold plot of two birch characters.

Also not suggestive... Finally, we need to test the association, if any. Noe that sam-
ples are related. This is because LOBES and WINGS were measured on the same plants.
Therefore, instead of the chi-squared or proportion test we should run McNemar’s
test:

> mcnemar.test(betula. lw)

McNemar's Chi-squared test with continuity correction
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data: betula.lw
McNemar's chi-squared = 2.7227, df = 1, p-value = 0.09893

We conclude that proportions of two character states in each of characters are not
statistically different.
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Chapter 6

Two-dimensional data: models

Here we finally come to the world of statistical models, the study of not just differ-
ences but how exactly things are related. One of the most important features of mod-
els is an ability to predict results. Modeling expands into thousands of varieties,
there are experiment planning, Bayesian methods, maximal likelihood, and many
others—but we will limit ourself with correlation, core linear regression, analysis of
covariation, and introduction to logistic models.

6.1 Analysis of correlation

To start with relationships, one need first to find a correlation, e.g., to measure the
extent and sign of relation, and to prove if this is statistically reliable.

Note that correlation does not reflect the nature of relationship (Fig. 6.1). If we find
a significant correlation between variables, this could mean that A depends on B, B
depends on A, A and B depend on each other, or A and B depend on a third variable
C but have no relation to each other. A famous example is the correlation between
ice cream sales and home fires. It would be strange to suggest that eating ice cream
causes people to start fires, or that experiencing fires causes people to buy ice cream.
In fact, both of these parameters depend on air temperature!.

Numbers alone could be misleading, so there is a simple rule: plot it first.

IThere are, however, advanced techniques with the goal to understand the difference between causa-
tion and correlation: for example, those implemented in bnlearn package.
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Figure 6.1: Correlation and causation (taken from XKCD, http://xkcd.com/552/).

6.1.1 Plot it first

The most striking example of relationships where numbers alone do to provide a re-
liable answer, is the Anscombe’s quartet, four sets of two variables which have almost
identical means and standard deviations:

> classic.desc <- function(.x) {c(mean=mean(.x, na.rm=TRUE),
+ var=var(.x, na.rm=TRUE))}
> sapply(anscombe, classic.desc)
X1 x2 x3 x4 y1 y2 y3 y4
mean 9 9 9 9 7.500909 7.500909 7.50000 7.500909
var 11 11 11 11 4.127269 4.127629 4.12262 4.123249

(Data anscombe is embedded into R. To compact input and output, several tricks were
used. Please find them yourself.)

Linear model coefficients (see below) are also quite similar but if we plot these data,
the picture (Fig 6.2) is radically different from what is reflected in numbers:

> a.vars <- data.frame(i=c(1, 5), ii=c(2, 6),

+ 1ii=c(3, 7), iv=c(4, 8))

> oldpar <- par(mfrow=c(2, 2), mar=c(4, 4, 1, 1))

> for (1 in 1:4) { plot(anscombel[a.vars[, 1]], pch=19, cex=1.2);
+ abline(lm(anscombe[rev(a.vars[, 1])]1), lty=2) }

(For aesthetic purposes, we put all four plots on the same figure. Note the for oper-
ator which produces cycle repeating one sequence of commands four times. To know
more, check ?"for".)

To the credit of nonparametric and/or robust numerical methods, they are not so
easy to deceive:

> robust.desc <- function(.x) {c(median=median(.x, na.rm=TRUE),
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Figure 6.2: Anscombe’s quartet, plotted together with lines from linear models.

+ IQR=IQR(.x, na.rm=TRUE), mad=mad(.x, na.rm=TRUE))}
> sapply(anscombe, robust.desc)

x1 X2 x3 x4 NA( y2 y3 y4
median 9.0000 9.0000 9.0000 8 7.580000 8.140000 7.110000 7.040000
IQR 5.0000 5.0000 5.0000 0 2.255000 2.255000 1.730000 2.020000
mad 4.4478 4.4478 4.4478 0 1.823598 1.467774 1.527078 1.837728

This is correct to guess that boxplots should also show the difference. Please try to
plot them yourself.
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6.1.2 Correlation

To measure the extent and sign of linear relationship, we need to calculate correla-
tion coefficient. The absolute value of the correlation coefficient varies from O to 1.
Zero means that the values of one variable are unconnected with the values of the
other variable. A correlation coefficient of 1 or —1 is an evidence of a linear relation-
ship between two variables. A positive value of means the correlation is positive (the
higher the value of one variable, the higher the value of the other), while negative
values mean the correlation is negative (the higher the value of one, the lower of the
other).

It is easy to calculate correlation coefficient in R:

> cor(5:15, 7:17)

[1]1 1

> cor(5:15, c(7:16, 23))
[1] 0.9375093

(By default, R calculates the parametric Pearson correlation coefficient r.)

In the simplest case, it is given two arguments (vectors of equal length). It can also
be called with one argument if using a matrix or data frame. In this case, the function
cor() calculates a correlation matrix, composed of correlation coefficients between
all pairs of data columns.

> cor(trees)

Girth Height Volume
Girth 1.0000000 0.5192801 0.9671194
Height ©.5192801 1.0000000 ©.5982497
Volume 0.9671194 0.5982497 1.0000000

As correlation is in fact the effect size of covariance, joint variation of two variables,
to calculate it manually, one needs to know individual variances and variance of the
difference between variables:

> with(trees, cor(Girth, Height))

[1] 0.5192801

> (v1 <- var(trees$Girth))

[1] 9.847914

> (v2 <- var(trees$Height))

[1] 40.6

> (V12 <- var(trees$Girth - trees$Height))

[1] 29.68125

> (pearson.r <- (v1 + v2 - v12)/(2*sqrt(v1)*sqrt(v2)))
[1] 0.5192801
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Another way is to use cov() function which calculates covariance directly:

> with(trees, cov(Girth, Height)/(sd(Girth)*sd(Height)))
[1] 0.5192801

To interpret correlation coefficient values, we can use either symnum() or Topm()
functions (see below), or Mag() together with apply():

> noquote(apply(cor(trees), 1:2,
+ function(.x) Mag(.x, squared=FALSE))) # shipunov

Girth Height Volume
Girth very high high very high
Height high very high high
Volume very high high very high

If the numbers of observations in the columns are unequal (some columns have miss-
ing data), the parameter use becomes important. Default is everything which re-
turns NA whenever there are any missing values in a dataset. If the parameter use
is set to complete.obs, observations with missing data are automatically excluded.
Sometimes, missing data values are so dispersed that complete.obs will not leave
much of it. In that last case, use pairwise.complete.obs which removes missing
values pair by pair.

Pearson’s parametric correlation coefficients characteristically fail with the Ans-
combe’s data:

> diag(cor(anscombe[, 1:4], anscombe[, 5:8]))
[1] 0.8164205 0.8162365 0.8162867 0.8165214 # correlation

To overcome the problem, one can use Spearman’s p (“rho”, or rank correlation co-
efficient) which is most frequently used nonparametric correlation coefficient:

> with(trees, cor(Girth, Height, method="spearman"))

[1] 0.4408387

> diag(cor(anscombe[, 1:4], anscombe[, 5:8], method="s"))
[1] 0.8181818 0.6909091 0.9909091 0.5000000

(Spearman’s correlation is definitely more robust!)
The third kind of correlation coefficient in R is nonparametric Kendall’s 7 (“tau”):

> with(trees, cor(Girth, Height, method="R"))

[1] 0.3168641

> diag(cor(anscombe[, 1:4], anscombe[, 5:8], method="k"))
[1] 0.6363636 0.5636364 0.9636364 0.4264014
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It is often used to measure association between two ranked or binary variables, i.e.
as an alternative to effect sizes of the association in contingency tables.

How to check if correlation is statistically significant? As a null hypothesis, we could
accept that correlation coefficient is equal to zero (no correlation). If the null is re-
jected, then correlation is significant:

> with(trees, cor.test(Girth, Height))
Pearson's product-moment correlation
data: Girth and Height
t = 3.2722, df = 29, p-value = 0.002758
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2021327 0.7378538
sample estimates:
cor
0.5192801

The logic of cor.test() is the same as in tests before (Table 5.1, Fig. 5.1). In terms
of p-value:

p-value
<0.05 > 0.05
there is no
some correlation correlation

The probability of obtaining the test statistic (correlation coefficient), given the ini-
tial assumption of zero correlation between the data is very low—about 0.3%. We
would reject Hy and therefore accept an alternative hypothesis that correlation be-
tween variables is present. Please note the confidence interval, it indicates here that
the true value of the coefficient lies between 0.2 and 0.7. with 95% probability.

It is not always easy to read the big correlation table, like in the following example
of longley macroeconomic data. Fortunately, there are several workarounds, for
example, the symnum() function which replaces numbers with letters or symbols in
accordance to their value:
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> symnum(cor(longley))
GNP. GNP U AP YE
GNP.deflator 1

GNP B 1

Unemployed , , 1

Armed.Forces . . 1

Population B B , -1

Year B B , - B 1

Employed B B .BB1

attr(,"legend")

[0 ¢’ 0.3 “.7 0.6 “,” 0.8 ‘+’ 0.9 ‘x’ 0.95 ‘B’ 1

The second way is to represent the correlation matrix with a plot. For example, we
may use the heatmap: split everything from —1 to +1 into equal intervals, assign the
color for each interval and show these colors (Fig. 6.3):

cor.l <- cor(longley)

dimnames(cor.1l) <- lapply(dimnames(cor.l), abbreviate)
rgb.palette <- colorRampPalette(c("cadetblue", "Rhaki"))
palette.l <- rgb.palette(length(unique(abs(cor.1))))
library(lattice)

levelplot(abs(cor.l), col.regions=palette.l, xlab="", ylab="")

V V V V Vv Vv

(We shortened here long names with the abbreviate() command.)

The other interesting way of representing correlations are correlation ellipses (from
ellipse package). In that case, correlation coefficients are shown as variously com-
pressed ellipses; when coefficient is close to —1 or +1, ellipse is more narrow (Fig. 6.4).
The slope of ellipse represents the sign of correlation (negative or positive):

> library(ellipse)
> colors <- cm.colors(7)
> plotcorr(cor.l, type="lower", col=colors[5%cor.L + 2])

Several useful ways to visualize and analyze correlations present in the shipunov
package:

> tox.cor <- cor(tox, method="k")
> Pleiad(tox.cor, corr=TRUE, lcol="black") # shipunov

We calculated here Kendall’s correlation coefficient for the binary toxicity data to
make the picture used on the title page. Pleiad() not only showed (Fig. 6.5) that
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Figure 6.3: Heatmap: graphical representation of the correlation matrix.

illness is associated with tomato and Caesar salad, but also found two other corre-
lation pleiads: coffee/rice and crab dip/crisps. (By the way, pleiads show one more
application of R: analysis of networks.)

Function Cor () outputs correlation matrix together with asterisks for the significant
correlation tests:

> Cor(tox, method="kendall", dec=2) # shipunov
ILL CHEESE CRABDIP CRISPS BREAD CHICKEN CAESAR TOMATO

ILL - 0.08 0.06 -0.63 -0.19 0.21 0.6% 0.46%
CHEESE 0.08 -  -0.38% -0.11 0.34%x 0.04 0.08 0.22
CRABDIP 0.06 -0.38% -  0.64%x -0.3%x 0.27 0.04 0.19
CRISPS -0.03 -0.11 0.64% - -0.05 0.33* 0.25 0.21
BREAD -0.19 0.34x -0.3% -0.05 - 0.05 0.03 -0.03
CHICKEN 0.21 0.04 0.27 0.33%x 0.05 - 0.02 0.12
RICE 0.14 0.03 0.18 0.17 0.09 0.17 0.1 0.28
CAESAR 0.6%x 0.08 0.04 0.25 0.03 0.02 - 0.64x%
TOMATO 0.46% 0.22 0.19 0.21 -0.03 0.12 0.64% -
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Figure 6.4: Correlation coefficients as ellipses.

Finally, function Topm() shows largest correlations by rows:

> Topm(tox.cor, level=0.4) # shipunov

Var1 Var2 Value Magnitude
1 TOMATO CAESAR 0.6449020 high
2 CRISPS CRABDIP 0.6359727 high
3 CAESAR ILL 0.6039006 high
4 TOMATO ILL 0.4595725 medium
5 COFFEE RICE 0.4134925 medium

Data file traits.txt contains results of the survey where most genetically ap-
parent human phenotype characters were recorded from many individuals. Ex-
planation of these characters are in trait_c.txt file. Please analyze this data
with correlation methods.
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Figure 6.5: Correlation pleiads for the toxicity data.

6.2 Analysis of regression

6.2.1 Single line

Analysis of correlation allows to determine if variables are dependent and calcu-
late the strength and sign of the dependence. However, if the goal is to understand
the other features of dependence (like direction), and, even more important, pre-
dict (extrapolate) results (Fig. 6.6) we need another kind of analysis, the analysis of
regression.

It gives much more information on the relationship, but requires us to assign vari-
ables beforehand to one of two categories: influence (predictor) or response. This ap-
proach is rooted in the nature of the data: for example, we may use air temperature
to predict ice cream sales, but hardly the other way around.
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Figure 6.6: Extrapolation (taken from XKCD, http://xkcd.com/605/).

The most well-known example is a simple linear regression:

response = intercept + slope x influence

or, in R formula language, even simpler:
response ~ influence

That model estimates the average value of response if the value of influence is known
(note that both effect and influence are measurement variables). The differences be-
tween observed and predicted values are model errors (or, better, residuals). The goal
is to minimize residuals (Fig. 6.8); since residuals could be both positive and negative,
it is typically done via squared values, this method is called least squares.

Ideally, residuals should have the normal distribution with zero mean and constant
variance which is not dependent on effect and influence. In that case, residuals are
homogeneous. In other cases, residuals could show heterogeneity. And if there is
the dependence between residuals and influence, then most likely the overall model
should be non-linear and therefore requires the other kind of analysis.

Linear regression model is based on the several assumptions:

» Linearity of the relationship. It means that for a unit change in influence, there
should always be a corresponding change in effect. Units of change in response
variable should retain the same size and sign throughout the range of influ-
ence.
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» Normality of residuals. Please note that normality of data is not an assumption!
However, if you want to get rid of most other assumptions, you might want to
use other regression methods like LOESS.

» Homoscedasticity of residuals. Variability within residuals should remain con-
stant across the whole range of influence, or else we could not predict the effect
reliably.

The null hypothesis states that nothing in the variability of response is explained by
the model. Numerically, R-squared coefficient is the the degree to which the variabil-
ity of response is explained by the model, therefore null hypothesis is that R-squared
equals zero, this approach uses F-statistics (Fisher’s statistics), like in ANOVA. There
are also checks of additional null hypotheses that both intercept and slope are zeros.
If all three p-values are smaller than the level of significance (0.05), the whole model
is statistically significant.

Here is an example. The embedded women data contains observations on the height
and weight of 15 women. We will try to understand the dependence between weight
and height, graphically at first (Fig. 6.7):

> women.lm <- lm(weight ~ height, data=women)

> plot(weight ~ height, data=women,

+ xlab="Height, in", ylab="Weight, 1b")

> grid()

> abline(women.lm, col="red")

> Cladd(women.lm, data=women) # shipunov

> legend("bottomright", col=2:1, lty=1:2,

+ legend=c("linear relationship", "95% confidence bands"))

(Here we used function Cladd () which adds confidence bands to the plot2.)
Let us visualize residuals better (Fig. 6.8):

> plot(weight ~ height, data=women, pch=19, col="red")

> abline(women.lm)

> with(women, segments(Cheight, fitted(women.lm), height, weight,
+ col="red"))

To look on the results of model analysis, we can employ summary():

> summary(women.1lm)
Call:
Ilm(formula = weight ~ height, data=women)

2Function Cladd() is applicable only to simple linear models. If you want confidence bands in more
complex cases, check the Cladd () code to see what it does exactly.
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Figure 6.7: The relation between height and weight.
Residuals:
Min 1Q Median 3Q Max
-1.7333 -1.1333 -0.3833 0.7417 3.1167
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -87.51667 5.93694 -14.74 1.71e-09 *%x
height 3.45000 0.09114 37.85 1.09e-14 *x*%

Signif. codes: 0@ ‘*xx’ 0.001 ‘x%x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 1.525 on 13 degrees of freedom

Multiple R-squared: 0.991,Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.0391e-14
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Figure 6.8: Residuals of the women weight vs. height linear model.

This long output is better to read from bottom to the top. We can say that:

» The significance of relation (reflected with R-squared) is high from the statis-
tical point of view: F-statistics is 1433 with overall p-value: 1.091e-14.

» The R-squared (use Ad justed R-squared because this is better suited for the
model) is really big, R?> = 0.9903. This means that almost all variation in re-
sponse variable (weight) is explained by predictor (height).

R-squared is related with the coefficient of correlation and might be used as
the measure of effect size. Since it is squared, high values start from 0.25:

> Mag(0.9903) # shipunov
[1] "very high"
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» Both coefficients are statistically different from zero, this might be seen via
“stars” (like xx%), and also via actual p-values Pr(>It|): 1.71e-09 for inter-
cept, and 1.09e-14 for height, which represents the slope.

To calculate slope in degrees, one might run:

> (atan(women.lm$coefficients[[2]]) * 180)/pi
[1] 73.8355

This is the steep regression line.
e Overall, our model is:
Weight (estimated) = -87.51667 + 3.45 % Height,

so if the height grows by 4 inches, the weight will grow on approximately 14
pounds.

» The maximal positive residual is 3.1167 1b, maximal negative is —1.7333 1b.

» Half of residuals are quite close to the median (within approximately +1 inter-
val).

On the first glance, the model summary looks fine. However, before making any con-
clusions, we must also check assumptions of the model. The command plot (women. lm)
returns four consecutive plots:

« First plot, residuals vs. fitted values, is most important. Ideally, it should show
no structure (uniform variation and no trend); this satisfies both linearity and
homoscedascicity assumptions.

Unfortunately, women.lm model has an obvious trend which indicates non-
linearity. Residuals are positive when fitted values are small, negative for fitted
values in the mid-range, and positive again for large fitted values. Clearly, the
first assumption of the linear regression analysis is violated.

To understand residuals vs. fitted plots better, please run the following code
yourself and look on the resulted plots:

oldpar <- par(mfrow=c(3, 3))

## Uniform variation and no trend:

for (1 in 1:9) plot(1:50, rnorm(50), xlab="Fitted",
ylab="Residuals")

title("'Good' Residuals vs. Fitted", outer=TRUE, line=-2)
## Non-uniform variation plus trend:

for (1 in 1:9) plot(1:50, ((1:50)%rnorm(50) + 50:1),
xlab="Fitted",ylab="Residuals")

+ v VvV Vv 4+ Vv v Vv
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> title("'Bad' Residuals vs. Fitted", outer=TRUE, line=-2)
> par(oldpar)

» On the the next plot, standardized residuals do not follow the normal line per-
fectly (see the explanation of the QQ plot in the previous chapter), but they are
“good enough”. To review different variants of these plots, run the following
code yourself:

oldpar <- par(mfrow=c(3, 3))

for (i1 in 1:9) { aa <- rnorm(50);

ggnorm(aa, main=""); qqline(aa) }

title("'Good' normality QQ plots", outer=TRUE, line=-2)
for (1 in 1:9) { aa <- rnorm(50)~2;

ggnorm(aa, main=""); qqline(aa) }

title("'Bad' normality QQ plots", outer=TRUE, line=-2)
par(oldpar)

v VvV + v Vv 4+ v Vv

Test for the normality should also work:

> Normality(women.lm$residuals) # shipunov
[1] "NORMAL"

» The third, Scale-Location plot, is similar to the residuals vs. fitted, but instead
of “raw” residuals it uses the square roots of their standardized values. It is
also used to reveal trends in the magnitudes of residuals. In a good model,
these values should be more or less randomly distributed.

« Finally, the last plot demonstrates which values exert most influence over the
final shape of the model. Here the two values with most leverage are the first
and the last measurements, those, in fact, that stay furtherest away from lin-
earity.

(If you need to know more about summary and plotting of linear models, check help
pages with commands ?summary.lm and ?plot. Lm. By the way, as ANOVA has many
similarities to the linear model analysis, in R you can run same diagnostic plots for
any ANOVA model.)

Now it is clear that our first linear model does not work well for our data which is likely
non-linear. While there are many non-linear regression methods, let us modify it
first in a more simple way to introduce non-linearity. One of simple ways is to add
the cubed term, because weight relates with volume, and volume is a cube of linear
sizes:

> women.lm3 <- lm(weight ~ height + I(height~3), data=women)
> summary(women.1m3)
> plot(women.lm3, which=1) # just residuals vs. fitted
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(Function I() was used to tell R that height3 is arithmetical operation and not the
part of model formula.)

The quick look on the residuals vs. fitted plot (Fig 6.9) shows that this second model
fits much better! Confidence bands and predicted line are also look more appropriate

Residuals vs Fitted

150

0.4

Residuals

°2

130

I T T T I
120 130 140 150 160

Fitted values

Figure 6.9: Residuals vs. fitted plot for the women height/weight model with the
cubed term.

You may want also to see the confidence intervals for linear model parameters. For
that purpose, use confint (women.lm).
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Another example is from egg data studied graphically in the second chapter (Fig 2.9).
Does the length of the egg linearly relate with with of the egg?

> eggs <- read.table("data/eggs.txt")
> eggs.lm <- Im(V2 ~ V1, data=eggs)

We can analyze the assumptions first:
> plot(eggs.1lm)

The most important, residuals vs. fitted is not perfect but could be considered as
“good enough” (please check it yourself): there is no obvious trend, and residuals
seem to be more or less equally spread (homoscedasticity is fulfilled). Distribution
of residuals is close to normal. Now we can interpret the model summary:

> summary(eggs.lm)

Call:
Im(formula = V2 ~ V1, data = eggs)
Residuals:

Min 1Q Median 3Q Max
-6.8039 -1.7064 -0.1321 1.6394 11.7090
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.90641 0.67195 1.349 0.178
V1 0.71282 0.01772 40.228 <2e-16 **%
Signif. codes: 0@ ‘%x%’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 2.725 on 344 degrees of freedom
Multiple R-squared: ©0.8247,Adjusted R-squared: 0.8242
F-statistic: 1618 on 1 and 344 DF, p-value: < 2.2e-16

Significance of the slope means that the line is definitely slanted (this is actually what
is called “relation” in common language). However, intercept is not significantly
different from zero:

> confint(eggs.1lm)

2.5 % 97.5 %
(Intercept) -0.4152310 2.2280551
V1 0.6779687 0.7476725

(Confidence interval for intercept includes zero.)

To check the magnitude of effect size, one can use:
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> Mag(summary(eggs.lm)$adj.r.squared)
[1] "very high"

This is a really large effect.

Third example is based on a simple idea to check if the success in multiple choice
test depends on time spent with it. Data presents in exams . txt file which contains
results of two multiple choice tests in a large class:

> ee <- read.table("http://ashipunov.info/data/exams.txt", h=T)

> str(ee)

'data.frame': 201 obs. of 3 variables:

$ EXAM.N :int 3333333333...

$ ORDER :int 12345678910 ...

$ POINTS.50: int 42 23 30 32 27 19 37 30 36 28 ...

First variable is the number of test, two others are order of finishing the work, and
resulted number of points (out of 50). We assume here that the order reflects the
time spent on test. Select one of two exams:

> ee3d <- ee[ee$EXAM.N == 3,]

... and plot it first (please check this plot yourself):

> pLot(POINTS.50 ~ ORDER, data=ee3)

Well, no visible relation occurs. Now we approach it inferentially:

> ee3.lm <- Lm(POINTS.50 ~ ORDER, data=ee3)
> summary(ee3.lm)

Call:
Im(formula = POINTS.50 ~ ORDER, data = ee3)
Residuals:

Min 1@ Median 3Q Max
-16.0118 -4.7561 0.4708 4.4344 13.4695
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.35273 1.24634 26.761 <2e-16 **x%
ORDER -0.02005 0.02143 -0.936 0.352
Signif. codes: 0@ ‘%x%’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 * ’ 1
Residual standard error: 6.185 on 98 degrees of freedom
Multiple R-squared: 0.008859,Adjusted R-squared: -0.001254
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F-statistic: 0.876 on 1 and 98 DF, p-value: 0.3516

As usual, this output is read from bottom to the top. First, statistical significance of
the relation is absent, and relation (adjusted R-squared) itself is almost zero. Even
if intercept is significant, slope is not and therefore could easily be zero. There is no
relation between time spent and result of the test.

To double check if the linear model approach was at all applicable in this case, run
diagnostic plots yourself:

> plot(ee3.lm)
And as the final touch, try the regression line and confidence bands:

> abline(ee3.lm)
> Cladd(ee3.lm, data=ee3)

Almost horizontal—no relation. It is also interesting to check if the other exam went
the same way. Please find out yourself.

In the open repository, data file erophila.txt contains measurements of spring
draba plant (Erophila verna). Please find which morphological measurement char-
acters are most correlated, and check the linear model of their relationships.

Inthe openrepository, filedrosera. txt (with the companion filedrosera_c.txt)
contains data from morphological measurements of more than thousand plants
and multiple populations of the carnivorous sundew (Drosera) plant. Please find
which pair of morphological characters is most correlated and analyze the linear
model which includes these characters. Also, check if length of leaf is different
between the three biggest populations of sundew.

As the linear models and ANOVA have many in common, there is no problem in the
analysis of multiple groups with the default linear regression methods. Consider our
ANOVA data:

> newcolor <- relevel(hwc$COLOR, "brown")
> summary(lm(cbind(WEIGHT, HEIGHT) ~ newcolor, data=hwc))
Response WEIGHT :

Coefficients:
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Estimate Std. Error t value Pr(>|t])

(Intercept) 75.0000 0.5469 137.129 < 2e-16 **%
newcolorblack 4.2333 0.7735 5.473 4.2e-07 *x*%
newcolorblond -0.7667 0.7735 -0.991 0.324

Signif. codes: 0@ ‘%x%’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 2.996 on 87 degrees of freedom
Multiple R-squared: 0.3579,Adjusted R-squared: 0.3431
F-statistic: 24.24 on 2 and 87 DF, p-value: 4.286e-09
Response HEIGHT :

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 164.2333 0.5506 298.302 < 2e-16 *%xx
newcolorblack 5.6333 0.7786 7.235 1.72e-10 **x
newcolorblond -7.9333 0.7786 -10.189 < 2e-16 **%x
Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 3.016 on 87 degrees of freedom
Multiple R-squared: 0.7789,Adjusted R-squared: 0.7738
F-statistic: 153.3 on 2 and 87 DF, p-value: < 2.2e-16

This example shows few additional “tricks”. First, this is how to analyze several re-
sponse variables at once. This is applicable also to aov() —try it yourself.

Next, it shows how to re-level factor putting one of proximal levels first. That helps
to compare coefficients. In our case, it shows that blonds do not differ from browns
by weight. Note that “intercepts” here have no clear relation with plotting linear
relationships.

It is also easy to calculate the effect size because R-squared is the effect size.

Last but not least, please check assumptions of the linear model with plot (lm(...)).
At the moment in R, this works only for singular response.

| Istherethe linear relation between the weight and height in our ANOVA hwc data?
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6.2.2 Many lines

Sometimes, there is a need to analyze not just linear relationships between variables,
but to answer second order question: compare several regression lines.

In formula language, this is described as
response ~ influence x factor

where factor is a categorical variable responsible for the distinction between regres-
sion lines, and star (x) indicates that we are simultaneously checking (1) response
from influence (predictor), (2) response from factor and (3) response from interaction
between influence and factor.

This kind of analysis is frequently called ANCOVA, “ANalysis of COVAriation”. The
ANCOVA will check if there is any difference between intercept and slope of the first
regression line and intercepts and slopes of all other regression lines where each line
corresponds with one factor level.

Let us start from the example borrowed from M.]. Crawley’s “R Book”. 40 plants were
treated in two groups: grazed (in first two weeks of the cultivation) and not grazed.
Rootstock diameter was also measured. At the end of season, dry fruit production
was measured from both groups. First, we analyze the data graphically:

ipo <- read.table("data/ipomopsis.txt", h=TRUE)

with(ipo, plot(Root, Fruit, pch=as.numeric(Grazing)))
abline(lm(Fruit ~ Root, data=subset(ipo, Grazing=="Grazed")))
abline(lm(Fruit ~ Root, data=subset(ipo, Grazing=="Ungrazed")),
lty=2)

legend("topleft", lty=1:2, legend=c("Grazed","Ungrazed"))

v + Vv Vv v Vv

As it is seen on the plot (Fig. 6.10), regression lines for grazed and non-grazed plants
are likely different. Now to the ANCOVA model:

> ipo.lm <- lm(Fruit ~ Root * Grazing, data=ipo)
> summary(ipo.1lm)

Call:

Im(formula = Fruit ~ Root * Grazing, data=ipo)

Residuals:
Min 1Q Median 3Q Max
-17.3177 -2.8320 0.1247 3.8511 17.1313

Coefficients:
Estimate Std. Error t value Pr(>|t])
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Figure 6.10: Grazed vs. non-grazed plants: linear models.
(Intercept) -125.173 12.811 -9.771 1.15e-11 **x%
Root 23.240 1.531 15.182 < 2e-16 **x%
GrazingUngrazed 30.806 16.842 1.829 0.0757 .
Root :GrazingUngrazed 0.756 2.354 0.321 0.7500

Signif. codes: 0@ ‘*x%x’ 0.001 ‘x%x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 6.831 on 36 degrees of freedom
Multiple R-squared: ©.9293,Adjusted R-squared: 0.9234
F-statistic: 157.6 on 3 and 36 DF, p-value: < 2.2e-16

Model output is similar to the linear model but one more term is present. This term
indicated interaction which labeled with colon. Since Grazing factor has two level ar-
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ranged alphabetically, first level (Grazed) used as default and therefore (Intercept)
belongs to grazed plants group. The intercept of non-grazed group is labeled as
GrazingUngrazed. In fact, this is not even an intercept but difference between in-
tercept of non-grazed group and intercept of grazed group. Analogously, slope for
grazed is labeled as Root, and difference between slopes of non-grazed and grazed
labeled as Root :GrazingUngrazed. This difference is interaction, or how grazing af-
fects the shape of relation between rootstock size and fruit weight. To convert this
output into regression formulas, some calculation will be needed:

Fruit
Fruit

-125.174 + 23.24 % Root (grazed)
(-125.174 + 30.806) + (23.24 + 0.756) * Root (non-grazed)

Note that difference between slopes is not significant. Therefore, interaction could
be ignored. Let us check if this is true:

> ipo.lm2 <- update(ipo.lm, . ~ . - Root:Grazing)
> summary(ipo.lm2)

> AIC(ipo.lm)

> AIC(ipo.lm2)

First, we updated our first model by removing the interaction term. This is the ad-
ditive model. Then summary () told us that all coefficients are now significant (check
its output yourself). This is definitely better. Finally, we employed AIC (Akaike’s In-
formation Criterion). AIC came from the theory of information and typically reflects
the entropy, in other words, adequacy of the model. The smaller is AIC, the better
is a model. Then the second model is the unmistakable winner.

By the way, we could specify the same additive model using plus sign instead of star
in the model formula.

What will the AIC tell about our previous example, women data models?

> AIC(women.1lm)
> AIC(women.1lm3)

Again, the second model (with the cubed term) is better.

It is well known that in the analysis of voting results, dependence between atten-
dance and the number of people voted for the particular candidate, plays a great
role. It is possible, for example, to elucidate if elections were falsified. Here we will
use the elections.txt data file containing voting results for three different Russian
parties in more than 100 districts:
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> elections <- read.table("data/elections.txt", h=TRUE)
> str(elections)

'data.frame': 153 obs. of 7 variables:

$ DISTRICT: int 123 4567 8 9 10 ...

$ VOTER : int 329786 144483 709903 696114 ...

$ INVALID : int 2623 859 5656 4392 3837 4715 ...

$ VALID: int 198354 97863 664195 619629 ...

$ CAND.1 : int 24565 7884 30491 54999 36880 ...

$ CAND.2 : int 11786 6364 11152 11519 10002 ...

$ CAND.3 : int 142627 68573 599105 525814 ...

To simplify typing, we will attach() the data frame (if you do the same, do not for-
get to detach() it at the end) and calculate proportions of voters and the overall
attendance:

> attach(elections)
> PROP <- Cbind(CAND.1, CAND.2, CAND.3) / VOTER
> ATTEN <- (VALID + INVALID) / VOTER

Now we will look on the dependence between attendance and voting graphically
(Fig. 6.11):

> Im.1 <- m(CAND.1/VOTER ~ ATTEN)

> lm.2 <- Lm(CAND.2/VOTER ~ ATTEN)

> lm.3 <- m(CAND.3/VOTER ~ ATTEN)

> pLot(CAND.3/VOTER ~ ATTEN, xlim=c(e, 1), ylim=c(o, 1),
+ xlab="Attendance", ylab="Percent voted for the candidate")
> points(CAND.1/VOTER ~ ATTEN, pch=2)

> points(CAND.2/VOTER ~ ATTEN, pch=3)

> abline(lm.3)

> abline(lm.2, lty=2)

> abline(lm.1, lty=3)

> legend("topleft", lty=c(3, 2, 1),

+ legend=c("Party 1","Party 2","Party 3"))

> detach(elections)

So the third party had a voting process which was suspiciously different from voting
processes for two other parties. It was clear even from the graphical analysis but we
might want to test it inferentially, using ANCOVA:

> elections2 <- cbind(ATTEN, stack(data.frame(PROP)))
> names(elections2) <- c("atten","percn","cand")

> str(elections2)

'data.frame': 459 obs. of 3 variables:
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Figure 6.11: Voting results vs. attendance for every party.

$ atten: num 0.609 0.683 0.944 0.896 0.916 ...
$ percn: num 0.0745 0.0546 0.043 0.079 0.0514 ...
$ cand : Factor w/ 3 levels "CAND.1","CAND.2",..: 1 1 1

(Here we created and checked the new data frame. In elections2, all variables are
now stack()’ed in two columns, and the third column contains the party code.)

> ancova.v <- lm(percn ~ atten * cand, data=elections2)
> summary(ancova.v)

Call:
Im(formula = percn ~ atten * cand, data=elections2)

Residuals:
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Min 1Q Median 3Q Max
-0.116483 -0.015470 -0.000699 0.014825 0.102810

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.117115 0.011973  9.781 < 2e-16 **%

atten -0.070726 .018266 -3.872 0.000124 ***
candCAND. 2 -0.023627 .016933 -1.395 0.163591
candCAND. 3 -0.547179 .016933 -32.315 < 2e-16 **%

atten:candCAND.2 0.004129
atten:candCAND.3 1.393336

.025832 0.160 0.873074
.025832 53.938 < 2e-16 **xx%

[SS IS B S IS G

Signif. codes: @ ‘x%xx’ 0.001 ‘xx’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.02591 on 453 degrees of freedom
Multiple R-squared: 0.9824,Adjusted R-squared: 0.9822
F-statistic: 5057 on 5 and 453 DF, p-value: < 2.2e-16

Here (Intercept) belongs specifically to the model for first party. Its p-value indi-
cates if it differs significantly from zero. Second coefficient, atten, belongs to the
continuous predictor, attendance. It is not an intercept but slope of a regression. It
is also compared to zero.

Next four rows represent differences from the first party, two for intercepts and two
for slopes (this is the traditional way to structure output in R). Last two items repre-
sent interactions. We were most interested if there is an interaction between atten-
dance and voting for the third party, this interaction is common in case of falsifica-
tions and our results support this idea.

In the open repository, file heterostyly. txt contains results of flower parts mea-
surements in populations of two primroses, Primula veris and P. vulgaris. Prim-
roses are famous with their heterostyly (Fig. 6.12, phenomenon when in each pop-
ulation there are mostly two types of plants: with flowers bearing long stamens
and short style, and with flowers bearing long style and short stamens. It was
proved that heterostyly helps in pollination. Please check if the linear depen-
dencies between lengths of style and stamens are different in these two species.
Find also which model is better, full (multiplicative, with interactions) or reduced
(additive, without interactions).
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Figure 6.12: Heterostyly in primroses: flowers from the different plants of one pop-
ulation.

6.2.3 More then one way, again

Armed with the knowledge about AIC, multiplicative and additive models, we can
return now to the ANOVA two-way layouts, briefly mentioned before. Consider the
following example:

> ToothGrowth.1 <- with(ToothGrowth,

+ data.frame(len, supp, fdose=factor(dose)))

> str(ToothGrowth.1)

'data.frame': 60 obs. of 3 variables:

$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...

$ supp : Factor w/ 2 levels "0OJ","VC": 2222222222 ...
$ fdose: Factor w/ 3 levels "0.5","1","2": 1111111111

> Normality(ToothGrowth$len)

[1] "NORMAL"

> with(ToothGrowth, fligner.test(split(len, list(dose, supp))))
Fligner-Killeen test of homogeneity of variances

data: split(len, list(dose, supp))

Fligner-Killeen:med chi-squared = 7.7488, df = 5, p-value = 0.1706

(To start, we converted dose into factor. Otherwise, our model will be ANCOVA in-
stead of ANOVA.)
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Assumptions met, now the core analysis:

> summary(aov(len ~ supp * fdose, data=ToothGrowth.1))
Df Sum Sq Mean Sq F value Pr(>F)
supp 1 205.4 205.4 15.572 0.000231 ***%
fdose 2 2426.4 1213.2 92.000 < 2e-16 x*x*
supp:fdose 2 108.3 54.2 4.107 0.021860 %
Residuals 54 712.1 13.2
Signif. codes: 0@ ‘%x%’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1
> AIC(aov(len ~ supp * fdose, data=ToothGrowth.1))
[1] 332.7056

> summary(aov(len ~ supp + fdose, data=ToothGrowth.1))
Df Sum Sqg Mean Sq F value Pr(>F)
supp 1 205.4 205.4 14.02 0.000429 %%
fdose 2 2426.4 1213.2 82.81 < 2e-16 **xx%
Residuals 56 820.4 14.7
Signif. codes: 0@ ‘*xx’ 0.001 ‘x%x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1
> AIC(aov(len ~ supp + fdose, data=ToothGrowth.1))
[1] 337.2013

Now we see what was already visible on the interaction plot (Fig. 5.9): model with
interactions is better, and significant are all three terms: dose, supplement, and in-
teraction between them.

Effect size is really high:

> Eta2(aov(len ~ supp * fdose, data=ToothGrowth.1))
[1] 0.7937246

Post hoc tests are typically more dangerous in two-way analysis, simply because
there are much more comparisons. However, it is possible to run TukeyHSD():

> TukeyHSD(aov(len ~ supp * fdose, data=ToothGrowth.1))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = len ~ supp * fdose, data = ToothGrowth.1)

$supp

diff lwr upr p adj
VC-0J -3.7 -5.579828 -1.820172 0.0002312
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$fdose

diff Twr upr p adj
9.130 6.362488 11.897512 0.0e+00
15.495 12.727488 18.262512 0.0e+00
6.365 3.597488 9.132512 2.7e-06

1-0.5
2-0.5
2-1

$ supp:fdose®

diff lwr upr p adj
VC:0.5-0J:0.5 -5.25 -10.048124 -0.4518762 0.0242521
0J:1-0J:0.5 9.47 4.671876 14.2681238 0.0000046

The rest of comparisons is here omitted, but TukeyHSD() has plotting method allow-
ing to plot the single or last element (Fig. 6.13):

> plot(TukeyHSD(aov(len ~ supp * fdose, data=ToothGrowth.1)), las=1)

6.3 Probability of the success: logistic regression

There are a few analytical methods working with categorical variables. Practically,
we are restricted here with proportion tests and chi-squared. However, the goal
sometimes is more complicated as we may want to check not only the presence of
the correspondence but also its features—something like regression analysis but for
the nominal data. In formula language, this might be described as

factor ~ influence

Below is an example using data from hiring interviews. Programmers with different
months of professional experience were asked to write a program on paper. Then
the program was entered into the memory of a computer and if it worked, the case
was marked with “S” (success) and “F” (failure) otherwise:

> 1 <- read.table("data/logit.txt")

> head(1l)
V1 V2

114 F

229 F

3 6 F

4 25 S

518 S

6 4 F
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95% family—wise confidence level

VC:0.5-0J:05  ——+——i
0J:1-0J:0.5 | S
VC:1-0J:0.5 —_—
0J:2-0J:0.5 S
VC:2-0J:0.5 S
0J:1-VC:0.5 S
VC:1-VC:0.5 —_—
0J:2-VC:0.5 S
VC:2-VC:0.5 S
VC:i1-03:1 - —————
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Differences in mean levels of supp:fdose

Figure 6.13: TukeyHSD() plot for supplement-dose multiple comparisons
(ToothGrowth data).

It is more or less obvious more experienced programmers are more successful. This
is even possible to check visually, with cdplot() (Fig 6.14):

> cdplot(V2 ~ V1, data=1,
+ xlab="Experience, months", ylab="Success")

But is it possible to determine numerically the dependence between years of experi-
ence and programming success? Contingency tables is not a good solution because
V1 is a measurement variable. Linear regression will not work because the response
here is a factor. But there is a solution. We can research the model where the re-
sponse is not a success/failure but the probability of success (which, as all probabili-
ties is a measurement variable changing from 0 to 1):
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Figure 6.14: Conditional density plot shows the probability of programmer’s success.
> l.logit <- glm(v2 ~ v1, family=binomial, data=1)
> summary(l.logit)

Call:
glm(formula = V2 ~ V1, family = binomial, data=1)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9987 -0.4584 -0.2245 0.4837 1.5005

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.9638 2.4597 -2.018 0.0436 *
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V1 0.2350 0.1163 2.021 0.0432 x

Signif. codes: 0@ ‘%x%’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 * ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 18.249 on 13 degrees of freedom
Residual deviance: 10.301 on 12 degrees of freedom
AIC: 14.301

Number of Fisher Scoring iterations: 5

Not going deeply into details, we can see here that both parameters of the regression
are significant since p-values are small. This is enough to say that the experience
influences the programming success.

The file seeing.txt came from the results of the following experiment. People
were demonstrated some objects for the short time, and later they were asked
to describe these objects. First column of the data file contains the person ID,
second—the number of object (five objects were shown to each person in se-
quence) and the third column is the success/failure of description (in binary 0/1
format). Is there dependence between the object number and the success?

The output of summary.glm() contains the AIC value. It is accepted that smaller
AIC corresponds with the more optimal model. To show it, we will return to the
intoxication example from the previous chapter. Tomatoes or salad?

> tox.logit <- glm(formula=I(2-ILL) ~ CAESAR + TOMATO,
+ family=binomial, data=tox)

> tox.logit2 <- update(tox.logit, . ~ . - TOMATO)

> tox.logit3 <- update(tox.logit, . ~ . - CAESAR)

At first, we created the logistic regression model. Since it “needs” the binary re-
sponse, we subtracted the ILL value from 2 so the illness became encoded as 0 and
no illness as 1. I() function was used to avoid the subtraction to be interpret as a
model formula, and our minus symbol had only arithmetical meaning. On the next
step, we used update() to modify the starting model removing tomatoes, then we
removed the salad (dots mean that we use all initial influences and responses). Now
to the AIC:
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> tox.logit$aic
[1] 47.40782
> tox.logit2%aic
[1] 45.94004
> tox.logit3saic
[1] 53.11957

The model without tomatoes but with salad is the most optimal. It means that the
poisoning agent was most likely the Caesar salad alone.

Now, for the sake of completeness, readers might have question if there are methods
similar to logistic regression but using not two but many factor levels as response?
And methods using ranked (ordinal) variables as response? (As a reminder, mea-
surement variable as a response is a property of linear regression and similar.) Their
names are multinomial regression and ordinal regression, and appropriate functions
exist in several R packages, e.g., nnet, rms and ordinal.

File juniperus.txt inthe openrepository contains measurements of morpholog-
ical and ecological characters in several Arctic populations of junipers (Juniperus).
Please analyze how measurements are distributed among populations, and check
specifically if the needle length is different between locations.

Another problem is that junipers of smaller size (height less than 1 m) and with
shorter needles (less than 8 mm) were frequently separated from the common ju-
niper (Juniperus communis) into another species, J. sibirica. Please check if plants
with J. sibirica characters present in data, and does the probability of being J. sibir-
ica depends on the amount of shading pine trees in vicinity (character PINE.N).

6.4 Answers to exercises

6.4.1 Correlation and linear models

Answer to the question of human traits. Inspect the data, load it and check the
object:

> traits <- read.table("data/traits.txt", h=TRUE, row.names=1)
> Str(traits)

'data.frame': 21 obs. of 9 variables:

1 TONGUE : int 0 000 0010 11
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2 EARLOBE: int 0001000111 .
3PINKY :int 061111010180 .
4 ARM :int 0101100110 .
5CHEEK : int 1000100100 .
6 CHIN :int 11111111080 .
7 THUMB : int 0001001101 .
8 TOE :int 2100111000 .
9 PEAK :int 6111001100 .
row.names [1 :21] IIAII llBll Ilcll ||D|| IIEII

Data is binary, so Kendall’s correlation is most natural:

> Cor(traits, method="kendall", dec=1) # shipunov
TONGUE EARLOBE PINKY ARM CHEEK CHIN THUMB TOE PEAK

TONGUE - 0.1 -0.2 -0.1 -0.1 -0.6% 0.5% 0 -0.2
EARLOBE 0.1 - -0.2 .17 -0.1 -0.4 0.3 -0.3 0
PINKY -0.2 -0.2 - 0.2 0.1 0 -0.1 0 0.2
ARM -0.1 0.1 0.2 - 0.2 0 -0.1 0.1 0
CHEEK -0.1 -0.1 0.1 0.2 - -0.1 0 -0.1 -0.1
CHIN -0.6%x -0.4 0 0 -0.1 - -0.5% 0 0.4
THUMB 0.5% 0.3 -0.1 -0.1 0 -0.5% - 0.1 0.1
TOE 0 -0.3 0 0.1 -0.1 0 0.1 - 0
PEAK -0.2 0 0.2 0 -0.1 0.4 0.1 0

> traits.c <- cor(traits, method="kendall")
> Topm(traits.c) # shipunov

Var1 Var2 Value Magnitude
1 CHIN TONGUE -0.6264145 high
2 THUMB TONGUE ©0.5393599 high

3 THUMB  CHIN -0.4853627 medium

We will visualize correlation with Pleiad(), one of advantages of it is to show which
correlations are connected, grouped—so-called “correlation pleiads”:

> Pleiad(traits.c, corr=TRUE, lcol=1, legend=FALSE, off=1.12,
+ pch=21, bg="white", cex=1.1) # shipunov

(Look on the title page to see correlations. One pleiad, CHIN, TONGUE and THUMB is
the most apparent.)

Answer to the question of the linear dependence between height and weight for the
artificial data. Correlation is present but the dependence is weak (Fig. 6.15):
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> cor.testChwc$WEIGHT, hwc$HEIGHT)
Pearson's product-moment correlation

data: hwc$WEIGHT and hwc$HEIGHT
t = 5.0682, df = 88, p-value = 2.199e-06
alternative hypothesis: true correlation is not equal to @
95 percent confidence interval:
0.2975308 0.6212688
sample estimates:
cor
0.4753337
> w.h <= Im(WEIGHT ~ HEIGHT, data=hwc)
> summary(w.h)

Call:
Im(formula = WEIGHT ~ HEIGHT, data=hwc)
Residuals:

Min 1Q Median 3Q Max

-7.966 -2.430 0.305 2.344 5.480

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.86387 8.94310 3.451 0.00086 **x%
HEIGHT 0.27707 0.05467 5.068 2.2e-06 **%x

Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 3.27 on 88 degrees of freedom
Multiple R-squared: 0.2259,Adjusted R-squared: 0.2171
F-statistic: 25.69 on 1 and 88 DF, p-value: 2.199e-06

> pLot(WEIGHT ~ HEIGHT, data=hwc, xlab="Height, cm",
+ ylab="Weight, kg")

> abline(w.h)

> Cladd(w.h, data=hwc) # shipunov

The conclusion about weak dependence was made because of low R-squared which
means that predictor variable, height, does not explain much of the dependent vari-
able, weight. In addition, many residuals are located outside of IQR. This is also easy
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Figure 6.15: The dependence of weight from height (artificial data)

to see on the plot where many data points are distant from the regression line and
even from 95% confidence bands.

Answer to spring draba question. Check file, load and check the object:

> ee <- read.table(
+ "http://ashipunov.info/shipunov/open/erophila.txt", h=TRUE)

> Str(ee) # shipunov

'data.frame': 111 obs. of 5 variables:
1 LOC :int 17111111111
2 FRUIT.L cnum 4.8 5.1 4.9 4.7 4.7 5 4.7 4.8 5.5 4.5
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3 FRUIT.W num 1.8 2 2.3 2.12.42.82.82.82.81.8
4 FRUIT.MAXW: num 3.5 3 3 2.5 2.8 3.3 1.523 2.5 ..
5 FRUIT.A tint 2222210022

Now, check normality and correlations with the appropriate method:

> sapply(ee[, 2:4], Normality) # shipunov

FRUIT.L FRUIT.W FRUIT .MAXW
"NORMAL" "NORMAL" "NOT NORMAL"
> Topm(cor(ee[, 2:4], method="spearman")) # shipunov
Var1 Var2 Value Magnitude

1 FRUIT.MAXW FRUIT.L 0.7109781 very high
2 FRUIT.W FRUIT.L 0.4642429 medium
> with(ee, cor.test(FRUIT.L, FRUIT.MAXW, method="spearman"))

Spearman's rank correlation rho

data: FRUIT.L and FRUIT.MAXW
S = 65874, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7109781

Therefore, FRUIT.L and FRUIT.MAXW are best candidates for linear model analysis.
We will plot it first (Fig. 6.16):

> ee.lm <- Lm(FRUIT.MAXW ~ FRUIT.L, data=ee)

> pLot (FRUIT.MAXW ~ FRUIT.L, data=ee, type="n")

> Points(ee$FRUIT.L, ee$FRUIT.MAXW, scale=.5) # shipunov
> Cladd(ee.lm, ee, ab.lty=1) # shipunov

(Points() is a “single” variant of PPoints() from the above, and was used because
there are multiple overlaid data points.)

Finally, check the linear model and assumptions:

> summary(ee.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.14037 0.30475 -0.461 0.646
FRUIT.L 0.59877 0.06091 9.830 <2e-16 *%x*
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Figure 6.16: Linear relationship between fruit characteristics of spring draba.

Signif. codes: 0@ ‘*x%x’ 0.001 ‘x%x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.4196 on 109 degrees of freedom
Multiple R-squared: 0.4699,Adjusted R-squared: 0.4651
F-statistic: 96.64 on 1 and 109 DF, p-value: < 2.2e-16

> plot(ee.lm, which=1)

There is a reliable model (p-value: < 2.2e-16) which has a high R-squared value
(sqrt(0.4651) = 0.6819824). Slope coefficient is significant whereas intercept is
not. Homogeneity of residuals is apparent, their normality is also out of question:

> Normality(ee.lm$residuals)
[1] "NORMAL"
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Answer to the heterostyly question. First, inspect the file, load the data and check
it:

> he <- read.table(
+ "http://ashipunov.info/shipunov/open/heterostyly.txt", h=TRUE)
> str(he)

'data.frame': 993 obs. of 6 variables:

$ LOC cint 1111111111

$ STYLE.L : num 7.5 14 8 6 10.5 16 7 7 8 13 ...

$ STAMEN.L: num 9 10 17 13 10.5 10 17 12 16 10.5 ...

$ TUBE.L : num 15 20 19.5 19 16 17 19 21 20 17.5 ...

$ COLOR : Factor w/ 8 levels "pd","pl","pp",..: 76 6 ...

$ SPECIES : Factor w/ 2 levels "veris","vulgaris": 2 2 2 ...

This is how to visualize the phenomenon of heterostyly for all data:

> boxplot ((STYLE.L-STAMEN.L) ~ (STYLE.L-STAMEN.L)>0,
+ names=c("short","long"), data=he)

(Please review this plot yourself.)

Now we need to visualize linear relationships of question. There are many overlaid
data points so the best way is to employ the PPoints () function (Fig. 6.17):

plot(STYLE.L ~ STAMEN.L, data=he, type="n",

xlab="Length of stamens, mm", ylab="Length of style, mm")
PPoints(he$SPECIES, he$STAMEN.L, he$STYLE.L, scale=.9, cols=1)
abline(lm(STYLE.L ~ STAMEN.L, data=he[he$SPECIES=="veris", 1))
abline(lm(STYLE.L ~ STAMEN.L, data=he[he$SPECIES=="vulgaris", 1),
lty=2)

legend("topright", pch=1:2, lty=1:2, legend=c("Primula veris",
"P. vulgaris"), text.font=3)

+ v + v Vv v + v

Now to the models. We will assume that length of stamens is the independent vari-
able. Explore, check assumptions and AIC for the full model:

> summary(Che.lm1 <- Um(STYLE.L ~ STAMEN.L * SPECIES, data=he))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 19.13735 1.17900 16.232 < 2e-16 **x
STAMEN.L -0.74519 0.09137 -8.156 1.05e-15 *%x*
SPECIESvulgaris -1.84688 1.23060 -1.501 0.1337
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Figure 6.17: Linear relationships within flowers of two primrose species. Heterostyly
is visible as two dense “clouds” of data points.

STAMEN.L:SPECIESvulgaris 0.24272 0.09509 2.552 0.0108 %

Signif. codes: 0 ‘*%xx’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 2.921 on 989 degrees of freedom
Multiple R-squared: 0.3077,Adjusted R-squared: 0.3056
F-statistic: 146.5 on 3 and 989 DF, p-value: < 2.2e-16

> plot(he.lm1, which=1:2)

> AICChe.1lm1)
[1] 4953.172
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Reduced (additive) model:

> summary(he.lm2 <- update(Che.lm1, . ~ . - STAMEN.L:SPECIES))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.34607 0.44188 36.992 < 2e-16 **x*
STAMEN.L -0.52109 0.02538 -20.536 < 2e-16 %%

SPECIESvulgaris 1.18400 0.32400 3.654 0.000271 **x%

Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 2.93 on 990 degrees of freedom
Multiple R-squared: 0.3031,Adjusted R-squared: 0.3017
F-statistic: 215.3 on 2 and 990 DF, p-value: < 2.2e-16

> AIC(Che.lm2)
[1] 4957.692

Full model is better, most likely because of strong interactions. To check interactions
graphically is possible also with the interaction plot which will treat independent
variable as factor:

> with(he, interaction.plot(cut(STAMEN.L, quantile(STAMEN.L)),
+ SPECIES, STYLE.L))

This technical plot (check it yourself) shows the reliable differences between lines of
different species. This differences are bigger when stamens are longer. This plot is
more suitable for the complex ANOVA but as you see, works also for linear models.

i oSk sk

Answer to the question about sundew (Drosera) populations. First, inspect the file,
then load it and check the structure of object:

> dr <- read.table(
+ "http://ashipunov.info/shipunov/open/drosera.txt", h=TRUE)
> Str(dr) # shipunov

'data.frame': 1165 obs. of 11 variables:

1 POP : Factor w/ 19 levels "A","B","C","D",..: 1 1 1

2 YOUNG.L *int 0001010101 ...
3 MATURE.Lx int 3255354433 ...
4 OLD.L *1int 3252121132
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5 INSECTS xint 32105057 311

6 INFL.L *1int 00128 0000000 ...

7 STALK.L xint © 0 100 0 0 0 0 0 @ @ ...

8 N.FLOW *int 003 0000000 ...

9 LEAF.L *num 44653564314

10 LEAF.W *num 4466467545 ...

11 PET.L x int 10 7 16 15 4 5 13 14 11 10 ...

Since we a required to calculate correlation, check the normality first:

> sapply(dr[,-1], Normality)

YOUNG.L MATURE.L OLD.L INSECTS
"NOT NORMAL" "NOT NORMAL" "NOT NORMAL" "NOT NORMAL"
INFL.L STALK.L
"NOT NORMAL" "NOT NORMAL"
N.FLOW LEAF.L LEAF.W PET.L

"NOT NORMAL" "NOT NORMAL" "NOT NORMAL" "NOT NORMAL"
Well, to this data we can apply only nonparametric methods:

> dr.cor <- cor(dr[,-1], method="spearman", use="pairwise")
> Topm(dr.cor) # shipunov
Vari Var2 Value Magnitude

1 STALK.L  INFL.L 0.9901613 very high
2 N.FLOW STALK.L 0.9774198 very high
3 N.FLOW INFL.L ©.9593589 very high
4 LEAF.W LEAF.L 0.8251841 very high
5 PET.L LEAF.W 0.7129433 very high
6 PET.L LEAF.L 0.6972402 high
7 PET.L INFL.L 0.4795218 medium
8 PET.L STALK.L 0.4661593 medium
9 INSECTS MATURE.L 0.4644699 medium

> Pleiad(dr.cor, corr=TRUE, legtext=2, legpos="bottom",
+ leghoriz=TRUE, pch=19, cex=1.2) # shipunov

(Note that "pairwise" was employed, there are many NAs.)

The last plot (Fig. 6.18) shows two most important correlation pleiads: one related
with leaf size, and another—with inflorescence.

Since we know now which characters are most correlated, proceed to linear model.
Since in the development of sundews stalk formed first, let us accept STALK.L as
independent variable (influence), and INFL.L as dependent variable (response):
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Figure 6.18: Correlations in sundew data.

> summary(dr.lm <- Im(INFL.L ~ STALK.L, data=dr))

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.046294 0.212065 -0.218 0.827
STALK.L 1.139452 0.004637 245.719 <2e-16 *%x*

Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 6.285 on 1158 degrees of freedom

(5 observations deleted due to missingness)
Multiple R-squared: 0.9812,Adjusted R-squared: 0.9812
F-statistic: 6.038e+04 on 1 and 1158 DF, p-value: < 2.2e-16
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> plot(dr.lm, which=1:2)

Reliable model with high R-squared. However, normality of residuals is not perfect
(please check model plots yourself).

Now to the analysis of leaf length. Determine which three populations are largest
and subset the data:

> (largest3 <- rev(sort(table(dr[, 11)))[1:31)
Q1 L N1

211 201 144

> dr3 <- dr[dr$POP %in% names(largest3), ]

> dr3$POP <- droplevels(dr3$POP)

Now we need to plot them and check if there are visual differences:
> boxplot (LEAF.L ~ POP, data=dr3)

Yes, they probably exist (please check the plot yourself.)

It is worth to look on similarity of ranges:

> tapply(dr3$LEAF.L, dr3$POP, mad, na.rm=TRUE)
L N1 Q1
1.4826 1.4826 1.4826
> fligner.test(LEAF.L ~ POP, data=dr3)
Fligner-Killeen test of homogeneity of variances
data: LEAF.L by POP
Fligner-Killeen:med chi-squared = 8.1408, df = 2, p-value = 0.01707

The robust range statistic, MAD (median absolute deviation) shows that variations
are similar. We also ran the nonparametric analog of Bartlett test to see the statis-
tical significance of this similarity. Yes, variances are statistically similar.

Since we have three populations to analyze, we will need something ANOVA-like,
but nonparametric:

> Rruskal.test(LEAF.L ~ POP, data=dr3)

Kruskal-Wallis rank sum test

data: LEAF.L by POP

Kruskal-Wallis chi-squared = 97.356, df = 2, p-value < 2.2e-16

Yes, there is at least one population where leaf length is different from all others. To
see which, we need a post hoc, pairwise test:

> pairwise.wilcox.test(dr3$LEAF.L, dr3$POP)
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Pairwise comparisons using Wilcoxon rank sum test
data: dr3$LEAF.L and dr3$POP
L N1
N1 5.2e-16 -
Q1 0.74 < 2e-16
P value adjustment method: holm

Population N1 is most divergent whereas Q1 is not really different from L.

6.4.2 Logistic regression

Answer to the question about demonstration of objects. We will go the same way as
in the example about programmers. After loading data, we attach it for simplicity:

> seeing <- read.table("data/seeing.txt")
> attach(seeing)

Check the model:

> seeing.logit <- glm(V3 ~ V2, family=binomial, data=seeing)
> summary(seeing.logit)

Call:
glm(formula = V3 ~ V2, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.4029 -0.8701 0.4299 0.7825 1.5197

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6776 0.7923 -2.117 0.03423 %
V2 0.9015 0.2922 3.085 0.00203 %%
Signif. codes: 0@ ‘%x%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 62.687 on 49 degrees of freedom
Residual deviance: 49.738 on 48 degrees of freedom
AIC: 53.738

Number of Fisher Scoring iterations: 4
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(Calling variables, we took into account the fact that R assign names like V1, v2, V3
etc. to “anonymous” columns.)

As one can see, the model is significant. It means that some learning takes place
within the experiment.

It is possible to represent the logistic model graphically (Fig. 6.19):

> tries <- seq(1, 5, length=50) # exactly 50 numbers from 1 to 5
> seeing.p <- predict(seeing.logit, list(V2=tries),
+ type="response")
> plot(Vv3 ~ jitter(V2, amount=.1), data=seeing, xlab="", ylab="")
> lines(tries, seeing.p)
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Figure 6.19: Graphical representation of the logistic model.
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We used predict() function to calculate probabilities of success for non-existed
attempts, and also added small random noise with function jitter() to avoid the
overlap.

Answer to the juniper questions. Check file, load it, check the object:

> jj <- read.table(
+ "http://ashipunov.info/shipunov/open/juniperus.txt", h=TRUE)
> jj$LOC <- factor(jj$LOC, labels=pasteo("loc", levels(jj$LOC)))
> Str(jj) # shipunov
'data.frame': 61 obs. of 7 variables:

1 LOC : Factor w/ 3 levels "loc1","loc2",..: 1 11

2 HEIGHT : num 90 55 20 80 80 65 25 40 55 40 ...

3 WIDTH D num 40 25 45 100 135 35 55 25 45 55 ...

4 NEEDLE.L: int 8 8 56 10 6 6 9 55 ...

5 PROTR nhum 111.510100.511 ...

6 STEM.D * num 2.4 2.3 3.5 6 2.6 4.5 3.2 0.5 NA1.7 ...
7 PINE.N :int 1022023203

Analyze morphological and ecological characters graphically (Fig. 6.20):

> j.cols <- colorRampPalette(c("steelblue", "white"))(5)[2:4]
> Boxplots(jj[, 2:7], jj$LOC, legpos="top",
+ boxcols=j.cols) # shipunov

Now plot length of needles against location (Fig. 6.21):
> spineplot(LOC ~ NEEDLE.L, data=jj, col=j.cols)
(As you see, spine plot works with measurement data.)

Since there is a measurement character and several locations, the most appropriate
is ANOVA-like approach. We need to check assumptions first:

> Normality(jj$NEEDLE.L)

[1] "NORMAL"
> tapply(jj$NEEDLE.L, jj$LOC, var)
loc1 loc? loc3

2.461905 3.607895 2.407895
> bartlett.test(NEEDLE.L ~ LOC, data=jj)

Bartlett test of homogeneity of variances
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Figure 6.20: Boxplots show distribution of measurements among juniper popula-
tions.

data: NEEDLE.L by LOC
Bartlett's K-squared = 1.0055, df = 2, p-value = 0.6049

Since variation is not homogeneous, one-way test with post hoc pairwise t-test is the
best:

> oneway.test(NEEDLE.L ~ LOC, data=jj)
One-way analysis of means (not assuming equal variances)

data: NEEDLE.L and LOC
F =14.129, num df = 2.000, denom df = 38.232, p-value = 2.546e-05
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Figure 6.21: Spine plot: locality vs. needle length of junipers.

> (eta.squared <-

+ summary(Lm(NEEDLE.L ~ LOC, data=jj))$adj.r.squared)
[1] 0.3337755

> pairwise.t.test(jJ$NEEDLE.L, jj$LOC)

Pairwise comparisons using t tests with pooled SD
data: jJ$NEEDLE.L and jj$LOC
loc1 loc2

loc2 0.00031 -
loc3 0.14564 3.1e-06
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P value adjustment method: holm

(Note how we calculated eta-squared, the effect size of ANOVA. As you see, this could
be done through linear model.)

There is significant difference between the second and two other locations.

And to the second problem. First, we make new variable based on logical expression
of character differences:

> is.sibirica <- with(jj, (NEEDLE.L < 8 & HEIGHT < 100))
> sibirica <- factor(is.sibirica, labels=c("communis", "sibirica"))
> summary(sibirica)
communis sibirica
24 37

There are both “species” in the data. Now, we plot conditional density and analyze
logistic regression:

> cdplot(sibirica ~ PINE.N, data=jj, col=j.cols[c(1, 3)1)
> summary(glm(sibirica ~ PINE.N, data=jj, family=binomial))

Call:
glm(formula = sibirica ~ PINE.N, family = binomial, data=jj)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.8549 -1.0482 0.7397 1.0042 1.3123

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3117 0.4352 -0.716 0.4738
PINE.N 0.3670 0.1776 2.066 0.0388 *
Signif. codes: 0 ‘*%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 81.772 on 60 degrees of freedom
Residual deviance: 77.008 on 53 degrees of freedom
AIC: 81.008

Number of Fisher Scoring iterations: 4
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Figure 6.22: Conditional density of being Juniperus sibirica on the presence of some
pine trees.

Conditional density plot (Fig. 6.22) shows an apparent tendency, and model sum-
mary outputs significance for slope coefficient.

6.5 How to choose the right method

On the next page, there is a table (Table 6.1) with a key which could help to choose
the right inferential method if you know number of samples and type of the data.
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Type of data One variable Two variables Many variables
Measurement, t-test Difference: t-test (paired and | Linear models, ANOVA,
normally non-paired), F-test (scale) one-way test, Bartlett test
distributed Effect size: Cohen’s d, (scale)
Lyubishchev’s K Post hoc: pairwise t-test,
Relation: correlation, linear | Tukey HSD
models Effect size: R-squared
Measurement Wilcoxon test, Difference: Wilcoxon test Linear models, LOESS,
and ranked Shapiro-Wilk test (paired and non-paired), Kruskal-Wallis test,
sign test, robust rank order | Friedman test,
test, Ansari-Bradley test Fligner-Killeen test (scale)
(scale) Post hoc: pairwise Wilcoxon
Effect size: Cliff’s delta, test, pairwise robust rank
Lyubishchev’s K order test
Relation: nonparametric Effect size: R-squared
correlation
Categorical One sample test of Association: Chi-squared Association tests (see on the
proportions, test, Fisher’s exact test, test | left); generalized linear
goodness-of-fit test of proportions, G-test, models of binomial family (=
McNemar’s test (paired) logistic regression)
Effect size: Cramer’s V, Post hoc: pairwise table test
Tschuprow’s T, odds ratio

Table 6.1: Key to the most important inferential statistical methods (except multivariate). After you narrow the

search with couple of methods, proceed to the main text.




Part I1

Many dimensions



Chapter 7

Draw

“Data Mining”, “Big Data”, “Machine Learning”, “Pattern Recognition” phrases of-
ten mean all statistical methods, analytical and visual which help to understand the
structure of data.

Data might be of any kind, but it is usually multidimensional, which is best repre-
sented with the table of multiple columns a.k.a. variables (which might be of dif-
ferent types: measurement, ranked or categorical) and rows a.k.a objects. So more
traditional name for these methods is “multivariate data analysis” or “multivariate
statistics”.

Data mining is often based on the idea of classification, arrange objects into non-
intersecting, frequently hierarchical groups. We use classification all the time (but
sometimes do not realize it). We open the door and enter the room, the first thing is
to recognize (classify) what is inside. Our brain has the outstanding power of clas-
sification, but computers and software are speedily advancing and becoming more
brain-like. This is why data mining is related with artificial intelligence. There are
even methods calling “neural networks”!

s Sk sk

In the following chapters we will frequently use the embedded iris data taken from
works of Ronald Fisher!. There are four characters measured on three species of
irises (Fig. 7.1), and fifth column is the species name.

IFisher R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics.
7(2): 179-188.
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Figure 7.1: Flowers of irises from the iris data (from left to right): Iris setosa Pall.,
I versicolor L. and L. virginica. L. Scale bar is approximately 10 mm.

The simplest way to work with multidimensional data is to draw it. This chapter
discusses how.

7.1 Pictographs

Pictograph is a plot where each element represents one of objects, and every feature
of the element corresponds with one character of the primary object. If the every row
of data is unique, pictographs might be useful. Here is the star plot (Fig. 7.2) example:

> eq8 <- read.table("data/eq8.txt", h=TRUE)
> Str(eq8) # shipunov

'data.frame': 832 obs. of 9 variables:

1 SPECIES % Factor w/ 8 levels "arvense","fluviatile",..: 1 ...
DL.R D num 424 339 321 509 462 350 405 615 507 330 ...
DIA.ST * num 2.3 2 2.53 2.51.82 2.221.8 ...

N.REB :int 13 11 15 14 12 9 14 11 10 8 ...

N.ZUB :int 12 12 14 14 13 9 15 11 10 8 ...

DL.OSN.Z*x num 2 1 2 1.5 1. 111

DL.TR.V * num 5 4 55 4 4 e
DL.BAZ : num 3 2.5 2.3 2. 221.91

9 DL.PER : num 25 13 13 23 12 15 13 14 10 9 ...
> eqdm <- aggregate(eq8[, 2:9], list(eq8[, 1]), median, na.rm=TRUE)

O O U1l WM

N A

1.
4
2.

= U1

1
5
2
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> row.names(eqd8m) <- eqs8m[, 1]
> eq8m$Group.1 <- NULL
> stars(eq8m, cex=1.2, lwd=1.2, col.stars=rep("darkseagreen", 8))

o B Y

arvense fluviatile hyemale
litorale mildeanum palustre
pratense sylvaticum

Figure 7.2: Stars show different horsetail species.

(We made every element to represent the species of horsetails, and length of the
particular ray corresponds with some morphological characters. It is easy to see, as
an example, similarities between Equisetum xlitorale and E. fluviatile.)

Slightly more exotic pictograph is Chernoff’s faces where features of elements are
shown as human face characters (Fig. 7.3):

> library(TeachingDemos)
> faces(eq8m)
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(Original Chernoff’s faces have been implemented in the faces2() function, there
is also another variant in symbols() package.)

arvense fluviatile hyemale

litorale mildeanum palustre

Figure 7.3: Chernoff’s faces show different horsetail species.

Related to pictographs are ways to overview the whole numeric dataset, matrix or
data frame. First, command image () allows for plots like on Fig. 7.4:

> image(scale(iris[,-5]), axes=FALSE)
> axis(2, at=seq(0, 1, length.out=4),
+ labels=zabbreviate(colnames(iris[,-5])), las=2)

(Thisis a “portrait” or iris matrix, not extremely informative but useful in many ways.
For example, it is well visible that highest, most red, values of Pt . L (abbreviated from
Petal.Length) correspond with lowest values of Sp.W (Sepal.Width). It is possible
even to spot 3-species structure of this data.)
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PtW

Pt.L

Sp.W —

Figure 7.4: Results of plotting iris data with the image() command. Redder colors
correspond with higher values of scaled characters.

More advanced is the parallel coordinates plot (Fig. 7.5):

> library(MASS)

> parcoord(iris[,-5], col=as.numeric(iris[, 5]), lwd=2)
> legend("top", bty="n", lty=1, lwd=2, col=1:3,

+ legend=names(table(iris[, 5])))

This is somewhat like the multidimensional stripchart. Every character is repre-
sented with one axis which has its values from all plants. Then, for every plant, these
values were connected with lines. There are many interesting things which could be
spotted from this plot. For example, it is clear that petal characters are more distin-
guishing than sepal. It is also visible that Iris setosa is more distinct from two other
species, and so on.
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— setosa

—— versicolor
—— virginica /

I T T 1
Sepal.Length Sepal Width Petal.Length Petal . Width

Figure 7.5: Parallel coordinates plot.

7.2 Grouped plots

Even boxplots and dotcharts could represent multiple characters of multiple groups,
but you will need to scale them first and then manually control positions of plotted
elements, or use Boxplots() and Linechart() described in the previous chapter:

> Boxplots(iris[, 1:4], iris[, 5], srt=0, adj=c(.5, 1),
+ legpos="topright") # shipunov
> Linechart(iris[, 1:4], iris[, 5], mad=TRUE) # shipunov

(Please try these plots yourself.)
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Function matplot () allows to place multiple scatterplots in one frame, symbols()
allows to place multiple smaller plots in desired locations, and function pairs()
allows to show multiple scatterplots as a matrix (Fig. 7.6).

pairs(iris[, 1:4], pch=21, bg=as.numeric(iris[, 5]),
oma=c(2, 2, 3, 2))

oldpar <- par(xpd=TRUE)

legend(0, 1.09, horiz=TRUE, legend=levels(iris[, 5]),
pch=21, pt.bg=1:3, bty="n")

par(oldpar)
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Figure 7.6: Matrix plot.

(This matrix plot shows dependencies between each possible pair of five variables
simultaneously.)
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Matrix plot is just one of the big variety of R trellis plots. Many of them are in the
lattice package (Fig. 7.7):

betula <- read.table(
"http://ashipunov.info/shipunov/open/betula.txt", h=TRUE)
library(lattice)

d.tmp <- do.call(make.groups, betula[, c(2:4, 7:8)])
d.tmp$LOC <- betula$LOC

bwplot(data ~ factor(LOC) | which, data=d.tmp, ylab="")

vV Vv Vv + Vv

v

(Note how to use make.groups() and do.call() to stack all columns into the long
variable (it is also possible to use stack(), see above). When LOC was added to tem-
porary dataset, it was recycled five times—exactly what we need.)

CATKIN SCALE.L

bifggsie®s

R ROt

LEAEL LEAEW LEAEMAXW

oo ', -
ol LR a?g@@ﬂma :

1234567891011 1234567891011 123456 73891011

Figure 7.7: The example of trellis plot: for each measurement character, boxplots
represent differences between locations.
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Library lattice offers multiple trellis variants of common R plots. For example, one
could make the trellis dotchart which will show differences between horsetail species
(Fig. 7.8)

> eq.s <- stack(as.data.frame(scale(eqdm)))
> eq.S$SPECIES <- row.names(eq8m)
> dotplot(SPECIES ~ values | ind, eq.s, xlab="")

(Here we stacked all numerical columns into one with stack().)

sylvaticum
pratense
palustre
mildeanum
litorale
hyemale | ¢
fluviatile
arvense

N.ZUB DL.OSN.Z DL.TR.V

sylvaticum . .
pratense
palustre
mildeanum
litorale
hyemale
fluviatile
arvense

DL.R DIA.ST N.REB

sylvaticum
pratense
palustre
mildeanum
litorale
hyemale
fluviatile
arvense

Figure 7.8: Trellis dotchart of the horsetail species (character values are scaled).
These plots are typically read from the bottom.

Few trellis plots are available in the core R. This is our election data from previous
chapter (Fig. 7.9):

> coplot(percn ~ atten | cand, data=elections2, col="red",
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+ bg="pink", pch=21, bar.bg=c(fac="1lightblue"))

Given : cand

| CAND.3

| CAND.2 |

CAND.1 |

00 02 04 06 08 1.0

percn

00 02 04 06 08 10

atten

Figure 7.9: Voting data from previous chapter represented with coplot () function.

7.3 3D plots

If there just three numerical variables, we can try to plot all of them with 3-axis plots.
Frequently seen in geology, metallurgy and some other fields are ternary plots. They
implemented, for example, in the vcd package. They use triangle coordinate system
which allows to reflect simultaneously three measurement variables and some more
categorical characters (via colors, point types etc.):

> library(vcd)
> ternaryplot(scale(iris[, 2:4], center=FALSE),
+ cex=.3, col=iris[, 5], main="")
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> grid_legend(0.8, 0.7, pch=19, size=.5, col=1:3, levels(iris[, 5]))

Petal.Width
. setosa
* versicolor
¢ virginica
n
-’.""‘..'.'
-n.“..... .
o ves
:..::0‘
%, w.ﬁ"
PO
Sepal.Width Petal.Length

Figure 7.10: Ternary plot for iris data.

The “brick” 3D plot could be done, for example, with the package scatterplot3d
(Fig. 7.11):

+ vviVviVvVvyVvy + 4+ vV

library(scatterplot3d)

i13d <- scatterplot3d(iris[, 2:4], color=as.numeric(iris[, 5]),
type="h", pch=14 + as.numeric(iris[, 5]), xlab="Sepal.width",
ylab="", zlab="Petal.Width")

dims <- par("usr")

X <- dims[1]+ 0.82xdiff(dims[1:2])

y <- dims[3]+ 0.1xdiff (dims[3:4])

text(x, y, "Petal.Length", srt=40)

legend(i3d$xyz.convert(3.8, 6.5, 1.5), col=1:3, pch=(14 + 1:3),
legend=levels(iris[, 5]), bg="white")

(Here some additional efforts were used to make y-axis label slanted.)
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Figure 7.11: Static 3D scatterplot of iris data.

These 3D scatterplots look attractive, but what if some points were hidden from the
view? How to rotate and find the best projection? Library RGL will help to create the
dynamic 3D plot:

> library(rgl)
> plot3d(iris[, 1:3], col=as.numeric(iris[, 5]))

Please run these commands yourself. The size of window and projection in RGL
plots are controlled with mouse. That will help to understand better the position
of every point. In case of iris data, it is visible clearly that one of the species
(Iris setosa) is more distinct than two others, and the most “splitting” character is
the length of petals (Petal.Length). There are four characters on the plot, because
color was used to distinguish species. To save current RGL plot, you will need to run
rgl.snapshot() or rgl.postscript() function. Please also note that RGL package
depends on the external OpenGL library and therefore on some systems, additional
installations might be required.
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Another 3D possibility is cloud() from lattice package. It is a static plot with the
relatively heavy code but important is that user can use different rotations (Fig. 7.12):

> library(lattice)

> p <- cloud(Sepal.Length ~ Petal.Length * Petal.Width, data=iris,
+ groups=Species, par.settings=1list(clip=1list(panel="off")),

+ auto.Rey=1list(space="top", columns=3, points=TRUE))

> update(p[rep(1, 4)], layout=c(2, 2), function(..., screen)

+ panel.cloud(..., screen=list(z=c(-70, 110)[current.column()],

+ x=-70, y=c(140, 0)[current.row()])))

setosa ° versicolor ° virginica °

Petal.Width Petal. Width

Petal.Width Petal.Width

Petal.Length

Figure 7.12: Static 3D cloud plot of iris data with several rotations.
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We see now that plotting multivariate data always has two problems: either there are
too many elements (e.g., in parallel coordinates) which are hard to understand, or
there is a need of some grouping operation (e.g., median or range) which will result
in the lost of information. What will be really helpful is to safely process the data
first, for example, to reduce dimensions—from many to 2 or 3. These techniques are
described in next chapter.
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Chapter 8

Discover

As Sherlock Holmes said (at least sometimes), it is not a good practice to formulate
hypotheses before we know the data. Discovery methods (“non-supervised classifi-
cation”, “classification without learning”) always start from scratch and output re-
sults regardless to what researcher actually wants. There are many discovery meth-
ods. Below, they are split in two groups: methods which use original, primary data
and methods which start from distance calculation.

Another classification is to split discovery methods into (a) manifold and (b) layout
methods where the first group is about (a) space reduction (manifold learning, shape
discovery) and the second is about (b) layout reduction (order learning, structure
discovery of structure).

Manifold methods are mainly based on (a) hyperspace geometry and return projec-
tions or deconvolutions (unfolds), whereas layout methods frequently use (b) graph
theory and return simple classifications (piles, groups) or more complex hierarchical
objects like trees or decision keys.

There are also methods which combine manifold and layout discovery (see, for ex-
ample, the clustrd package), and methods which use them together with machine
learning (i.e., employ training data).

As manifold methods reduce dimensionality, they typically provide a good ground
for multidimensional visualizations. Discovery methods might be able also to reveal
(a) hidden factors (latent variables) and variable importance (feature selection! and
(b) hidden order (data clusters).

1Package Boruta is especially god for the all relevant feature selection.
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8.1 Discovery with primary data

Primary data is what come directly from observation, and was not yet processed in
any further way (to make secondary data).

8.1.1 Shadows of hyper clouds: PCA

RGL (see above) allows to find the best projection manually, with a mouse. How-
ever, it is possible to do programmatically, with principal component analysis, PCA.
It belongs to the family of non-supervised methods, methods of classification without
learning, or ordination.

PCA treats the data as points in the virtual multidimensional space where every di-
mension is the one character. These points make together the multidimensional
cloud. The goal of the analysis is to find a line which crosses this cloud along its
most elongated part, like pear on the stick (Fig. 8.1). This is the first principal com-
ponent. The second line is perpendicular to the first and again span the second most
elongated part of the cloud. These two lines make the plane on which every point is
projected.

Figure 8.1: Principal component analysis is like the pear on the stick.

Let us prove this practically. We will load the two-dimensional (hence only two prin-
cipal components) black and white pear image and see what PCA does with it:

library(png) # package to read PNG images

aa <- readPNG('"data/pear2d_bw.png")

bb <- which(aa == 0@, arr.ind=TRUE) # pixels to coordinates
## plot together original (green) and PCA-rotated:

bbs <- scale(bb)

pps <- scale(prcomp(bb)$x[, 1:2]) # only two PCs anyway

VvV V V VvV Vv Vv
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legend("bottomright", fill=adjustcolor(c("green", "black"),
alpha=0.5), legend=c("Original", "PCA-rotated"),
bty="n", border=0)

> xx <- range(c(bbs[, 11, ppsl[, 11))

> yy <- range(c(bbs[, 2], pps[, 21))

> plot(pps, pch=".", col=adjustcolor("black", alpha=0.5),

+ xlim=xx, ylim=yy)

> points(bbs, pch=".", col=adjustcolor("green", alpha=0.5))
>

+

+

Original
m PCA-rotated
T T T T T

-2 -1 0 1 2

Figure 8.2: Shadow of the pear: how PCA projects the image.

PCA is related with a task of finding the “most average person”. The simple combi-
nation of averages will not work, which is well explained in Todd Rose’s “The End of
Average” book. However, it is usually possible to find in the hyperspace the config-
uration of parameters which will suit most of people, and this is what PCA is for.

After the PCA procedure, all columns (characters) are transformed into components,
and the most informative component is the first, next is the second, then third etc.
The number of components is the same as the number of initial characters but first
two or three usually include all necessary information. This is why it is possible to
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use them for 2D visualization of multidimensional data. There are many similarities
between PCA and factor analysis (which is out of the scope of this book).

At first, we will use an example from the open repository presenting measurements
of four different populations of sedges:

> ca <- read.table(
+ "http://ashipunov.info/shipunov/open/carex.txt", h=TRUE)

> Str(ca)
'data.frame': 62 obs. of 5 variables
1 LOC cint 17111111111 ...
2 HEIGHT : int 157 103 64 77 21 27 19 35 43 92
3 LEAFW : num 2.52.5221.51.521.52 2.
4 SPIKE.L: num 9.5 9 7.57 45 3.56 6 6.5
5 SPIKE.W: num 6.5 6.56 54 43.5555.5

> ca.pca <- princomp(scale(cal,-1]))
(Function scale() standardizes all variables.)

The following (Fig. 8.3) plot is technical screeplot which shows the relative impor-
tance of each component:

> plot(ca.pca, main="")

Here it is easy to see that among four components (same number as initial charac-
ters), two first have the highest importances. There is a way to have the same without
plotting:

> summary(ca.pca)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.6448264 0.7759300 0.59318563 0.52544578
Proportion of Variance 0.6874514 0.1529843 0.08940939 0.07015485
Cumulative Proportion 0.6874514 0.8404358 0.92984515 1.00000000

First two components together explain about 84% percents of the total variance.
Visualization of PCA is usually made using scores from PCA model (Fig. 8.4):

> ca.p <- ca.pca$scores[, 1:2]

> plot(ca.p, type="n", xlab="PC1", ylab="PC2")
> text(ca.p, labels=ca[, 1], col=ca[, 1])

> Hulls(ca.p, ca[, 1]) # shipunov

(Last command draws hulls which help to conclude that first sedges from the third
population are intermediate between first and second, they might be even hybrids.
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Figure 8.3: Plot showing the importance of each component.

If there are three, not two, components which are most important, then any of 3D
plots like scatterplot3d() explained above, will help to visualize them.)

It is tempting to measure the intersection between hulls. This is possible with Overlap()
function, which in turn loads PBSmapping package:

> ca.h <- Hulls(ca.p, cal[, 1], plot=FALSE) # shipunov
> ca.o <- Overlap(ca.h) # shipunov
Loading required package: PBSmapping

> summary(ca.o)
Overlaps for each hull, %:
mean.overlap total.overlap

1 25.81 51.63
2 22.91 45.83
3 44.68 89.36
4 NaN 0.00

Mean overlap for the whole dataset 31.14 %
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Figure 8.4: Diversity of sedges on the plot of two first principal components.

Sometimes, PCA results are useful to present as a biplot (Fig. 8.5):
> biplot(ca.pca, xlabs=cal[, 1])

Biplot helps to understand visually how large is the load of each initial character into
first two components. For example, characters of height and spike length (but spike
width) have a biggest loads into the first component which distinguishes populations
most. Function Loadings() allows to see this information in the numerical form:

> loadings(ca.pca)
Loadings:

Comp.1 Comp.2 Comp.3 Comp.4
HEIGHT -0.518 0.845 -0.125
LEAF.W -0.468 0.721 -0.263 0.437
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Figure 8.5: Biplot shows the load of each character into two first components.

SPIKE.L -0.534 -0.432 -0.724
SPIKE.W -0.476 -0.688 -0.178 0.518

R has two variants of PCA calculation, first (already discussed) with princomp(), and
second with prcomp(). The difference lays in the way how exactly components are
calculated. First way is traditional, but second is recommended:

> iris.pca <- prcomp(iris[, 1:4], scale=TRUE)
> iris.pcag$rotation

PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
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Petal.wWidth 0.5648565 -0.06694199 -0.6342727 0.5235971

> iris.p <- iris.pca$x[, 1:2]

> plot(iris.p, type="n", xlab="PC1", ylab="PC2")

> text(iris.p, labels=abbreviate(iris[, 5], 1, method="both.sides"),
+ col=as.numeric(iris[, 5]))

> Ellipses(iris.p[, 1:2], as.numeric(iris[, 5])) # shipunov

Example above shows some differences between two PCA methods. First, prcomp()
conveniently accepts scale option. Second, loadings are taken from the rotation
element. Third, scores are in the the element with x name. Please run the code
yourself to see how to add 95% confidence ellipses to the 2D ordination plot. One
might see that Iris setosa (letter “s” on the plot) is seriously divergent from two other
species, Iris versicolor (“v”) and Iris virginica (“a”).

Packages ade4 and vegan offer many variants of PCA (Fig. 8.6):

> library(ade4)
> iris.dudi <- dudi.pca(iris[, 1:4], scannf=FALSE)
> s.class(iris.dudi$li, iris[, 5])

(The plot is similar to the shown on Fig. 8.4; however, the differences between groups
are here more clear.)

In addition, this is possible to use the inferential approach for the PCA:
> iris.between <- bca(iris.dudi, iris[, 5], scannf=FALSE)

> randtest(iris.between)

Monte-Carlo test
Call: randtest.between(xtest = iris.between)

Observation: 0.7224358
Based on 999 replicates

Simulated p-value: 0.001
Alternative hypothesis: greater

Monte-Carlo randomization allows to understand numerically how well are Iris species
separated with this PCA. The high Observation value (72.2% which is larger than
50%) is the sign of reliable differences.
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Figure 8.6: Diversity of irises on the plot of two first principal components (ade4
package)

There are other variants of permutation tests for PCA, for example, with anosim()
from the vegan package.

Please note that principal component analysis is in general a linear technique similar
to the analysis of correlations, and it can fail in some complicated cases.

Another important note is that PCA (and MDS, see below) do not preserve local
distances but preserve global—they are projections that typically “squeeze” data
whereas some other methods (like isomap, available in R packages dimRed, Rdimtools
and vegan) tend to preserve local distances more: they are deconvolutions, “unfolds”
and therefore flatten or distort data?. Methods like t-SNE (below) and some others
try to be in between.

2o see the difference between projections and unfolds, read the vignette attached to dimRed package.
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8.1.2 Data density: t-SNE

With the really big number of samples, t-SNE algorithm (name stands for “t-Distributed
Stochastic Neighbor Embedding”) performs better than classical PCA. t-SNE is fre-
quently used for the shape recognition. It is easy enough to employ it in R (Fig. 8.7):

library(Rtsne)

set.seed(42)

+ VvV V.V V V VvV

legend=1levels(SP))

iris.unique <- unique(irtis)

tsne.out <- Rtsne(as.matrix(iris.uniquel[, 1:4]))

SP <- iris.unique$Species

plot(tsne.out$Y, col=SP, pch=14+as.numeric(SP), xlab="", ylab="")
legend("topleft", pch=14+1:nlevels(SP), col=1:nlevels(SP),
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L g 4 “AA ... o W
A “ S,
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AA .
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O —]
w
|
]
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Figure 8.7: t-SNE algorithm splits the iris data.
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8.1.3 Correspondence

Correspondence analysis is the family of techniques similar to PCA, but applicable
to categorical data (primary or in contingency tables). Simple variant of the corre-
spondence analysis is implemented in corresp () from MASS package (Fig. 8.8) which
works with contingency tables:

> HE <- margin.table(HairEyeColor, 1:2)

> HE.df <- Table2df(HE) # shipunov

> biplot(corresp(HE.df, nf = 2), xpd=TRUE)

> legend("topleft", fill=1:2, legend=c("hair","eyes"))

(We converted here “table” object HE into the data frame. xpd=TRUE was used to allow
text to go out of the plotting box.)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
\ \ \ \ \ \ \
o | ® hair - g
o B eyes
© . ©
o o
< o<
o | o
N _Black |
o o
Brown Blue Blond
o + . o
© Brown ©
N Hazel N
S ] -9
Red
< Green <
? - o
I ]
T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Figure 8.8: Correspondence plot of contingency table.

298



This example uses HairEyeColor data from previous chapter. Plot visualizes both
parameters so if the particular combination of colors is more frequent, then posi-
tions of corresponding words is closer. For example, black hairs and brown eyes fre-
quently occur together. The position of these words is more distant from the center
(designated with cross) because numerical values of these characters are remote.

This possibility to visualize several character sets simultaneously on the one plot is
the impressive feature of correspondence analysis (Fig. 8.9):

library(vegan)

alla <- read.table("data/lakesea_abio.txt", sep="\t", h=TRUE)
allc <- read.table("data/lakesea_bio.txt", sep="\t", h=TRUE)
all.cca <- cca(allc, alla[,-14])

plot.all.cca <- plot(all.cca, display=c("sp","cn"),

xlab:”", ylab:””)

points(all.cca, display="sites", pch=ifelse(alla[, 14], 15, 0))
legend("topleft", pch=c(15, @), legend=c("lake","sea"))
text(-1.6, -4.2, "Carex.lasiocarpa", pos=4)

VvV VV 4+ V V V V.YV

This is much more advanced than biplot. Data used here contained both abiotic (eco-
topes) and biotic factors (plant species), plus the geography of some Arctic islands:
were these lake islands or sea islands. The plot was able to arrange all of these data:
for abiotic factors, it used arrows, for biotic—pluses, and for sites (islands themselves
as characterized by the sum of all available factors, biotic and abiotic)—squares of
different color, depending on geographic origin. All pluses could be identified with
the interactive identify(plot.all.cca, "species") command. We did it just for
one most outstanding species, Carex lasiocarpa (woolly-fruit sedge) which is clearly
associated with lake islands, and also with swamps.

8.1.4 Data solitaire: SOM

Self-organizing maps (SOM) is a technique somewhat similar to breaking the deck of
cards into several piles according to their features (data patterns). This means, by
the way, that SOM is the layout method.

In the heart, SOM is an (non-supervised, but learning) artificial neural network which
imitates human classification made with feature sorting. This is how to play a soli-
taire with SOM:

library(kohonen)

cards2 <- do.call(rbind,

strsplit(cards, split=" ")) # 'cards' object created in Chapter 1
set.seed(1)

cards.som <- supersom(data=as.list(as.data.frame(cards2)),

v VvV + v v
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Figure 8.9: Canonical correlation analysis plot showing Arctic islands (squares),
species (crosses) and habitat factors (arrows)

+ grid=somgrid(2, 2))

> split(cards, factor(predict(cards.som)$unit.classif))
$\1\

[1] ll7 Bull llv Bull l|6 Bull |I10 Bull HT BU" Ile BU"

$\2\
[1] "9 P.'LII IIK P.'LII ||8 P.'Lll IID P.'LII ||7 P.'Lll IIV P.i-ll
$s3\
[1] ll6 Tr.ll I|10 Trll llT Tr" "9 Trll IIK Trll "8 Tl""
$\4\

[1] "8 Ch" llD Ch" l|7 Ch" IIV Ch" ||6 Ch" ||10 Ch”

The more sensible example are the same iris dataset:
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library(kohonen)

iris.som <- som(scale(iris[, 1:4]),

grid = somgrid(3, 3, "hexagonal")) # 9 "piles"
predict(iris.som)$unit.classif # content of each "pile
[1] 988899888898838 ...
iris.som$distances # distance to the "center of pile"
[1] 9.02908426 0.06193370 0.13614573 0.03850824 ...

v + v v

v

> set.seed(1)

> plot(iris.som, main="")

> oldpar <- par(new=TRUE, oma=c(2, rep(@, 3)))

> plot(iris.som, type="mapping", col=iris$Species, main="", border=0)
> par(oldpar)

>

legend("top", col=1:3, pch=1, legend=levels(iris$Species))

The resulted plot (Fig. 8.10) contains graphical representation of character values,
together with the placement of actual data points.

8.2 Discovery with distances

Important way of non-supervised classification is to work with distances instead of
original data. Distance-based methods need the dissimilarities between each pair
of objects to be calculated first. Advantage of these methods is that dissimilarities
could be calculated from data of any type: measurement, ranked or nominal.

8.2.1 Distances

There are myriads of ways to calculate dissimilarity (or similarity which is essen-
tially the reverse dissimilarity)>. One of these ways already explained above is a
(reverse absolute) correlation. Other popular ways are Euclidean (square) distance
and Manhattan (block) distance. Both of them (Fig. 8.11) are useful for measurement
variables.

Manhattan distances are similar to driving distances, especially when there are not
many roads available. The example below are driving distances between biggest
North Dakota towns:

> nd <- read.table("data/nd.txt", h=TRUE, sep="\t", row.names=1)
> nd.d <- as.dist(nd)

> str(nd.d)

Class 'dist' atomic [1:28] 110 122 170 208 268 210 173 135 ...

S5For example, “Encyclopedia of Distances” (2009) mentions about 1,500!
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Figure 8.10: Self-organizing map for iris data. Both character values (codes) and
data placement is shown.

..- attr(x, "Labels")= chr [1:8] "Minot" "Bismarck"

In most cases, we need to convert raw variables into distance matrix. The basic way
is to use dist(). Note that ranked and binary variables usually require different
approaches which are implemented in the vegan (function vegdist()) and cluster
packages (function daisy()). The last function recognizes the type of variable and
applies the most appropriate metric (including the universal Gower distance); it also
accepts the metric specified by user:

> library(cluster)
> iris.dist <- daisy(iris[, 1:4], metric="manhattan")
> str(iris.dist)
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(1) (2)

/B B
A A
d(AB)=AB d(AB)=AC+CB

Figure 8.11: Euclidean (1) and Manhattan (2) distances between A and B

Classes 'dissimilarity', 'dist' atomic [1:11175] 0.7 0.8 ...
..— attr(x, "Size")= int 150
..—- attr(x, "Metric")= chr "manhattan"

Again, there are myriads of distance measures, based, for example, on linguistic
string similarity or on physical potential energy. In biology, one can use Smirnov
taxonomic distances, available from smirnov package. In the following example, we
use plant species distribution data on small islands.

The next plot intends to help the reader to understand them better. It is just a kind
of map which shows geographical locations and sizes of islands:

> mp <- read.table(

+ "http://ashipunov.info/shipunov/open/moldino_1.txt",

+ h=TRUE, sep="\t", row.names=1)

> library(MASS)

> eqscplot (mp$LON, mp$LAT, cex=round(log(mp$SQUARE))-5.5,
+ axes=FALSE, xlab="", ylab="", xpd=T)

>

text (mp$LON, mp$LAT, labels=row.names(mp), pos=4, offset=1, cex=.9)
(Please plot it yourself.)
Now we will calculate and visualize Smirnov’s distances:

mo <- read.table("http://ashipunov.info/shipunov/open/moldino.txt",
h=TRUE, sep="\t", row.names=1)

m1 <- t((mo > @) % 1) # convert to occurrence 0/1 data and transpose
library(smirnov)

m1.Txy <- smirnov(m1)

ml.s <- (1 - m.Txy) # similarity to dissimilarity

dimnames(m1.s) <- list(row.names(m1))

vV V.V Vv Vv + Vv
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> symnum(m1.s)
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Smirnov’s distances have an interesting feature: instead of 0 or 1, diagonal of the
similarity matrix is filled with the coefficient of uniqueness values (Txx):

> m1.Txx <- diag(m1.Txy)

> names(m1.Txx) <- row.names(m1)

> rev(sort(round(m1.Txx, 3)))

Verik Malinovyj.Kruglyj EkRslibris Bobrovyj
0.189 0.130 0.124 0.106

This means that Verik island is a most unique in regards to plant species occurrence.

8.2.2 Making maps: multidimensional scaling

There are many things to do with the distance matrix. One of most straightforward is
the manifold method of multidimensional scaling, MDS (the other name is “principal
coordinate analysis”, PCoA):

points(nd.c, pch=19)
text(nd.c, labels=new.names, xpd=TRUE, pos=3, cex=0.8)

> nd.d <- as.dist(nd)

> nd.c <- cmdscale(nd.d)

> new.names <- sub("y C", "y\nC", row.names(nd))

> library(MASS)

> eqscplot(nd.c, type="n", axes=FALSE, xlab="", ylab="")
>

>

Compare the plot (Fig. 8.12) it with any geographical map. If you do not have a map
of North Dakota but have these driving distances, cmdscale() allows to re-create
the map!
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Figure 8.12: It is not a map of North Dakota towns but the plot of cmdscale () output
from the driving distance data.

So in essence, MDS is a task reverse to navigation (finding driving directions from
map): it uses “driving directions” and makes a map from them.

Another, less impressive but more useful example (Fig. 8.13) is from raw data of
Fisher’s irises:

library(KernSmooth)

iris.c <- cmdscale(iris.dist)

est <- bkde2D(iris.c, bandwidth=c(.7, 1.5))
plot(iris.c, type="n", xlab="Dim. 1", ylab="Dim. 2")
text(iris.c,

labels=abbreviate(iris[, 5], 1, method="both.sides"))
contour(est$x1, est$x2, est$fhat, add=TRUE,
drawlabels=FALSE, 1lty=3)

+ v + v v Vv v Vv

(There is no real difference from PCA because metric multidimensional scaling is
related to principal component analysis; also, the internal structure of data is the
same.)

To make the plot “prettier”, we added here density lines of point closeness estimated
with bkde2D () function from the KernSmooth package. Another way to show density
is to plot 3D surface like (Fig. 8.14):

> persp(est$x1, est$x2, est$fhat, theta=135, phi=45,
+ col="purple3d", shade=0.75, border=NA,
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Dim. 2

Dim. 1

Figure 8.13: The result of the multidimensional scaling of the iris. data. Visual-
ization uses the estimation of density.

+ xlab="Dim. 1", ylab="Dim. 2", zlab="Density")

In addition to cmdscale(), MASS package (functions isoMDS() and sammon()) im-
plements the non-metric multidimensional scaling, and package vegan has the ad-
vanced non-metric metaMDS (). Non-metric multidimensional scaling does not have
analogs to PCA loadings (importances of variables) and proportion of variance ex-
plained by component, but it is possible to calculate surrogate metrics:

> iris.dist2 <- dist(iris[, 1:4], method="manhattan")
## to remove zero distances:

iris.dist2[iris.dist2 == 0] <- abs(jitter(0))
library(MASS)

iris.m <- isoMDS(iris.dist2)

vV V VvV Vv
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Figure 8.14: 3D density surface of multidimensionally scaled iris data.

initial value 5.444949

iter 5 value 4.117042

final value 4.075094

converged

> cor(iris[, 1:4], iris.m$points) # MDS loadings surrogate
[, 1] [, 2]

Sepal.Length 0.9041779 -0.30455326

Sepal.Width -0.3996573 -0.87872539

Petal.Length 0.9956071 ©.04209809

Petal.wWidth 0.9661085 -0.01138353

> MDSv(iris.m$points) # shipunov

[1] 97.509738 2.490262 # MDS explained variance surrogate

Consequently (and similarly to PCA), sepal width character influences second di-
mension much more than three other characters. We can also guess that within this
non-metric solution, first dimension takes almost 98% of variance.
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8.2.3 Making trees: hierarchical clustering

From this point, we switch to another set of discovery methods. These are layout
(order learning, structure learning) methods. Generally, they are based on distances
but results of their work are more similar to connected nodes (graphs) then to the
maps.

Hierarchical clustering is the way to process the distance matrix which returns den-
drograms, or trees, which are “one and a half dimensional*” plots (Fig. 8.15):

aa <- read.table("data/atmospheres.txt", h=TRUE,
sep="\t", row.names=1)

aa.dist <- dist(t(aa)) # because planets are columns
aa.hclust <- hclust(aa.dist, method="ward.D")
plot(aa.hclust, xlab="", ylab="", sub="")

v VvV Vv 1+ Vv

Ward’s method of clustering is well known to produce sharp, well-separated clusters
(this, however, might lead to false conclusions if data has no apparent structure).
Distant planets are most similar (on the height ~ 25), similarity between Venus and
Mars is also high (dissimilarity is ~ 0). Earth is more outstanding, similarity with
Mercury is lower, on the height ~ 100; but since Mercury has no true atmosphere, it
could be ignored.

The following classification could be produced from this plot:
 Earth group: Venus, Mars, Earth, [Mercury]
 Jupiter group: Jupiter, Saturn, Uranus, Neptune

Instead of this “speculative” approach, one can use cutree() function to produce
classification explicitly; this requires the hclust() object and number of desired
clusters:

library(cluster)
iris.dist <- daisy(iris[, 1:4], metric="manhattan")
iris.hclust <- hclust(iris.dist)
iris.3 <- cutree(iris.hclust, 3)
head(iris.3) # show cluster numbers
11111111
> Misclass(iris.3, iris[, 5]) # shipunov
Classification table:

obs
pred setosa versicolor virginica
1 50 0 0

VvV V V Vv Vv

4This is not actually a metaphor, many trees have fractal dimensionality between 1 and 2.
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Figure 8.15: Dendrogram reflecting similarities between atmospheres of Solar sys-
tem planets.

2 0 50 16
3 0 0 34
Misclassification errors:
setosa versicolor virginica
0 0 32
Mean misclassification error: 10.7%

To check how well the selected method performs classification, we wrote the custom
functionMisclass(). This function calculates the confusion matrix. Please note that
Misclass() assumes predicted and observed groups in the same order, see also below
for fanny () function results.
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Confusion matrix is a simple way to assess the predictive power of the model. More
advanced technique of same sort is called cross-validation. As an example, user
might split data into 10 equal parts (e.g., with cut()) and then in turn, make each
part an “unknown” whereas the rest will become training subset.

As you can see from the table, 32% of Iris virginica were misclassified. The last is
possible to improve, if we change either distance metric, or clustering method. For
example, Ward’s method of clustering gives more separated clusters and slightly bet-
ter misclassification rates. Please try it yourself.

There are many other indices which allow to compare clusterings. For example, ad-
justed Rand index measures similarity between clusters:

> Adj.Rand(iris.3, iris[, 5]) # shipunov
[1] 0.7322981

Hierarchical clustering does not by default return any variable importance. However,
it is still possible to assist the feature selection with clustering heatmap (Fig. 8.16):

> library(cetcolor)
> heatmap(t(aa), col=cet_pal(12, "coolwarm"), margins=c(9, 6))

(Here we also used cetcolor package which allows to create perceptually uniform
color palettes.)

Heatmap separately clusters rows and columns and places result of the image()
function in the center. Then it become visible which characters influence which
object clusters and vice versa. On this heatmap, for example, Mars and Venus cluster
together mostly because of similar levels of carbon dioxide.

There are too many irises to plot the resulted dendrogram in the common way. One
workaround is to select only some irises (see below). Another method is to use func-
tion Ploth() (Fig. 8.17):

> Ploth(iris.hclust, col=as.numeric(iris[, 5]),

+ pch=16, col.edges=TRUE, horiz=TRUE, leaflab="none") # shipunov
> legend("topleft", fill=1:nlevels(iris[, 51D,

+ legend=levels(iris[, 5]))

Ploth() is useful also if one need simply to rotate the dendrogram. Please check the
following yourself:
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Figure 8.16: Clustering heatmap for atmosphere data.

> oldpar <- par(mar=c(2, @, 0, 4))
> tox.dist <- as.dist(1 - abs(tox.cor))
> Ploth(hclust(tox.dist, method="ward.D"), horiz=TRUE) # shipunov

> par(oldpar)
(This is also a demonstration of how to use correlation for the distance. As you will

see, the same connection between Caesar salad, tomatoes and illness could be visu-
alized with dendrogram. There visible also some other interesting relations.)

Make the hierarchical classification of beer varieties. Data was collected in 2001,
in Russia and written to the beer.txt file, characters used described in the

beer_c.txt file.
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Figure 8.17: Hierarchical clustering of iris data.

Planet Aqua is entirely covered by shallow water. This ocean is inhabited with
various flat organisms (Fig. 8.18). These creatures (we call them “kubricks”) can
photosynthesize and/or eat other organisms or their parts (which match with the
shape of their mouths), and move (only if they have no stalks). Provide the den-
drogram for kubrick species based on result of hierarchical clustering.

8.2.4 How to know the best clustering method

Hierarchical cluster analysis and relatives (e.g., phylogeny trees) are visually appeal-
ing, but there are three important questions which need to be solved: (1) which
distance is the best (this also relevant to other distance-based methods); (2) which
hierarchical clustering method is the best; and (3) how to assess stability of clusters.

312



[ moutn

E H
photosynthetlc
organ (s)

c I - stalk

Figure 8.18: Eight species of kubricks.
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Second question is relatively easy to answer. Function Co.test(dist, tree) from
shipunov package reveals consistency between distance object and hierachical clus-
terization. It is essentially correlation test between initial distances and distances
revealed from cophenetic structure of the dendrogram.

Cophenetic distances are useful in many ways. For example, to choose the best
clusterization method and therefore answer the second question, one might use
cophenetic-based

> PlotBest.hclust(as.dist(m1.s)) # shipunov
(Make and review this plot yourself. Which clustering is better?)

Note, however, these “best” scores are not always best for you. For example, one
might still decide to use ward.D because it makes clusters sharp and visually sepa-
rated.
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To choose the best distance method, one might use the visually similar approach:
> PlotBest.dist(m1) # shipunov
(Again, please review the plot yourself.)

In fact, it just visualizes the correlation between multidimensional scaling of dis-
tances and principal component analysis of raw data. Nevertheless, it is still useful.

8.2.5 How to compare clusterings

Hierarchical clustering are dendrograms and it is not easy to compare them “out of
the box”. Several different methods allow to compare two trees.

We can employ methods associated with biological phylogenies (these trees are es-
sentially dendrograms).

Suppose that there are two clusterings:

> aa.d1 <- hclust(dist(t(aa)))
> aa.d2 <- hclust(as.dist(1 - abs(cor(aa, method="s"))),
+ method="ward.D")

Library ape has dist.topo() function which calculates topological distance be-
tween trees, and library phangorn calculates several those indexes:

> library(ape)
> aa.ph1 <- unroot(as.phylo(aa.d1)) # convert
> aa.ph2 <- unroot(as.phylo(aa.d2))
> dist.topo(aa.ph1, aa.ph2)
tree1
tree?2 2
> phangorn::treedist(aa.ph1, aa.ph2)
symmetric.difference branch.score.difference
2.000000 109.201423
path.difference
3.872983
quadratic.path.difference
598.444274

Next possibility is to plot two trees side-by-side and show differences with lines con-
necting same tips (Fig. 8.19):

> ass <- cbind(aa.ph1$tip.label, aa.ph1$tip.label)
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> aa.ph2r <- rotate(aa.ph2, c("Earth", "Neptune"))
> cophyloplot(aa.ph1, aa.ph2r, assoc=ass, space=30, lty=2)

(Note that sometimes you might need to rotate branch with rotate() function. Ro-
tation does not change dendrogram.)

Earth -----coomomiii e Earth ——
Mercury ------ \‘ P Neptune |
Mars --------- : e Uranus

Venus -------- \ ———————— Saturn I

Neptune ------ L FRCRER. Venus J

%Satum ———————— TONIVA L
Jupiter -------- P Mars

Uranus ------- : feeeees Mercury

Figure 8.19: Side-by-side dendrogram plot for athmosphere data.

There is also possible to plot consensus tree which shows only those clusters which
appear in both clusterings:

> plot(consensus(aa.ph1, aa.ph2r))
(Please make this plot yourself.)

Heatmap could also be used to visualize similarities between two dendrograms:

> aal2.match <- Hclust.match(aa.d1, aa.d2) # shipunov
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> library(cetcolor)
> cols <- cet_pal(max(aa12.match), "blues")
> heatmap(aal12.match, scale="none", col=cols)

(Hclust.match() counts matches between two dendrograms (which based on the
same data) and then heatmap() plots these counts as colors, and also supplies the
consensus configuration as two identical dendrograms on the top and on the left.
Please make this plot yourself.)

Both multidimendional scaling and hierarchical clustering are distance-based meth-
ods. Please make and review the following plot (from the vegan3d package) to un-
derstand how to compare them:

> m1.dist <- as.dist(m1.s)

> m1.hclust <- hclust(m1.dist)

> ml.c <- cmdscale(m1.dist)

> library(vegan3d)

> orditree3d(m1.c, m1.hclust, text=attr(m1.dist, "Labels"), type="t")

8.2.6 How good are resulted clusters

There are several ways to check how good are resulted clusters, and many are based
on the bootstrap replication (see Appendix).

Function Jclust () presents a method to bootstrap bipartitions and plot consensus
tree with support values (Fig. 8.20:

> (m1.j <- Jclust(m1, 3, iter=1000))
Bootstrap support for 3 clusters, 1000 iterations:

support cluster members
87.25 2 Gnutyj, Leda, Slitnyj, Tajnik
84.30 1 Bobrovyj, Ekslibris, Zakhar
62.50 3 Malinovyj.Kruglyj, Verik

> plot(m1.j, rect.lty=2, sub="")

(Note that Jclust () uses cutree() and therefore works only if it “knows” the num-
ber of desired clusters. Since consensus result relates with cluster number, plots
with different numbers of clusters will be different.)
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Figure 8.20: Bootstrap stability of 3-cluster solution for lake islands data (1000 iter-
ations)

Another way is to use pvclust package which has an ability to calculate the support
for clusters via bootstrap (Fig. 8.21):

> library(pvclust)
> m1.pvclust <- pvclust(t(m1), method.dist="manhattan",

+ nboot=100, parallel=TRUE)
Creating a temporary cluster...done:
socket cluster with 3 nodes on host ‘localhost’

Multiscale bootstrap... Done.
> plot(m1.pvclust, col.pv=c("darkgreen", 0, 0), main="")
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Figure 8.21: Dendrogram with supporting values (pvclust package)

(Function pvclust() clusterizes columns, not rows, so we have to transpose data
again. On the plot, numerical values of cluster stability (au) are located above each
node. The closer are these values to 100, the better.)

There is also BootA() function in shipunov set which allows to bootstrap clustering
with methods from phylogenetic package ape:

> m1.ba <- BootA(m1, FUN=function(.x) # shipunov

+ as.phyloChclust(dist(.x, method="minkowski"),

+ method="average")), iter=100, mc.cores=4)

Running parallel bootstraps... done.

318



Calculating bootstrap values... done.
> plot(m1.bag$boot.tree, show.node.label=TRUE)
> plot(m1.bag$cons.tree) # majority-rule consensus

(This method requires to make an anonymous function which uses methods you
want. It also plots both consensus tree (without support values) and original tree
with support values. Please make these trees. Note that by default, only support
values greater then 50% are shown.)

8.2.7 Making groups: k-means and friends

Apart from hierarchical, there are many other ways of clustering. Typically, they do
not return any ordination (“map”) and provide only cluster membership. For exam-
ple, k-means clustering tries to obtain the a priori specified number of clusters from
the raw data (it does not need the distance matrix to be supplied):

> eq <- read.table("data/eq.txt", h=TRUE)
> eq.kR <- Rmeans(eq[,-11, 2)

K-means clustering does not plot trees; instead, for every object it returns the num-
ber of its cluster:

> str(eq.k$cluster)

int [1:84] 2222222222 ...

> Misclass(eq.kR$cluster, eq$SPECIES) # shipunov
Classification table:

obs
pred arvense fluviatile
1 37 5
2 1 41

Misclassification errors:
arvense fluviatile
2.6 10.9
Mean misclassification error: 6.8%

(As you see, misclassification errors are low.)

Instead of a priori cluster number, function kmeans() also accepts row numbers of
cluster centers.

Spectral clustering from kernlab package is superficially similar method capable to
separate really tangled elements:
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Kernel methods (like spectral clustering) recalculate the primary data to make it more
suitable for the analysis. Support vector machines (SVM, see below) is another ex-
ample. There is also kernel PCA (function kpca() in kernlab package).

Next group of clustering methods is based on fuzzy logic and takes into account the
fuzziness of relations. There is always the possibility that particular object classi-
fied in the cluster A belongs to the different cluster B, and fuzzy clustering tries to

library(kernlab)

data(spirals)

set.seed(1)

sc <- specc(spirals, centers=2)
plot(spirals, col=sc, xlab="", ylab="")

Figure 8.22: Kernel-based spectral clustering is capable to separate two spirals.

measure this possibility:

> library(cluster)
> iris.f <- fanny(iris[, 1:4], 3)
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> head(data.frame(sp=iris[, 5], iris.f$membership))

sp X1 X2 X3
1 setosa 0.9142273 0.03603116 0.04974153
2 setosa 0.8594576 0.05854637 0.08199602
3 setosa 0.8700857 0.05463714 0.07527719
4 setosa 0.8426296 0.06555926 0.09181118
5 setosa 0.9044503 0.04025288 0.05529687
6 setosa 0.7680227 0.09717445 0.13480286

Textual part of the fanny() output is most interesting. Every row contains multiple
membership values which represent the probability of this object to be in the particu-
lar cluster. For example, sixth plant most likely belongs to the first cluster but there
is also visible attraction to the third cluster. In addition, fanny() can round mem-
berships and produce hard clustering like other cluster methods:

> Misclass(iris.f$clustering, factor(iris[, 5],

+ levels=c("setosa", "virginica", "versicolor"))) # shipunov
Classification table:
obs
pred setosa virginica versicolor
1 50 0 0
2 0 41 4
3 0 9 46

Misclassification errors:
setosa virginica versicolor
0 18 8
Mean misclassification error: 8.7%

(We had to re-level the Species variable because fanny() gives number 2 to the Iris
virginica cluster.)

8.2.8 How to know cluster numbers

All “k-means and friends” methods want to know the number of clusters before they
start. So how to know a priori how many clusters present in data? This question is
one of the most important in clustering, both practically and theoretically.

The visual analysis of banner plot (invented by Kaufman & Rousseeuw, 1990) could
predict this number (Fig. 8.23):

> library(cluster)
> eq.a <- agnes(eql[,-11)
> plot(eq.a, which=1, col=c(@, "maroon"))
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Banner of agnes(x = eq[, —1])
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Agglomerative Coefficient = 0.98

Figure 8.23: Banner plot. White bars suggest possible cluster partitions.

White bars on the left represent unclustered data, maroon lines on the right show
height of possible clusters. Therefore, two clusters is the most natural solution, four
clusters should be the next possible option.

Model-based clustering allows to determine how many clusters present in data and
also cluster membership. The method assumes that clusters have the particular na-
ture and multidimensional shapes:

> library(mclust)

> iris.mclust <- Mclust(iris[, -5])
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fitting ...
> summary(iris.mclust) # 2 clusters

Mclust VEV (ellipsoidal, equal shape) model with 2 components:

log.likelihood n df BIC ICL
-215.726 150 26 -561.7285 -561.7289

Clustering table:
1 2
50 100
> iris.mclust$classification
1111111111111 111111111111111

(As you see, it reveals two clusters only. This is explanable because in iris data two
species are much more similar then the third one.)

DBSCAN is the powerful algorithm for the big data (like raster images which consist
of billions of pixels) and there is the R package with the same name (in lowercase).
DBSCAN reveals how many clusters are in data at particular resolution:

> library(dbscan)
> RNNdistplot(iris[, -5], R = 5)
> abline(h=.5, col = "red", lty=2)
> (iris.dbscan <- dbscan(iris[, -5], eps = .5, minPts = 5))
DBSCAN clustering for 150 objects.
Parameters: eps = 0.5, minPts = 5
The clustering contains 2 cluster(s) and 17 noise points.
0 1 2
17 49 84

> plot(iris.p, type="n", xlab="", ylab="")
> text(iris.p, labels=abbreviate(iris[, 5], 1,
+ method="both.sides"), col=iris.dbscan$cluster+1)

(Plots are not shown, please make then yourself. First plot helps to find the size of
neighborhood (look on the knee). The second illustrates results. Similar to model-
based clustering, DBSCAN by default reveals only two clusters in iris data.)
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Note that while DBSCAN was not able to recover all three species, it recovered clouds,
and also places marginal points in the “noise” group. DBSCAN, as you see, is useful
for smoothing, important part of image recognition. Parameter eps allows to change
“resolution” of clustering and to find more, or less, clusters. DBSCAN relates with
t-SNE (see above) and with supervised methods based on proximity (like kNN, see
below).

DBSCAN can also be hierachical (return trees), or supervised and predict clusters for
new points.

Note that k-means and DBSCAN are based on specifically calculated proximities, not
directly on distances.

Data stars contains information about 50 brightest stars in the night sky, their
location and constellations. Please use DBSCAN to make artificial constellations
on the base of star proximity. How are they related to real constellations?

Note that location (right ascension and declination) is given in degrees or hours
(sexagesimal system), they must be converted into decimals.

“Mean-shift” method searches for modes within data, which in essence, is similar to
finding proximities. The core mean-shift algotithm is slow so approximate “blur-
ring” version is typically preferable:

> library(Meanshift)
> bandwidth <- quantile(dist(iris[, -5]), 0.25)
> (bmsClustering(t(iris[, -5]), h=bandwidth))
Running blurring mean-shift algorithm...
Blurring mean-shift algorithm ran successfully.
Finding clusters...
The algorithm found 3 clusters.
$components

mode mode2 mode3
Sepal.Length 5.0007162 6.179920 7.104628
Sepal.Width 3.4178891 2.869793 3.070013
Petal.Length 1.4701932 4.800869 5.957860
Petal.Width 0.2442342 1.640072 2.046728
$labels

3811111111111 1112222 ...
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Another approach to find cluster number is similar to the PCA screeplot:

> wss <- (nrow(eq[,-1]) - 1) * sum(apply(Ceq[,-1]1, 2, var))
> for (1 in 2:15) wss[i] <- sum(kmeans(eq[,-1], centers=i)$withinss)
> barplot(wss, names.arg=1:15, xlab="Number of clusters",

+ main="Sums of squares within groups", yaxt="n", ylab="")

(Please check this plot yourself. As on the banner plot, it visible that highest relative
“cliffs” are after 1 and 4 cluster numbers.)

Package shipunov contains function Peaks() which helps to find local maxima in
simple data sequence. Number of these peaks on the histogram (with the sensible
number of breaks) should point on the number of clusters:

> histdata <- hist(apply(scale(iris[, -5]1), 1,

+ function(.x) sum(abs(.x))), breaks=10, plot=FALSE)
> sum(Peaks(histdata$counts))

[1] 3

(“Three” is the first number of peaks after “one” and does not change when 8 < breaks
<22)

Finally, the integrative package NbClust allows to use diverse methods to assess the
putative number of clusters:

> library(NbClust)
> iris.nb <- NbClust(iris[, -5], method="ward.D") # wait!

* Among all indices:
% 9 proposed 2 as the best number of clusters
* 10 proposed 3 as the best number of clusters
* 3 proposed 6 as the best number of clusters
% 1 proposed 10 as the best number of clusters
* 1 proposed 15 as the best number of clusters
*%xxk% Conclusion xxkxx
According to the majority rule, the best number of clusters is 3

*
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8.2.9 How to compare different ordinations

Most of classification methods result in some ordination, 2D plot which includes all
data points. This allow to compare them with Procrustes analysis (see Appendix for
more details) which rotates ans scales one data matrix to make in maximally similar
with the second (target) one. Let us compare results of classic PCA and t-SNE:

irisu.pca <- prcomp(iris.unique[, 1:4], scale=TRUE)

irisu.p <- irisu.pca$x[, 1:2]

library(vegan)

irisu.pr <- procrustes(irisu.p, tsne.out$Y)

plot(irisu.pr, ar.col=iris.unique$Species,

xlab="", ylab="", main="") # arrows point to target (PCA)
with(iris.unique, legend("topright", lty=1, col=1:nlevels(Species),
legend=1levels(Species), bty="n"))

legend("bottomright", 1lty=2:1, legend=c("PCA", "t-SNE"), bty="n")

v + v + Vv VvV Vv VYV

Resulted plot (Fig. 8.24) shows how dense are points in t-SNE and how PCA spreads
them. Which of methods makes better grouping? Find it yourself.

8.3 Answers to exercises

Answer to the stars question.
First, load the data and as suggested above, convert coordinates into decimals:

> s50 <- read.table("data/stars.txt", h=T, sep="\t", as.is=T, quote="")
> str(s50)
'data.frame': 50 obs. of 13 variables:

$ RA : chr "@6 45 08.9" "@6 23 57.1"

$ DEC : chr "-16 42 58" "-52 41 45" ...
> RA10 <- as.numeric(substr(s50$RA, 1, 2)) +
+ as.numeric(substr(s50$RA, 4, 5))/60 +
+ as.numeric(substr(s50$RA, 7, 10))/3600
> DEC10 <- sign(as.numeric(substr(s50$DEC, 1, 3))) *
+ (as.numeric(substr(s50$DEC, 2, 3)) +
+ as.numeric(substr(s50$DEC, 5, 6))/60 +
+ as.numeric(substr(s50$DEC, 8, 9))/3600)
> coo <- cbind(RA10, DEC10)

Next, some preliminary plots (please make them yourself):
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Figure 8.24: Procrustes plot which show t-SNE ordination against the target PCA
ordination.

oldpar <- par(bg="black", fg="white", mar=rep(0, 4))
plot(coo, pch="%", cex=(3 - s50$VMAG))

Hulls(coo, as.numeric(factor(s50$CONSTEL)), # shipunov
usecolors=rep("white", nlevels(factor(s50$CONSTEL))))
points(runif(100, min(RA10), max(RA10)),

runif (100, min(DEC10), max(DEC10)), pch=".")
par(oldpar)

plot(coo, type="n")

text(coo, s50$CONSTEL.A)

plot(coo, type="n")

text(coo, S50$NAME)

VVVVYVY 4+ YV 4+ vVvvVvyv
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Now, load dbscan package and try to find where number of “constellations” is max-
imal:

> library(dbscan)
for (eps in 1:20) cat(c(eps, ":",
names(table(dbscan(coo, eps=eps)$cluster))), "\n")

+ v
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Plot the prettified “night sky” (Fig. 8.25) with found constellations:

> s50.db <- dbscan(coo, eps=9)

> oldpar <- par(bg="black", fg="white", mar=rep(0, 4))
> plot(coo, pch=8, cex=(3 - s50$VMAG))

> Hulls(coo, s50.db$cluster, # shipunov

+ usecolors=c("black", "white", "white", "white"))

> points(runif (100, min(RA10), max(RA10)),

+ runif (100, min(DEC10), max(DEC10)), pch=".")

> par(oldpar)

dev.off()

To access agreement between two classifications (two systems of constellations) we
might use adjusted Rand index which counts correspondences:

> Adj.Rand(as.numeric(factor(s50$CONSTEL)), s50.db$cluster) # shipunov
[1] 0.1061416

(It is of course, low.)

Answer to the beer classification exercise. To make hierarchical classification, we
need first to make the distance matrix. Let us look on the data:

> beer <- read.table("data/beer.txt", sep="\t", h=TRUE)
> head(beer)
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Figure 8.25: Fifty brightest stars with “constellations” found with DBSCAN.

C01 Co2 C@3 Co4 CO5 Cob6 CO7 CO8 CO9 C10
Afanas.light o 1 © 1 @ © @ @ 1 0

Baltika.3 0 1 0 0 0 0 1 0 1 1
Baltika.6 0 1 1 1 1 0 1 0 1 1
Baltika.9 0 1 1 1 1 0 1 0 1 1
Bochk.light 0 1 0 0 1 1 0 1 1 1
Budweiser 0 1 1 0 1 0 1 0 1 1

Data is binary and therefore we need the specific method of distance calculation. We
will use here Jaccard distance implemented in vegdist() function from the vegan
package. It is also possible to use here other methods like “binary” from the core
dist() function. Next step would be the construction of dendrogram (Fig. 8.26):
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> library(vegan)
> beer.d <- vegdist(beer, "jaccard")

> plot(hclust(beer.d, method="ward.D"), main="", xlab="", sub="")
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Figure 8.26: Hierarchical classification of Russian beer types.

There are two big groups (on about 1.7 dissimilarity level), we can call them “Baltika”
and “Budweiser”. On the next split (approximately on 1.4 dissimilarity), there are
two subgroups in each group. All other splits are significantly deeper. Therefore, it
is possible to make the following hierarchical classification:

« Baltika group

- Baltika subgroup: Baltika.6, Baltika.9, Ochak.dark, Afanas.light, Sibir-
skoe, Tula.hard

- Tula subgroup: Zhigulevsk, Khamovn, Tula.arsenal, Tula.orig
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» Budweiser group
- Budweiser subgroup: Sinebryukh, Vena.porter, Sokol.soft, Budweiser, Sokol.ligh

- Ochak subgroup: Baltika.3, Klinsk.dark, Oldm.light, Vena.peterg, Och-
ak.class, Ochak.special, Klinsk.gold, Sibir.orig, Efes, Bochk.light, Heineken

It is also a good idea to check the resulted classification with any other classifi-
cation method, like non-hierarchical clustering, multidimensional scaling or even
PCA. The more consistent is the above classification with this second approach, the
better.

Answer to the plant species classification tree exercise. The tree is self-explanatory
but we need to build it first (Fig. 8.27):

> eq <- read.table("data/eq.txt", h=TRUE)
> eq.tree <- tree(eql, 1] ~ ., eql,-11)
> plot(eq.tree); text(eq.tree)

Answer to the kubricks (Fig. 8.18) question. This is just a plan as you will still need
to perform these steps individually:

1. Open R, open Excel or any spreadsheet software and create the data file. This
data file should be the table where kubrick species are rows and characters are
columns (variables). Every row should start with a name of kubrick (i.e., letter),
and every column should have a header (name of character). For characters,
short uppercased names with no spaces are preferable.

Topleft cell might stay empty. In every other cell, there should be either 1
(character present) or O (character absent). For the character, you might use
“presence of stalk” or “presence of three mouths”, or “ability to make photo-
synthesis”, or something alike. Since there are 8 kubricks, it is recommended
to invent N + 1 (in this case, 9) characters.

2. Save your table as a text file, preferably tab-separated (use approaches de-
scribed in the second chapter), then load it into Rwithread.table(.., h=TRUE,
row.names=1).

3. Apply hierarchical clustering with the distance method applicable for binary
(0/1) data, for example binary from dist() or another method (like Jaccard)
from the vegan: :vegdist().
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Figure 8.27: Classification tree shows that two horsetail species differ by N.REB char-
acter (number of stem ridges)

4. Make the dendrogram with hclust() using the appropriate clustering algo-
rithm.

In the data directory, there is a data file, Rubricks.txt. It is just an example so
it is not necessarily correct and does not contain descriptions of characters. Since
it is pretty obvious how to perform hierarchical clustering (see the “beer” example
above), we present below two other possibilities.

First, we use MDS plus the MST, minimum spanning tree, the set of lines which show
the shortest path connecting all objects on the ordination plot (Fig 8.28):

> Rubricks <- read.table("data/Rubricks.txt", h=TRUE, row.names=1)
> Rubricks.d <- dist(kubricks, method="binary")
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Rubricks.c <- cmdscale(kRubricks.d)

plot(Rubricks.c, type="n", axes=FALSE)
text(Rubricks.c, labels=row.names(Rubricks), cex=2)
library(vegan)

lines(spantree(kubricks.d), Rubricks.c[, 1:2], lty=2)

VvV V V Vv Vv

B¢

Figure 8.28: Minimum spanning tree of kubricks.

Second, we can take into account that kubricks are biological objects. Therefore,
with the help of packages ape and phangorn we can try to construct the most parsi-
monious (i.e., shortest) phylogeny tree for kubricks. Let us accept that kubrick H is
the outgroup, the most primitive one:

library(phangorn)

R <- as.phyDat(data.frame(t(kubricks)), type="USER",

levels = c(0, 1))

Rd <- dist.hamming(k) # Hamming distance for morphological data
kRdnj <- NJ(Rd) # neighbor-joining tree

Rp <- optim.parsimony(kdnj, R)

kRtree <- root(kp, outgroup="H", resolve.root=TRUE) # re-root
plot(Rtree, cex=2)

vV VV V.V 4+ Vv Vv

(Make and review this plot yourself.)
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Chapter 9

Learn

Methods explained in this chapter frequently called “classification with learning”,
“supervised classification”, “machine learning”, or just “classification”. All of them
are based on the idea of learning:

... He scrambled through and rose to his feet. ... He saw nothing but
colours—colours that refused to form themselves into things. Moreover,
he knew nothing yet well enough to see it: you cannot see things till you
know roughly what they are'. His first impression was of a bright, pale
world—a watercolour world out of a child’s paint-box; a moment later he
recognized the flat belt of light blue as a sheet of water, or of something
like water, which came nearly to his feet. They were on the shore of a
lake or river...

C.S.Lewis. Out of the Silent Planet.

First, small part of data where identity is already known (training dataset) used to
develop (fit) the model of classification (Fig 9.1). On the next step, this model is
used to classify objects with unknown identity (testing dataset). In most of these
methods, it is possible to estimate the quality of the classification and also assess
the significance of the every character.

Let us first to create training and testing datasets from iris data:

> iris.train <- iris[seq(1, nrow(iris), 5), ]
> iris.unknown <- iris[-seq(1, nrow(iris), 5), 1

1Emphasis mine.
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Figure 9.1: Graphic representation of the statistical machine learning. Blue is a
training dataset, red lines is classification model, green is a testing dataset, dashed
lines show prediction (estimation) process.

(iris.unknown is of course the fake unknown so to use it properly, we must specify
iris.unknown[, -5]. On the other hand, species information will help to create
misclassification table (confusion matrix, see below).)

Sometimes, we will train methods below on the whole dataset. This is useful when
we want some “byproduct” instead of predicted classification. This last one will also
be returned but should be used with care because with the whole data as training, it
is easy to overestimate the structure.

9.1 Learning with regression

9.1.1 Linear discriminant analysis

One of the simplest methods of classification is the linear discriminant analysis
(LDA). The basic idea is to create the set of linear functions which “decide” how
to classify the particular object.

> library(MASS)
> iris.lda <- lda(Species ~ . , data=iris.train)
> iris.predicted <- predict(iris.lda, iris.unknown[, 1:4])
> Misclass(iris.predicted$class, iris.unknown[, 5]) # shipunov
Classification table:
obs
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pred setosa versicolor virginica

setosa 40 0 0
versicolor 0 40 7
virginica 0 ] 33

Misclassification errors:
setosa versicolor virginica
0.0 0.0 17.5
Mean misclassification error: 5.8%

Training resulted in the hypothesis which allowed almost all plants (with an excep-
tion of seven Iris virginica) to be placed into the proper group. Please note that LDA
does not require scaling of variables.

It is possible to check LDA results with inferential methods. Multidimensional anal-
ysis of variation (MANOVA) allows to understand the relation between data and
model (classification from LDA):

> ldam <- manova(as.matrix(iris.unkRnown[, 1:4]1) ~
+ iris.predicted$class)
> summary(ldam, test="Wilks")

Df Wilks approx F num Df den Df Pr(>F)
iris.ldap 2 0.026878 145.34 8 228 < 2.2e-16 **%
Residuals 117

Signif. codes: 0 ‘*x%xx’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Important here are both p-value based on Fisher statistics, and also the value of
Wilks’ statistics which is the likelihood ratio (in our case, the probability that groups
are not different).

It is possible to check the relative importance of every character in LDA with ANOVA-
like techniques:

> summary(aov(as.matrix(iris.unknown[, 1:4]) ~
+ iris.predicted$class))
Response Sepal.lLength :

Df Sum Sq Mean Sq F value Pr(>F)
iris.predicted$class 2 51.04735 25.523675 108.8983 < 2.22e-16 **x
Residuals 117 27.42257 0.234381

(This idea is applicable to other classification methods too.)

... and also visualize LDA results (Fig. 9.2):
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iris.lda2 <- lda(iris[, 1:4], iris[, 5])
iris.ldap2 <- predict(iris.lda2, dimen=2)$x
plot(iris.ldap2, type="n", xlab="LD1", ylab="LD2")
text(iris.ldap2, labels=abbreviate(iris[, 5], 1,
method="both.sides"))

Ellipses(iris.ldap2, as.numeric(iris[, 5]),
centers=TRUE) # shipunov

+ v + v v v v

(Please note 95% confidence ellipses with centers.)

LD2
0
|

LD1

Figure 9.2: Graphical representation of the linear discriminant analysis results. 95%
confidence ellipses and their centers added with E1llipses() function.

To place all points on the plot, we simply used all data as training. Note the good

discrimination (higher than in PCA, MDS or clustering), even between close Iris ver-
sicolor and I. virginica. This is because LDA frequently overestimates the differences
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between groups. This feature, and also the parametricity and linearity of LDA made
it less used over the last years.

With LDA, it is easy to illustrate one more important concept of machine learning:
quality of training. Consider the following example:

> set.seed(230)
> iris.sample2 <- sample(1:nrow(iris), 30)
> iris.train2 <- iris[iris.sample2, 1]
> iris.unknown2 <- iris[-iris.sample2, ]
> iris.lda2 <- lda(Species ~ . , data=iris.train2)
> iris.predicted2 <- predict(iris.lda2, iris.unknown2[, 1:4])
> Misclass(iris.predicted2$class, iris.unknown2[, 5])
Classification table:
obs

pred setosa versicolor virginica

setosa 41 0 0

versicolor 0 36 14

virginica 0 0 29

Misclassification errors:
setosa versicolor virginica
0.0 0.0 32.6
Mean misclassification error: 10.9%

Misclassification error here almost two times bigger! Why?

> table(iris.train2$Species)
setosa versicolor virginica
9 14 7

Well, using sample() (and particular set.seed() value) resulted in biased training
sample, this is why our second model was trained so poorly. Our first way to sample
(every 5th iris) was better, and if there is a need to use sample(), consider to sample
each species separately.

Now, return to the default random number generator settings:

> set.seed(NULL)
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Please note that it is widely known that while LDA was developed on biological ma-
terial, this kind of data rarely meets two key assumptions of this method: (1) multi-
variate normality and (2) multivariate homoscedasticity. Amazingly, even Fisher’s
Iris data with which LDA was invented, does not meet these assumptions! Therefore,
we do not recommend to use LDA and keep it here mostly for teaching purposes.

9.1.2 Recursive partitioning

To replace linear discriminant analysis, multiple methods with similar background
ideas were invented. Recursive partitioning, or decision trees (regression trees, clas-
sification trees), allow, among other, to make and visualize the sort of discrimination
key where every step results in splitting objects in two groups (Fig. 9.3):

> library(tree)

> iris.tree <- tree(Species ~ ., data=iris)
> plot(iris.tree)

> text(iris.tree)

We loaded first the tree package containing tree () function (rpart is another pack-
age which makes classification trees). Then we used the whole dataset as training
data. The plot shows that all plants with petal length less than 2.45 cm belong to Iris
setosa, and from the rest those plants which have petal width less than 1.75 cm and
petal length more than 4.95 cm, are I. versicolor; all other irises belong to I. virginica.

Above, we used recursive partitioning to obtain its “byproduct”, classification tree.
In fact, this tree is the result of something similar to “hierarchical discriminant anal-
ysis”. Therefore, it is possible to use recursive partitioning for the supervised clas-
sification:

> iris.tree2 <- tree(Species ~ ., data=iris.train)

> iris.tp2 <- predict(iris.tree2, iris.unknown[,-5], type="class")
> Misclass(iris.tp2, iris.unknown[, 5])

Classification table:

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 38 6
virginica 0 2 34

Misclassification errors:
setosa versicolor virginica
0 5 15
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Petal.Length < 2.45
I

Petal.Width < 1.75

setosa

Petal.Length < 4.95 Petal.Length < 4.95

SepaI.Ledgth <5.15 | virginica virginica

/ . virginica
versicolor versicolor

Figure 9.3: Classification tree for the iris data from tree package.

Mean misclassification error: 6.7%

Try to find out which characters distinguish species of horsetails described in
eq.txt data file. File eq_c. txt contains the description of characters.

Package party offers sophisticated recursive partitioning methods together with ad-
vanced tree plots (Fig. 9.4):

> library(party)
> SA <- abbreviate(iris$Species, 1, method="both.sides")
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> iris.ct <- ctree(factor(SA) ~ ., data=iris[, 1:4])
> plot(iris.ct)

> Misclass(SA, predict(iris.ct))

Classification table:

obs
pred a s Vv
ad49 o0 1
s 050 0
v 5 0 45
Misclassification errors:
a s v
9.3 0.0 2.2

Mean misclassification error: 3.8%

(For species names, we used one-letter abbreviations.)

9.2 Ensemble learnig

9.2.1 Random Forest

The other method, internally similar to regression trees, rapidly gains popularity.
This is the Random Forest. Its name came from the ability to use numerous decision
trees and build the complex classification model. Random Forest belongs to bagging
ensemble methods; it uses bootstrap (see in Appendix) to multiply the number of
trees in the model (hence “forest”). Below is an example of Random Forest classifier
made from the iris data:

> library(randomForest)

> set.seed(17)

> iris.rf <- randomForest(Species ~ ., data=iris.train)
> iris.rfp <- predict(iris.rf, iris.unknown[,-5])

> Misclass(iris.rfp, iris.unknown[, 5])

Classification table:

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 39 7
virginica 0 1 33

Misclassification errors:
setosa versicolor virginica
0.0 2.5 17.5
Mean misclassification error: 6.7%
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Petal.Length
p < 0.001

<4.8 >4.8

/ \

Node2(n=50) Node5(n=46) Node6(n=8) Node7 (n=46)

14 @ 149 -~ 1 1

0.8 0.8 — 0.8 0.8

0.6 0.6 0.6 0.6

0.4 — 0.4 — 0.4 0.4

0.2 0.2 0.2 0.2

0 =177 0 =77 0 - 0
asv asv asv asv

Figure 9.4: Classification tree for the iris data from party package.

Here results are similar to LDA but Random Forest allows for more. For example,
it can clarify the importance of each character (with function importance()), and
reveal classification distances (proximities) between all objects of training subset
(these distances could be in turn used for clustering). Random Forest could also
visualize the multidimensional dataset (Fig. 9.5):

set.seed(17) # because plot is random

iris.urf <- randomForest(iris[,-5])

iris.rfm <- MDSplot(iris.urf, iris[, 5], xlab="", ylab="",
pch=abbreviate(iris[, 5], 1, method="both.sides"))

Pal <- brewer.pal(nlevels(iris[, 5]), "Set1")
Hulls(iris.rfm$points, as.numeric(iris[, 5]),

v Vv + v v v
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+ centers=TRUE, usecolor=Pal) # shipunov

(We applied several tricks to show convex hulls and their centroids.)

<
o

0.2

0.0
|

I I I I
-0.4 -0.2 0.0 0.2

Figure 9.5: Visualization of iris data with the help of “Random Forest”. Hulls and
their centroids added with Hulls () function.

Package ranger implements even faster variant of Random Forest algorithm, it also
can employ parallel calculations.

9.2.2 Gradient boosting

There are many weak classification methods which typically make high misclassi-
fication errors. However, many of them are also ultra-fast. So, is it possible to
combine many weak learners to make the strong one? Yes! This is what boosting
methods do. Gradient boosting employs multi-step optimization and is now among
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most frequently using learning techniques. In R, there are several gradient boosting
packages, for example, xgboost and gbm:

> library(gbm)

> set.seed(4)

> iris.gbm <- gbm(Species ~ .,

+ data=rbind(iris.train, iris.train)) # to make training bigger
Distribution not specified, assuming multinomial ...

> plot(iris.gbm)

> iris.gbm.p1 <- predict.gbm(iris.gbm, iris.unknown,

+ n.trees=iris.gbm$n.trees)

> iris.gbm.p2 <- apply(iris.gbm.p1, 1, # membership trick
+ function(.x) colnames(iris.gbm.p1) [which.max(.x)])

> Misclass(iris.gbm.p2, iris.unknown[, 5])

Classification table:

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 38 5
virginica 0 2 35

Misclassification errors:
setosa versicolor virginica
0.0 5.0 12.5
Mean misclassification error: 5.8%

(Plot is purely technical; in the above form, it will show the marginal effect (effect on
membership) of the 1st variable. Please make it yourself. “Membership trick” se-
lects the “best species” from three alternatives as gbm() reports classification result
in fuzzy form.)

9.3 Learning with proximity

k-Nearest Neighbors algorithm (or kNN) is the “lazy classifier” because it does not
work until unknown data is supplied:

> library(class)
> iris.Rnn.pred <- knn(train=iris.train[,-5],
+ test=iris.unknown[,-5], cl=iris.train[, 5], R=5)
> Misclass(iris.knn.pred, iris.unknown[, 5])
Classification table:

obs
pred setosa versicolor virginica
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setosa 40 0 0
versicolor ] 40 11
virginica 0 0 29
Misclassification errors:
setosa versicolor virginica
0.0 0.0 27.5
Mean misclassification error: 9.2%

kNN is based on distance calculation and “voting”. It calculates distances from every
unknown object to the every object of the training set. Next, it considers several
(5 in the case above) nearest neighbors with known identity and finds which id is
prevalent. This prevalent id assigned to the unknown member. Function knn() uses
Euclidean distances but in principle, any distance would work for kNN.

To illustrate idea of nearest neighbors, we use Voronoi decomposition, the technique
which is close to both kNN and distance calculation:

iris.p <- prcomp(iris[, 1:4], scale=TRUE)$x[, 1:2]

iris.p1 <- iris.p[seq(1, nrow(iris.p), 5), ]

iris.p2 <- iris.p[-seq(1, nrow(iris.p), 5), ]
library(tripack)

iris.v <- voronoi.mosaic(iris.p1[, 1], iris.p1[, 21,
duplicate="remove")

plot(iris.v, do.points=FALSE, main="", sub="")
points(iris.p1[, 1:2], col=iris.train$Species, pch=16, cex=2)
points(iris.p2[, 1:2], col=iris.unknown$Species)

vV VV 4+ V V V VYV

The plot (Fig. 9.6) contains multiple cells which represent neighborhoods of training
sample (big dots). This is not exactly what kNN does, but idea is just the same. In
fact, Voronoi plot is a good tool to visualize any distance-based approach.

Depth classification based on how close an arbitrary point of the space is located to
an implicitly defined center of a multidimensional data cloud:

> library(ddalpha)

> iris.dd <- ddalpha.train(Species ~ ., data=iris.train)
Selected columns: Species, Sepal.Length, Sepal.Width,
Petal.Length, Petal.Width

> iris.p <- predict(iris.dd, iris.unknown[, -5])

> Misclass(unlist(iris.p), iris.unknown[, 5]) # shipunov
Classification table:
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Figure 9.6: Visualization of training data points neighborhoods with Voronoi de-
composition.

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 40 7
virginica 0 0 33

Misclassification errors:
setosa versicolor virginica
0.0 0.0 17.5
Mean misclassification error: 5.8%
> iris.pp <- predict(iris.dd, iris.unknown[, -5],
+ outsider.method="Ignore")
> sapply(iris.pp, as.character) # shows points outside train clouds
[1] "Ignored" "Ignored"
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9.4 Learning with rules

Naive Bayes classifier is one of the simplest machine learning algorithms which tries
to classify objects based on the probabilities of previously seen attributes. Quite
unexpectedly, it is typically a good classifier:

> library(e1071)

> iris.nb <- nailveBayes(Species ~ ., data=iris.train)
> iris.nbp <- predict(iris.nb, iris.unknown[,-5])

> Misclass(iris.nbp, iris.unknown[, 5]) # shipunov
Classification table:

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 39 13
virginica 0 1 27

Misclassification errors:
setosa versicolor virginica
0.0 2.5 32.5
Mean misclassification error: 11.7%

Note that Naive Bayes classifier could use not only numerical like above, but also
nominal predictors (which is similar to correspondence analysis.)

Apriori method is similar to regression trees but instead of classifying objects, it re-
searches association rules between classes of objects. This method could be used not
only to find these rules but also to make classification. Note that measurement iris
data is less suitable for association rules then nominal data, and it needs discretiza-
tion first:

> library(arulesCBA)
> irisd <- as.data.frame(lapply(iris[1:4], discretize, categories=9))
> irisd$Species <- iris$Species
> irisd.train <- irisd[seq(1, nrow(irisd), 5), 1
> irisd.unknown <- irisd[-seq(1, nrow(irisd), 5), 1]
> irisd.cba <- CBA(Species ~ ., irisd.train, supp=0.05, conf=0.8)
> inspect(irisd.cba$rules)
lhs rhs support
[1] {Petal.Length=[1.00,1.66)} => {Species=setosa} 0.26666667
[2] {Petal.Width=[0.100,0.367)} => {Species=setosa} 0.26666667

[3] {Petal.Length=[4.28,4.93)} => {Species=versicolor} 0.23333333
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[4] {Petal.Length=[5.59,6.24)} => {Species=virginica} 0.20000000
[56] {Petal.Width=[2.233,2.500]} => {Species=virginica} 0.20000000
[6] {Petal.Width=[1.167,1.433)} => {Species=versicolor} 0.20000000
[7] {Petal.Length=[4.93,5.59)} => {Species=virginica} 0.10000000
[8] {Petal.Width=[0.900,1.167)} => {Species=versicolor} 0.06666667

> irisd.cbap <- predict(irisd.cba, irisd.unknown)
> Misclass(irisd.cbap, irisd.unknown$Species)
Classification table:

obs
pred setosa versicolor virginica
setosa 40 1 4
versicolor 0 37 6
virginica 0 2 30

Misclassification errors:
setosa versicolor virginica
0.0 7.5 25.0
Mean misclassification error: 10.8%

(Rules are self-explanatory. What do you think, does this method performs better
for the nominal data? Please find it out.)

9.5 Learning from the black boxes

Famous SVM, Support Vector Machines is a kernel technique which calculates param-
eters of the hyper-planes dividing multiple groups in the multidimensional space of
characters:

> library(e1071)

> iris.svm <- svm(Species ~ ., data=iris.train)

> iris.svmp <- predict(iris.svm, iris.unknown[,-5])
> Misclass(iris.svmp, iris.unknown[, 5]) # shipunov
Classification table:

obs
pred setosa versicolor virginica
setosa 40 0 0
versicolor 0 40 14
virginica 0 0 26

Misclassification errors:
setosa versicolor virginica
0 0 35
Mean misclassification error: 11.7%
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Classification, or prediction grid often helps to illustrate the SVM method. Data
points are arranged with PCA to reduce dimensionality, and then classifier predicts
the identity for the every point in the artificially made grid (Fig. 9.7). This is possible
to perform manually but Gradd () function simplifies plotting:

> iris.p <- prcomp(iris[, 1:4], scale=TRUE)$x[, 1:2]
> iris.svm.pca <- svm(Species ~ ., data=cbind(iris[5], iris.p))
> plot(iris.p, type="n", xlab="", ylab="")
> Gradd(iris.svm.pca, iris.p) # shipunov
> text(iris.p, col=as.numeric(iris[, 5]),
+ labels=zabbreviate(iris[, 5], 1, method="both.sides"))
N p—
‘_| —
o a
a
%
— _|
|
N
|
R S a8
| | | | | T
-3 -2 -1 0 1 2 3

Figure 9.7: Classification grid which illustrates the SVM algorithm. Data points are
arranged with PCA.
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And finally, neural networks! This name is used for the statistical technique based
on some features of neural cells, neurons. First, we need to prepare data and convert
categorical variable Species into three logical dummy variables:

> iris.dummy <- Tobin(iris.train$Species,

+ convert.names=FALSE) # shipunov

> iris.train2 <- cbind(iris.train[, -5], iris.dummy)
> str(iris.train2)

'data.frame': 30 obs. of 7 variables:

$ Sepal.Length: num 5.1 5.4 5.45.75.454.855 4.8 ..

$ Sepal.Width : num 3.5 3.9 3.7 4.4 3.4 3 3.13.23.53 ...

$ Petal.Length: num 1.4 1.7 1.5 1.5 1.7 1.6 1.6 1.2 1.3 1.4 .
$ Petal.Width : nun 0.2 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.3 0.3 .
$ setosa tnum 1111111111

$ versicolor : num ©0 0 0 0 00000 0 .

$ virginica : num 0 00 0 00 000 0 .

Now, we call neuralnet package and proceed to the main calculation. The package
“wants” to supply all terms in the model explicitly:

library(neuralnet)

set.seed(17)

iris.n <- neuralnet(setosa + versicolor + virginica ~
Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data=iris.train2, hidden=3, lifesign="full")

+ + v v v

hidden: 3 thresh: 0.01 rep: 1/1 steps:
1000 min thresh: 0.06578469914

2000 min thresh: 0.02666428476

3000 min thresh: 0.01640327864

3833 error: 0.0445 time: 0.59 secs

(Note use of set.seed(), this is to make your results similar to presented here.)
Now predict (with compute () function) and check misclassification:

> iris.np <- compute(iris.n, iris.unknown[,-5])
> iris.np2 <- apply(iris.np$net.result, 1,
+ function(.x) colnames(iris.dummy)[which.max(.x)])
> Misclass(iris.np2, iris.unknown[, 5])
Classification table:

obs
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pred setosa versicolor virginica

setosa 40 0 0
versicolor 0 35 0
virginica 0 5 40

Misclassification errors:
setosa versicolor virginica
0.0 12.5 0.0
Mean misclassification error: 4.2%

Results of neural network prediction are fuzzy, similar to the results of fuzzy clus-
tering or regression trees, this is why which.max() was applied for every row. As you
see, this is one of the lowest misclassification errors.

It is possible to plot the actual network:

> plot(iris.n, rep="best", intercept=FALSE)

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Error: 0.044496 Steps: 3833
Figure 9.8: The neural network.
The plot (Fig 9.8) is a bit esoteric for the newbie, but hopefully will introduce into

the method because there is an apparent multi-layered structure which is used for
neural networks decisions.
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9.6 Semi-supervised learning

There is no deep distinction between supervised and non-supervised methods, some
of non-supervised (like SOM or PCA) could use training whereas some supervised
(LDA, Random Forest, recursive partitioning) are useful directly as visualizations.

And there is a in-between semi-supervised learning. It takes into account both data
features and data labeling (Fig. 9.9).

~

Figure 9.9: How semi-supervised learning can improve learning results. If only la-
beled data used, then the most logical split is between labeled points. However, if
we look on the testing set, it become apparent that training points are parts of more
complicated structures, and the actual split goes in the other direction.

One of the most important features of SSL is an ability to work with the very small
training sample. Many really bright ideas are embedded in SSL, here we illustrate
two of them. Self-learning is when classification is developed in multiple cycles. On
each cycle, testing points which are most confident, are labeled and added to the
training set:

library(SSL)

iris.30 <- seq(1, nrow(iris), 30) # only 5 labeled points!
iris.sslt1 <- sslSelfTrain(iris[iris.30, -5],
iris[iris.30, 5], iris[-iris.30, -5], nrounds=20,

n=5) # n found manually, ignore errors while searching

+ + v v v

352



> iris.sslt2 <- levels(iris$Species)[iris.sslt1]
> Misclass(iris.sslt2, iris[-iris.30, 5])
Classification table:

obs
pred setosa versicolor virginica
setosa 48 0 0
versicolor 0 46 38
virginica 0 2 1M1

Misclassification errors:
setosa versicolor virginica
0.0 4.2 77.6
Mean misclassification error: 27.2%

As you see, with only 5 data points (approximately 3% of data vs. 33% of data in
iris.train), semi-supervised self-leaning (based on gradient boosting in this case)
reached 73% of accuracy.

Another semi-supervised approach is based on graph theory and uses graph label
propagation:

> iris.10 <- seq(1, nrow(iris), 10) # 10 labeled points
> iris.sslp1 <- sslLabelProp(iris[, -5], iris[iris.10, 5],
+ iris.10, graph.type="knn", k=30) # k found manually
> iris.sslp2 <- ifelse(round(iris.sslp1) == 0, 1,
+ round(iris.sslp1))
> ## "practice is when everything works but nobody knows why..."
> iris.sslp3 <- levels(iris$Species)[iris.sslp2]
> Misclass(iris.sslp3[-iris.10], iris[-iris.10, 5])
Classification table:
obs

pred setosa versicolor virginica

setosa 45 0 0

versicolor 0 42 6

virginica 0 3 39

Misclassification errors:
setosa versicolor virginica
0.0 6.7 13.3
Mean misclassification error: 6.7%

The idea of this algorithm is similar to what was shown on the illustration (Fig. 9.9)
above. Label propagation with 10 points outperforms Randon Forest (see above)
which used 30 points.
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9.7 Deep learning

Nowadays, “deep learning” is a bit of buzzword which used to designate software
packages including multiple classification methods, and among the always some
complicated neural networks (multi-layered, recurrent etc.) In that sense, R with
necessary packages is a deep learning system. What is missed (actually, not), is a
common interface to all “animals” in this zoo of methods. Package mlr was created
to unify the learning interface in R:

> library(mlr)

## 1) Define the task
## Specify the type of analysis (e.g. classification)
## and provide data and response variable
task <- makeClassifTask(data=iris, target="Species")
## 2) Define the learner, use listLearners()[,1]
## Choose a specific algorithm
1rn <- makelLearner("classif.ctree")
n = nrow(irtis)
train.set <- sample(n, size=2/3%n)
test.set <- setdiff(1:n, train.set)
## 3) Fit the model
## Train the learner on the task using a random subset
## of the data as training set
model <- train(lrn, task, subset=train.set)
## 4) Make predictions
## Predict values of the response variable for new
## observations by the trained model
## using the other part of the data as test set
pred <- predict(model, task=task, subset=test.set)
## 5) Evaluate the learner
## Calculate the mean misclassification error and accuracy
performance(pred, measures=list(mmce, acc))
mmce acc
0.1 0.9

VvV VVVVVVVVVVVVVVVVVVVVYV-:

In addition, R now has interfaces (ways to connect with) to (almost) all famous “deep
learning” software systems, namely TensorFlow, H20, Keras, Caffe and MXNet.
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9.8 How to choose the right method

So which classification method to use? There are generally two answers: (1) this
(these) which work(s) best with your data and (2) as many as possible. The second
makes the perfect sense because human perception works the same way, using all
possible models until it reaches stability in recognition. Remember some optical
illusions (e.g., the famous duck-rabbit image, Fig. 9.10) and Rorschach inkblot test.
They illustrate how flexible is human cognition and how many models we really use
to recognize objects.

Figure 9.10: Duck-rabbit image presents two alternative recognition models.

At the end of the chapter, we decided to place the decision tree (Fig. 9.11) which
allows to select some most important multivariate methods. Please note that if you
decide to transform your data (for example, make a distance matrix from it), then
you might access other methods:
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Does preliminary classification exist?

Do you need diagnostic characters? Do you need groups or projection?
ye/ Youw
Decision trees no pr""wm/ Clustering
Random Forest, SVM, Is there

and many others a matrix of distances?

7

Multidimensional Principal component

scaling analysis

Figure 9.11: How to find the correct multivariate method.
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Appendix A

Example of R session

The following is for impatient readers who prefer to learn R in a speedy way. They
will need to type all commands listed below. Please do not copy-paste them but
exactly type from the keyboard: that way, they will be much easier to remember and
consequently to learn. For each command, we recommend to read the help (call it
with ?2command). As an exception from most others parts of this book, R output and
plots are generally not shown below. You will need to check and get them yourself.
We strongly recommend also to “play” with commands: modify them and look how
they work.

All of the following relates with an imaginary data file containing information about
some insects. Data file is a table of four columns separated with tabs:

SEX COLOR  WEIGHT LENGTH
0 1 10.68  9.43
1 10.02 10.66
0 2 10.18 10.41
1 1 8.01 9
0 3 10.23 8.98
1 3 9.7 9.71
1 2 9.73 9.09
0 3 11.22  9.23
1 1 9.19 8.97
1 2 11.45 10.34

Companion file bugs_c.txt contains information about these characters:

# Imaginary insects
SEX females 0, males 1
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COLOR red 1, blue 2, green 3
LENGTH Tlength of the insect in millimeters

A.1 Starting...

There are two possibilities to load your data:
I. Save your data on the computer first:

Create the working directory (use only lowercase English letters, numbers and un-
derscore symbols for the name); inside working directory, create the directory data.

Open R. Using menu or setwd() command (with the full path and / slashes as argu-
ment), point R to the working directory (not to data!).

Download your file:

> download.file("http://ashipunov.info/shipunov/data/bugs.txt",
+ "data/bugs.txt")

... and press ENTER key (press it on the end of every command).

To check if the file is now in proper location, type

> dir("data")

Among other, this command should output the name of file, bugs . txt.

Now read the data file and create in R memory the object data which will be the
working copy of the data file. Type:

> data <- read.table("data/bugs.txt", h=TRUE)
II. Alternatively, you can read your data directly from URL:
> data <- read.table("http://ashipunov.info/data/bugs.txt", h=TRUE)

(This is much faster. But your data is not kept, it went directly into R memory.)

Now look on the data file:
> head(data)

Attention! If anything looks wrong, note that it is not quite handy to change data
from inside R. The more sensible approach is to change the initial text file (for ex-
ample, in Excel) and then read.table() it from disk again.
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Look on the data structure: how many characters (variables, columns), how many
observations, what are names of characters and what is their type and order:

> str(data)

Please note that SEX and COLOR are represented with numbers whereas they are cat-
egorical variables.

Create new object which contains data only about females (SEX is 0):
> data.f <- data[data$SEX == 0, ]

Now—the object containing data about big (more than 10 mm) males:
> data.m.big <- data[data$SEX == 1 & data$LENGTH > 10, ]

By the way, this command is easier not to type but create from the previous command
(this way is preferable in R). To repeat the previous command, press T key on the
keyboard.

[

‘==" and “&” are logical statements “equal to” and “and”, respectively. They were
used for data selection. Selection also requires square brackets, and if the data is tab-
ular (like our data), there should be a comma inside square brackets which separates
statements about rows from statements concerning columns.

Add new character (columns) to the data file: the relative weight of bug (the ratio
between weight and length)— WEIGHT.R:

> data$WEIGHT.R <- data$WEIGHT/data$LENGTH
Check if new character is now in data table: run str(data) (use T from the keyboard!)

This new character was added only to the memory copy of your data file. It will
disappear when you close R. You may want to save new version of the data file under
the new name bugs_new. txt in your data subdirectory:

> write.table(data, file="data/bugs_new.txt", quote=FALSE)

A.2 Describing...

Firstly, look on the basic characteristics of every character:
> summary(data)

Since SEX and COLOR are categorical, the output in these columns has no sense, but
you may want to convert these columns into “true” categorical data. There are mul-
tiple possibilities but the simplest is the conversion into factor:
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> datal <- data

> data1$SEX <- factor(data1$SEX, labels=c("female", "male"))
> data1$COLOR <- factor(datal1$COLOR,

+ labels=c("red", "blue", "green"))

(To retain the original data, we copied it first into new object data1. Please check it
now with summary () yourself.)

Now back to the initial data file. summary() command is applicable not only to the
whole data frame but also to individual characters (or variables, or columns):

> summary(data$WEIGHT)

It is possible to calculate characteristics from summary () one by one. Maximum and
minimum:

> min(data$WEIGHT)
> max(data$WEIGHT)

.. median:

> median(data$WEIGHT)

.. mean for WEIGHT and for each character:

> mean(data$WEIGHT)

and

> colMeans(data)

... and also round the result to one decimal place:

> round(colMeans(data), 1)

(Again, the output of colMeans () has no sense for SEX and COLOR.)

Unfortunately, the commands above (but not summary()) do not work if the data have
missed values (NA):

> data2 <- data
> data2[3, 3] <- NA
> mean(data2$WEIGHT)

To calculate mean without noticing missing data, enter
> mean(data2$WEIGHT, na.rm=TRUE)
Another way is to remove rows with NA from the data with:

> data2.0 <- na.omit(data2)
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Then, data2.o will be free from missing values.

Sometimes, you need to calculate the sum of all character values:
> sum(data$WEIGHT)

... or the sum of all values in one row (we will try the second row):
> sum(datal[2, 1)

... or the sum of all values for every row:

> apply(data, 1, sum)

(These summarizing exercises are here for training purposes only.)

For the categorical data, it is sensible to look how many times every value appear in
the data file (and that also help to know all values of the character):

> table(data$SEX)
> table(data$COLOR)

Now transform frequencies into percents (100% is the total number of bugs):
> 100%prop.table(table(data$SEX))

One of the most important characteristics of data variability is the standard devia-
tion:

> sd(data$WEIGHT)

Calculate standard deviation for each numerical column (columns 3 and 4):

> sapply(data[, 3:4], sd)

If you want to do the same for data with a missed value, you need something like:
> sapply(data2[, 3:4], sd, na.rm=TRUE)

Calculate also the coefficient of variation (CV):

> 100%sd(data$WEIGHT)/mean(data$WEIGHT)

We can calculate any characteristic separately for males and females. Means for in-
sect weights:

> tapply(data$WEIGHT, data$SEX, mean)

How many individuals of each color are among males and females?
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> table(data$COLOR, data$SEX)

(Rows are colors, columns are males and females.)
Now the same in percents:

> 100xprop.table(table(data$COLOR, data$SEX))

Finally, calculate mean values of weight separately for every combination of color
and sex (i.e., for red males, red females, green males, green females, and so on):

> tapply(data$WEIGHT, list(data$SEX, data$COLOR), mean)

A.3 Plotting...

At the beginning, visually check the distribution of data. Make histogram:
> hist(data$WEIGHT, breaks=3)
(To see more detailed histogram, increase the number of breaks.)

If for the histogram you want to split data in the specific way (for example, by 20
units, starting from 0 and ending in 100), type:

> hist(data$WEIGHT, breaks=c(seq(0, 100, 20))

Boxplots show outliers, maximum, minimum, quartile range and median for any
measurement variable:

> boxplot(data$LENGTH)

... now for males and females separately, using formula interface:

> boxplot(data$LENGTH ~ data$SEX)

There are two commands which together help to check normality of the character:
> qqnorm(data$WEIGHT); gqline(data$WEIGHT)

(These two separate commands work together to make a single plot, this is why we
used semicolon. The more dots on the resulting plot are deviated from the line, the
more non-normal is the data.)

Make scatterplot where all bugs represented with small circles. X axis will represent
the length whereas Y axis—the weight:

> plot(data$LENGTH, data$WEIGHT, type="p")
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(type="p" is the default for plot (), therefore it is usually omitted.)

It is possible to change the size of dots varying the cex parameter. Compare
> plot(data$LENGTH, data$WEIGHT, type="p", cex=0.5)

with

> plot(data$LENGTH, data$WEIGHT, type="p", cex=2)

How to compare? The best way is to have more than one graphical window on the
desktop. To start new window, type dev.new().

It is also possible to change the type of plotting symbol. Figure A.1 shows their num-
bers. If you want this table on the computer, you might want to load the shipunov
package and run:

> Ex.points() # shipunov

To obtain similar graphic examples about types of lines, default colors, font faces
and plot types, run:

> Ex.lines() # shipunov
> Ex.cols() # shipunov

> Ex.fonts() # shipunov
> Ex.types() # shipunov

Use symbol 2 (empty triangle):
> plot(data$LENGTH, data$WEIGHT, type="p", pch=2)
Use text codes (0/1) for the SEX instead of graphical symbol:

> plot(data$LENGTH, data$WEIGHT, type="n")
> text(data$LENGTH, data$WEIGHT, labels=data$SEX)

(Here both commands make one plot together. The first one plots the empty field
with axes, the second add there text symbols.)

The same plot is possible to make with the single command, but this works only for
one-letter labels:

> plot(data$LENGTH, data$WEIGHT, pch=as.character(data$sEX))

If we want these numbers to have different colors, type:
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2 A

6V

10 &

11 XX

12 H

13 X
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5.
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17 A

18 ¢

19 o

20 o

21 o

22 0

23O

24 A\

25/

Figure A.1: Point types in R standard plots. For types 21-25, it is possible to specify

different background and frame colors.

> plot(data$LENGTH, data$WEIGHT, type="n")

> text(data$LENGTH, data$WEIGHT, labels=data$SEX, col=data$SEX+1)

(Again, both commands make one plot. We added +1 because otherwise female signs
would be of @ color, which is “invisible”.)

Different symbols for males and females:

> plot(data$LENGTH, data$WEIGHT, type="n")

> points(data$LENGTH, data$WEIGHT, pch=data$SEX)
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The more complicated variant—use symbols from Hershey fonts! which are internal
in R (Fig. A.2):

> plot(data$LENGTH~3, data$WEIGHT, type="n",

+ Xlab=expression("Volume (cm"~3%")"), ylab="Weight")
> text(data$LENGTH~3, data$WEIGHT,

+ labels=ifelse(data$SEX, "\\MA", "\\VE"),

+ vfont=c("serif","plain"), cex=1.5)

(Note also how expression() was employed to make advanced axes labels. Inside
expression(), different parts are joined with star x. To know more, run ?plotmath.)

115
|

d

105 11.0
| |

10.0
|
Q

Weight
Q
Q,

9.5

9.0

8.0
|
Q

I T T T I
800 900 1000 1100 1200

Volume (cm3)

Figure A.2: Distribution of male and female bugs by size and weight (Hershey fonts
used)

1To know which symbols are available, run demo(Hershey).
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We can paint symbols with different colors:

> plot(data$LENGTH, data$WEIGHT, type="n")
> points(data$LENGTH, data$WEIGHT, pch=data$SEX*3, col=data$SEX+1)

Finally, it is good to have a legend:

> legend("bottomright", legend=c("male", "female"),
+ pch=c(0, 3), col=1:2)

And then save the plot as PDF file:

> dev.copy(pdf, "graph.pdf")
> dev.off()

Attention! Saving into the external file, never forget to type dev.off()!

If you do not want any of axis and main labels, insert options main="", xlab="",
ylab=""into your plot () command.

There is also a better way to save plots because it does not duplicate to screen and
therefore works better in R scripts:

> pdf("graph.pdf")

> plot(data$LENGTH, data$WEIGHT, type="n")

> points(data$LENGTH, data$WEIGHT, pch=data$SEX*3, col=data$SEX+1)
legend("bottomright", legend=c("male", "female"),

pch=c(0, 3), col=1:2)

> dev.off()

(Please note here that R issues no warning if the file with the same name is already
exist on the disk, it simply erases it and saves the new one. Be careful!)

+ v

A.4 Testing...

The significance of difference between means for paired parametric data (t-test for
paired data):

> t.test(data$WEIGHT, data$LENGTH, paired=TRUE)

... t-test for independent data:

> t.test(data$WEIGHT, data$LENGTH, paired=FALSE)

(Last example is for learning purpose only because our data is paired since every row
corresponds with one animal. Also, "paired=FALSE" is the default for the t.test(),
therefore one can skip it.)
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Here is how to compare values of one character between two groups using formula
interface:

> t.test(data$WEIGHT ~ data$SEX)

Formula was used because our weight/sex data is in the long form:
> data[, c("WEIGHT", "SEX")]

Convert weight/sex data into the short form and test:

> data3 <- unstack(data[, c("WEIGHT", "SEX")])
> t.test(data3[[1]], data3[[2]])

(Note that test results are exactly the same. Only format was different.)

If the p-value is equal or less than 0.05, then the difference is statistically supported.
R does not require you to check if the dispersion is the same.

Nonparametric Wilcoxon test for the differences:
> wilcox.test(data$WEIGHT, data$LENGTH, paired=TRUE)

One-way test for the differences between three and more groups (the simple variant
of ANOVA, analysis of variation):

> wilcox.test(data$WEIGHT ~ data$SEX)

Which pair(s) are significantly different?

> pairwise.t.test(data$WEIGHT, data$COLOR, p.adj="bonferroni")

(We used Bonferroni correction for multiple comparisons.)

Nonparametric Kruskal-Wallis test for differences between three and more groups:
> kRruskal.test(data$WEIGHT ~ data$COLOR)

Which pairs are significantly different in this nonparametric test?

> pairwise.wilcox.test(data$WEIGHT, data$COLOR)

The significance of the correspondence between categorical data (nonparametric
Pearson chi-squared, or x? test):

> chisq.test(data$COLOR, data$SEX)
The significance of proportions (nonparametric):

> prop.test(sum(data$SEX), length(data$SEX), 0.5)
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(Here we checked if this is true that the proportion of male is different from 50%.)

The significance of linear correlation between variables, parametric way (Pearson
correlation test):

> cor.test(data$WEIGHT, data$LENGTH, method="pearson")
... and nonparametric way (Spearman’s correlation test):
> cor.test(data$WEIGHT, data$LENGTH, method="spearman")

The significance (and many more) of the linear model describing relation of one vari-
able on another:

> summary(lm(data$LENGTH ~ data$SEX))
... and analysis of variation (ANOVA) based on the linear model:

> aov(lm(data$LENGTH ~ data$SEX))

A.5 Finishing...

Save command history from the menu (on macOS) or with command
> savehistory("bugs.r")

(on Windows or Linux.)

Attention! Always save everything which you did in R!

Quit R typing
> q("no™)

Later, you can open the saved bugs.r in any text editor, change it, remove possible
mistakes and redundancies, add more commands to it, copy fragments from it into
the R window, and finally, run this file as R script, either from within R, with command
source("bugs.r", echo=TRUE), or even without starting the interactive R session,
typing in the console window something like Rscript bugs.r.

I There is just one R mistake in this chapter. Please find it. Do not look on the next
page.
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A.6 Answers to exercises

Answer to the question about mistake. This is it:

> hist(data$WEIGHT, breaks=c(seq(@, 100, 20))
Here should be

> hist(data$WEIGHT, breaks=c(seq(0, 100, 20)))

By the way, non-paired brackets (and also non-paired quotes) are among the most
frequent mistakes in R.

Even more, function seq() makes vector so function c() is unnecessary and the bet-
ter variant of the same command is

> hist(data$WEIGHT, breaks=seq(0, 100, 20))

Now the truth is that there are two mistakes in the text. We are sorry about it, but we
believe it will help you to understand R code better. Second is not syntactic mistake,
it is more like inconsistency between the text and example. Please find it yourself.
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Appendix B

Ten Years Later, or use R script

Once upon atime...

... there was a master student. He studied kubricks, and published a nice paper with
many plots made in R. Then he graduated, started a family, and they lived happily
ever after until ... ten years later, some new kubricks were discovered and he was
asked to update his old plots with new data!

(By the way, the above image was made with R! Here is how—thanks to the first
edition of Paul Murrell’s “R Graphics” book and his grid package:)
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> Gridmoon() # shipunov

There are recommendations for those R users who want to make their research re-
producible in different labs, on different computers, and also on your own computer
but 10 years later (or sometimes just 10 days after). How to proceed? Use R script!

B.1 How to make your R script

Script is a core tool for reproducible, evaluable data analysis. Every R user must know
how to make scripts.

This is a short instruction (check also Fig. B.1) for unexperienced user:
1. Save your history of commands, just in case.

2. Then copy-paste all necessary commands from your R console into the text
editor (e.g., open blank file in R editor with file.edit() command!).

Notes:

(a) Interactive commands which need user attention, like help(), identify(),
install.packages(), dev.new(), or url.show()) should not go into the
script.

(b) All plotting commands should be within pdf(...) /dev.off() or similar.

(c) Itis also a good idea to place your package/script loading commands first,
then your data loading commands like read.table() and finally actual
calculations and plotting.

(d) To add the single function, you may (1) type function name without paren-
theses, (2) copy-paste function name and output into the script and (3)
after the name of function, insert assignment operator.

(e) Try to optimize your script (Fig. B.2), e.g., to remove all unnecessary com-
mands. For example, pay attention to those which do not assign or plot
anything. Some of them, however, might be useful to show your results
on the screen.

(f) To learn how to write your scripts better, read style guides, e.g., Google’s
R Style Guide on https://google.github.io/styleguide/Rguide.xm12.

1l inux users might want to add option editor=.
2Package lintr contains 1int() command which checks R scripts.
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[N

. Save your script. We recommend the .r extension. Anyway, please do not
forget to tell your OS to show file extensions, this could be really important.

N

. Close R, do not save workspace.

ul

. Make a test directory inside your working directory, or (if it already exists)
remove it (with all contents) and then make again from scratch.

o

. Copy your script into test directory. Note that the master version of script
(were you will insert changes) should stay outside of test directory.

3

. Start R, make test the working directory.

o)

. Run your script from within R via source(script_name.r, echo=TRUE)

Note that: (a) R runs your script two times, first it checks for errors, second
performs commands; and (b) all warnings will concentrate at the end of output
(so please do not worry).

It is really important to check your script exactly as descried above, because
in this case commands and objects saved in a previous session will not inter-
fere with your script commands. Alternatively you can use non-interactive way
with Rresults shell script (see below).

9. If everything is well (please check especially if all plot files exist and open cor-
rectly in your independent viewer), then your script is ready.

If not, open script in the editor and try to find a mistake (see below), then
correct, close R, re-create (delete old and make new) test directory and repeat.

When your script is ready, you may use it as the most convenient way to protocol and
even to report your work. The most important is that your script is self-sufficient,
downloads all data, loads all packages and makes all plots itself.

Actually, this book is the one giant R script. When I run it, all R plots are re-created.
This is the first plus: the exact correspondence between code and plots. Second plus
is that all code is checked with R, and if there is a mistake, it will simply stop. I do
not control textual output because I want to modify it, e.g., to make it fit better with
the text.

I Some R code in this book does not go trough R. Can you find it?
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Check with getwd () —— > Run testing copy with

T source(..., echo=TRUE)
Point R to test \E 5
subdirectory /rrO\
Open new R Yes No
; T Modify Master copy
Testing copy master copy is ready
Copy master into Save history, close R and
test subdirectory other holding apps

Remove or fully clean
test subdirectory

Figure B.1: How to test your R script.

B.2 My R script does not work!

What if your script does not work?

Most likely, there is some message (which you probably do not understand) but out-
puts nothing or something inappropriate. You will need to debug your script!

« First is to find where exactly your script fails. If you run source() command
with echo=TRUE option, this is possible just by looking into output. If this is
still not clear, run the script piece by piece: open it in any simple text editor
and copy-paste pieces of the script from the beginning to the end into the R
window.

» Above mentioned is related with one of the most important principles of de-
bugging: minimize your code as much as possible, and find the minimal ex-
ample which still does not work. It is likely that you will see the mistake after
minimization. If not, that minimal example will be appropriate to post some-
where with a question.

» Related with the above is that if you want to ask somebody else about your R
problem, make not only minimal, but minimal self-contained example. If your
script loads some data, attach it to your question, or use some embedded R data
(like trees or iris), or generate data with sample(), runif (), seq(), rep(Q),
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“T SPEND A LOT OF TIME ON THIS TASK.
T SHOULD |JRITE A PROGRAM AUTOMATING IT!"

RETINKNG ____ NOTMEFOR
— ="~ BRIGNALTASK
ANYVIORE

TME

Figure B.2: Automation (taken from XKCD, http://xkcd.com/1319/).

rnorm() or other command. Even R experts are unable to answer questions
without data.

Back to the script. In R, many expressions are “Russian dolls” so to understand
how they work (or why they do not work), you will need to take them to pieces,
“undress”, removing parentheses from the outside and going deeper to the core
of expression like:

> plot(log(trees$Volume), 1:nrow(trees))
> log(trees$Volume)

> trees$Volume

> trees

> 1:nrow(trees)

> nrow(trees)

This research could be interleaved with occasional calls to the help like ?1log
or ?nrow.

To make smaller script, do not remove pieces forever. Use commenting instead,
both one-line and multi-line. The last is not defined in R directly but one can
use:
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> if(0) {
> ## print here anything _syntactically correct_

>}

If your problem is likely within the large function, especially within the cycle,
use some way to “look inside”. For example, with print():

> abc <- function(x)

+ {

+ for (1 in 1:10) x <- x+1

+ X

+}

> abc(5)

[1] 15 # why?

> abc <- function(x)

+ {

+ for (1 in 1:10) { x <- x+1; print(x) }
+ X

+ }

> abc(5)

[1] 6

[1]1 7

[1] 8

1] 14

[1] 15 # OK, now it is more clear

Of course, R has much more advanced functions for debugging but frequently
minimization and analysis of print()’s (this is called tracing) are enough to
solve the problem.

The most common problems are mismatched parentheses or square brackets,
and missing commas. Using a text editor with syntax highlighting can elimi-
nate many of these problems. One of useful precautions is always count open
and close brackets. These counts should be equal.

Scripts or command sets downloaded from Internet could suffer from auto-
matic tools which, for example, convert quotes into quotes-like (but not read-
able in R) symbols. The only solution is to carefully replace them with the
correct R quotes. By the way, this is another reason why not to use office doc-
ument editors for R.

Sometimes, your script does not work because your data changed and now con-
flicts with your script.
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This should not happen if your script was made using “paranoid mode”, com-
mands which are generally safe for all kinds of data, like mat.or.vec() which
makes vector if only one column is specified, and matrix otherwise.

Another useful “paranoid” custom is to make checks like 1f(is.matrix) {
... } everywhere. These precautions allow to avoid situations when you up-
dated data start to be of another type, for example, you had in the past one
column, and now you have two.

Of course, something always should be left to chance, but this means that you
should be ready to conflicts of this sort.

» Sometimes, script does not work because there were changes in R.

For example, in the beginning of its history, R used underscore (_) for the left
assignment, together with <-. The story is when S language was in develop-
ment, on some keyboards underscore was located where on other keyboards
there was left arrow (as one symbol). These two assignment operators were in-
herited in R. Later, R team decided to get rid of underscore as an assignment.
Therefore, older scripts might not work in newer R.

Another, more recent example was to change clustering method="ward" to
method="ward.D". This was because initial implementation of Ward’s method
worked well but did not reflect the original description. Consequently, in older
versions of R newer scripts might stop to work.

Fortunately, in R cases like first (broken backward compatibility) or second (bro-
ken forward compatibility) are rare. They are more frequent in R packages
though.

 If you downloaded the script and do not understand what it is doing, use min-
imization and other principles explained above. But even more important is
to play with a script, change options, change order of commands, feed it with
different data, and so on. Remember that (almost) everything what is made by
one human could be deciphered by another one.

B.3 Common pitfalls in R scripting

Patient: Doc, it hurts when I do this.
Doctor: Don’t do that.

To those readers who want to dig deeper, this section continues to explain why R
scripts do not sometimes work, and how to solve these problems.
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B.3.1 Advices
B.3.1.1 Use the Source, Luke!..

The most effective way to know what is going on is to look on the source of R function
of interest.

Simplest way to access source is to type function name without parentheses. If the
function is buried deeper, then try to use methods() and getAnywhere().

In some cases, functions are actually not R code, but C or even Fortran. Download R
source ot the source of the R package, open it and find out. This last method (down-
load source) works well for simpler cases too.

B.3.1.2 Keep it simple

Try not to use any external packages, any complicated plots, any custom functions
and even some basic functions (like subset ()) without absolute need. This increases
reproducibility and makes your life easier.

Analogously, it is better to avoid running R through any external system. Even ma-
cOS R shell can bring problems (remember history issues?). RStudio is a great piece
of software but it is prone to the same problem.

B.3.1.3 Learn to love errors and warnings

They help! If the code issues error or warning, it is a symptom of something wrong.
Much worse is when the code does not issue anything but produce unreliable results.

However, warnings sometimes are really boring, especially if you know what is going
on and why do you have them. On macOS it is even worse because they colored in
red... So use suppressWarnings() function, but again, only when you know what
you are doing. You can think of it as of headache pills: useful but potentially dan-
gerous.

B.3.1.4 Subselect by names, not numbers

Selecting columns by numbers (like trees[, 2:3]) is convenient but dangerous if
you changed your object from the original one. It is always better to use longer
approach and select by names, like

> trees[, c("Height", "Volume")]
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When you select by name, be aware of two things. First, selection by one name will
return NULL and can make new column if aything assigned on the right side. This
works only for [[ and $:

> trees[, "aaa"]

Error in “[.data.frame“(trees, , "aaa") : undefined columns selected
> trees[["aaa"]]

NULL

> trees$aaa

NULL

(See also “A Case of Identity” below.)
Second, negative selection works only with numbers:

> trees[, -c("Height", "Volume")]
Error in -c("Height", "Volume") : invalid argument to unary operator
> trees[, -which(names(trees) %in% c("Height", "Volume"))]

[1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0 11.0 11.1

B.3.1.5 About reserved words, again

Try to avoid name your objects with reserved words (?Reserved). Be especially care-
ful with T, F, and return. If you assign them to any other object, consequences could
be unpredictable. This is, by the way another good reason to write TRUE instead of T
and FALSE instead of F (you cannot assign anything to TRUE and FALSE).

It is also a really bad idea to assign anything to .Last.value. However, using the
default .Last.value (it is not a function, see ?.Last .value) could be a fruitful idea.

If you modified internal data and want to restore it, use something like data(trees).

B.3.2 The Case-book of Advanced R user
B.3.2.1 The Adventure of the Factor String

By default, R converts textual string into factors. It is usefult to make contrasts but
bring problems into many other applications.

To avoid this behavior in read.table(), use as.is=TRUE option, and in data frame
operations, use stringsAsFactors=FALSE (or the same name global option). Also,
always control mode of your objects with str().
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B.3.2.2 A Case of Were-objects

When R object undergoes some automatic changes, sooner or later you will see that
it changes the type, mode or structure and therefore escapes from your control. Typ-
ically, it happens when you make an object smaller:

> mode(trees)

[1] "list"

> trees2 <- trees[, 2:3]
> mode(trees2)

[1] "list"

> trees1 <- trees2[, 2]
> mode(trees1)

[1] "numeric"

Data frames and matrices normally drop dimensions after reduction. To prevent
this,use [, , drop=FALSE] argument. There is even functionmat.or.vec(), please
check how it works.

Factors, on other hand, do not drop levels after reductions. To prevent, use [, drop=
TRUE].

Empty zombie objects appear when you apply malformed selection condition:

> trees.new <- trees[trees[, 1] < 0, ]
> str(trees.new)

'data.frame': 0 obs. of 3 variables:
$ Girth : num

$ Height: num

$ Volume: num

To avoid such situations (there are more pitfalls of this kind), try to use str() (or
str() from shipunov package) each time you create new object.
B.3.2.3 A Case of Missing Compare

If missing data are present, comparisons should be thought carefully:

> aa <- c(1, NA, 3)

> aalaa != 1] # bad idea

[1] NA 3

> aalaa != 1 & !is.na(aa)] # good idea
[1] 3
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B.3.2.4 A Case of Outlaw Parameters

Consider the following:

> mean(trees[, 1])

[1] 13.24839

> mean(trees[, 1], .2)

[1] 12.82632

> mean(trees[, 1], t=.2)

[1] 12.82632

> mean(trees[, 1], tr=.2)

[1] 12.82632

> mean(trees[, 1], tri=.2)

[1] 12.82632

> mean(trees[, 1], trim=.2)

[1] 12.82632

> mean(trees[, 1], trimm=.2) # why?!
[1] 13.24839

> mean(trees[, 1], anyweirdoption=1) # what?!
[1] 13.24839

Problem is that R frequently ignores illegal parameters. In some cases, this makes
debugging difficult.

However, not all functions are equal:

> IQR(trees[, 11)

[1] 4.2

> IQR(trees[, 1], t=8)

[1] 4.733333

> IQR(trees[, 1], type=8)

[1] 4.733333

> IQR(trees[, 1], types=8)

Error in IQR(trees[, 1], types = 8) : unused argument (types = 8)

> IQR(trees[, 1], anyweirdoption=1)

Error in IQR(trees[, 1], anyweirdoption = 1) :
unused argument (anyweirdoption = 1)

And some functions are even more weird:

> bb <- boxplot(1:20, plot=FALSE)

> bxp(bb, horiz=T) # plots 0K

> boxplot(1:20, horiz=T) # does not plot horizontally!
> boxplot(1:20, horizontal=T) # this is what you need
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The general reason of all these different behaviors is that functions above are inter-
nally different. The first case is especially harmful because R does not react on your
misprints. Be careful.

B.3.2.5 A Case of Identity

Similar by consequences is an example when something was selected from list but
the name was mistyped:

> prop.test(3, 23)

1-sample proportions test with continuity correction
data: 3 out of 23, null probability 0.5
X-squared = 11.13, df = 1, p-value = 0.0008492

> pval <- prop.test(3, 23)$pvalue

> pval

NULL # Why?!

> pval <- prop.test(3, 23)$p.value # correct identity!
> pval

[1] 0.0008492268

This is not a bug but a feature of lists and data frames. For example, it will allow to
grow them seamlessly. However, mistypes do not raise any errors and therefore this
might be a problem when you debug.

B.3.2.6 The Adventure of the Floating Point

This is well known to all computer scientists but could be new to unexperienced
users:

> aa <- sqrt(2)

> aa % aa == 2

[1] FALSE # why?!

> aa % aa - 2

[1] 4.440892e-16 # what?!

What is going on? Elementary, my dear reader. Computers work only with 0 and 1
and do not know about floating points numbers.

Instead of exact comparison, use “near exact” all.equal() which is aware of this
situation:

> all.equal(aa * aa, 2)
[1] TRUE
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> all.equal(aa * aa - 2, @)
[1] TRUE

B.3.2.7 A Case of Twin Files

Do this small exercise, preferably on two computers and/or virtual machines, one
under Windows and another under Linux:

pdf ("Ex.pdf")
plot(1)
dev.off()

pdf ("ex.pdf")
plot(1:3)
dev.off()

V V V V Vv Vv

On Linux, there are two files with proper numbers of dots in each, but on Windows,
there is only one file named Ex . pdf but with three dots! This is even worse on macOS,
because typical installation behaves like Windows but there are other variants too.

Do not use uppercase in file names. And do not use any other symbols (including
spaces) except lowercase ASCII letters, underscore, 0—9 numbers, and dot for exten-
sion. This will help to make your work portable.

B.3.2.8 A Case of Bad Grammar

The style of your scripts could be the matter of taste, but not always. Consider the
following:

> aa<-3

This could be interpreted as either

> aa <- 3
or
> aa < -3

Always keep spaces around assignments. Spaces after commas are not so important
but they will help to read your script.

B.3.2.9 A Case of Double Dipping

Double comparisons do not work! Use logical concatenation instead.
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>aa <- 3

>0 < aa < 10

Error: unexpected '<' in "0 < aa <"
>aa > 0 & aa < 10

[1] TRUE

B.3.2.10 A Case of Factor Join

There is no c() for factors in R, result will be not a factor but numerical codes. This
is concerted with a nature of factors.

However, if you really want to concatenate factors and return result as a factor, ?c
help page recommends:

> c(factor(LETTERS[1:3]), factor(letters[1:3]))
[11123123

> c.factor <- function(..., recursive=TRUE)

+ unlist(list(...), recursive=recursive)

> c(factor(LETTERS[1:3]), factor(letters[1:3]))
[1] ABCabc

Levels: ABCabc

B.3.2.11 A Case of Bad Font

Here is a particularly nasty error:

> 11 <- seq(0, 1, 1ength=10)

Error: unexpected input in "1l <- seq(o, 1, 1en"

Unfortunately, well-known problem. It is always better to use good, visually dis-
cernible monospaced font (like above so you should easily spot the problem). Avoid
also lowercase “1”, just in case. Use “j” instead, it is much easier to spot.

By the way, error message shows the problem because it stops printing exactly where
is something wrong.

B.3.3 Good, Bad, and Not-too-bad

This last section is even more practical. Let us discuss several R scripts.

B.3.3.1 Good

This is an example of (almost) ideal R script:
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### PREPARATIONS
library(effsize)

Normal <- function(x) {
ifelse(shapiro.test(x)$p.value > 0.05, "NORMAL", "NON-NORMAL")
}

cc <-
read.table("http://ashipunov.info/shipunov/open/ceratophyllum.txt",
h=TRUE)

### DATA PROCESING

## check data:

str(cc)

head(cc)

sapply(cc[, 4:5], Normal) # both non-normal

## plot it first:

pdf ("plot1.pdf")

boxplot(cc[, 4:5], ylab="Position of stem, mm on grid")
dev.off()

## we only need effect size:
cliff.delta(cc$PLANT1, cc$PLANT2)

Its main features:

» clearly separated parts: loading of external material (lines 1-12) and process-
ing of the data itself (lines 13-26)

» package(s) first (line 3), then custom functions (line 5-7), then data (line 9)
« data is checked (lines 16—18) with str() and then checked for normality

« after checks, data was plotted first (lines 21-23), then analyzed (line 26)

* acceptable style

« every step is commented

To see how it works, change working directory to where script is located, then load
this script into R with:
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> source("good.r", echo=TRUE)

Another variant is non-interactive and therefore faster and cleaner. Use Rresults
script (works on macOS and Linux) like:

$ Rresults good.r

Script will print both input and output to the terminal, plus also save it as a text file
and save plots in one PDF file with script name. Since this book is the R script, you
will find examples of Rresults output in the on-line book directory?.

B.3.3.2 Bad

Now consider the following script:

wiltingdata<-
read.table("http://ashipunov.info/shipunov/open/wilting.txt",
h=TRUE)
url.show("http://ashipunov.info/shipunov/open/wilting_c.txt")

sapply(wiltingdata, Normality)

willowsdata<-wiltingdata[grep("Salix",wiltingdata$SPECIES), ]

Rro.test(willows[,1],willows[,2])

summary (K(willows[,1],willows[,2]))

library(shipunov)

plot(wiltingadta)

It is really bad, it simply does not work. Problems start on the first line, and both
interactive (with source()) and non-interactive (with Rresults) ways will show it
like:

> wiltingdata<-

+ read.table("http://ashipunov.info/shipunov/open/wilting.txt",h=TRUE)
Error in read.table("http://ashipunov.info/shipunov/open/wilting.txt",
duplicate 'row.names' are not allowed

Calls: source -> withVisible -> eval -> eval -> read.table

Execution halted

Something is really wrong and you will need to find and correct (debug) it. And since
code was not commented, you have to guess what author(s) actually wanted.

Other negative features:

3There is, by the way, a life-hack for lazy reader: all plots which you need to make yourself are actually
present in the output PDF file.
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* no parts, no proper order of loading, checking and plotting

« interactive url.show() might block non-interactive applications and there-
fore is potentially harmful (not a mistake though)

» bad style: in particular, no spaces around assignments and no spaces after
commas

» very long object names, they are hard to type

Debugging process will consist of multiple tries until we make the working (prefer-
ably in the sensible way), “not-too-bad” script. This could be prettified later, most
important is to make it work.

There are many ways to debug. For example, you can open (1) R in the terminal, (2)
text editor* with your script and probably also some advanced (3) file manager. Run
the script first to see the problem. Then copy-paste from R to editor and back again.

Let us go to the first line problem first. Message is cryptic, but likely this is some
conflict between read.table() and the actual data. Therefore, you need to look on
data and if you do, you will find that data contains both spaces and tabs. This is why
R was confused. You should tell it to use tabs:

> read.table("http://ashipunov.info/shipunov/open/wilting.txt",
+ h=TRUE, sep="\t")

First line starts to work. This way, step by step, you will come to the next stage.

B.3.3.3 Not too bad

library(shipunov)

wilt <- read.table("http://ashipunov.info/shipunov/open/wilting.txt",
h=TRUE, sep="\t")

## url.show("http://ashipunov.info/shipunov/open/wilting_c.txt")

Str(wilt)

Normality(wilt[, 2])

willowsdata <- wilt[grep("Salix", wilt$SPECIES), 1]

willowsdata$SPECIES <- droplevels(willowsdata$SPECIES)

willows <- split(willowsdata$TIME, willowsdata$SPECIES)

pdf ("willows.pdf")

boxplot(willows, ylab="wilting time, minutes")

dev.off()

4Among text editors, Geany is one of the most universal, fast, free and works on most operation sys-
tems.
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13|Rro.test(willows[[1]], willows[[2]])
14| summary (K(willows[[1]], willows[[2]1]))

This is result of debugging. It is not yet fully prettified, there are no chapters and
comments. However, it works and likely in the way implied by authors.

What was changed

» custom commands moved up to line 3 (not to the proper place, better would
be line 1, but this position garantrees work)

e url.show() commented out

« checks added (lines 5-6)

» names shortened a bit and style improved (not very important but useful)

» plotting now plots to file, not just to screen device

» object willows appeared out of nowhere, therefore we had to guess what is it,

why it was used, and then somehow recreate it (lines 8-9)

We were able to recreate willows object but it is not the same as in initial script.
What is different? Is it possible to make them the same?

B.4 Answers to exercises

Answer to question about book code. If you are really attentive, you might find
that some lines of code are preceded by space before greater sign. For example, q()
in the second chapter. Of course, I do not want R to exit so early. This is why this
code is not processed.

Now you can find other examples and think why they do not go trough R.

Answer to question about recreating the object impied in “bad” script. Our
new object apparently is a list and requires subsetting with double brackets whereas
original object was likely a matrix, with two columns, each representing one species.

We can stack() our list and make it the data frame, but this will not help us to subset
exaclty like in original version.
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The other way is to make both species parts exactly equal lengths and then it is easy
to make (e.g., with cbind()) a matrix which will consist of two columns-species.
However, this will result in loosing some data. Maybe, they did use some different
version of data? It is hard to tell. Do not make bad scripts!

Use R script!

(And this concluding image was made with command:)

> Gridmoon(Nightsky=FALSE, Moon=FALSE, Stars=FALSE, # shipunov
+ Hillcol="forestgreen", Text="Use R script!", Textcol="yellow",
+ Textpos=c(0.35, 0.85), Textsize=96)
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Appendix C

R fragments

C.1 R and databases

There are many interfaces which connect R with different database management
software and there is even package sqldf which allows to work with R data frames
through commands from SQL language. However, the R core also can work in the
database-like way, even without serious extension. The table C.1 shows the corre-

spondence between SQL operators and commands of R.

SELECT [, subset()

JOIN merge()

GROUP BY | aggregate(), tapply(Q)
DISTINCT | unique(), duplicated()
ORDER BY | order(), sort(), rev()
WHERE which(), %in%, ==

LIKE grep()

INSERT rbind()

EXCEPT I and -

Table C.1: Approximate correspondence between SQL operators and R functions.
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One of the most significant disadvantages there is that many of these R commands
(like merge()) are slow. The shipunov package contains ready-to-use Recode()
function which works much faster. With Recode(), we can operate with multiple
data frames as with one.

This is important if data is organized hierarchically. For example, if we are mea-
suring plants in different regions, we might want to have two tables: the first with
regional data, and the second with results of measurements. To connect these two
tables, we need a key, the same column which presents in both tables:

> locations <- read.table(
+ "http://ashipunov.info/shipunov/open/eq_Ll.txt",
+ h=TRUE, sep=";")
> measurements <- read.table(
+ "http://ashipunov.info/shipunov/open/eq_s.txt",
+ h=TRUE, sep=";")
> head(locations)
N.POP WHERE SPECIES
1 1 Tver arvense
2 2 Tver arvense
3 3 Tver arvense

> head(measurements)

N.POP DL.R DIA.ST N.REB N.ZUB DL.OSN.Z DL.TR.V DL.BAZ DL.PER
1 1 424 2.3 13 12 2.0 5 3.0 25
2 1 339 2.0 11 12 1.0 4 2.5 13
3 1 321 2.5 15 14 2.0 5 2.3 13

> loc.N.POP <- Recode(measurements$N.POP, locations$N.POP, # shipunov
+ as.character(locations$SPECIES))
> head(cbind(species=1oc.N.POP, measurements))

species N.POP DL.R DIA.ST N.REB N.ZUB DL.OSN.Z DL.TR.V DL.BAZ

1 arvense 1 424 2.3 13 12 2.0 5 3.0
2 arvense 1 339 2.0 11 12 1.0 4 2.5
3 arvense 1 321 2.5 15 14 2.0 5 2.3

Here was shown how to work with two related tables and Recode () command. First
table contains locations, the second—measurements. Species names are only in the
first table. If we want to know the correspondence between species and characters,
we might want to merge these tables. The key is N.POP column (location ID).

391



There is another feature related with databasing: quite frequently, there is a need to
convert “text to columns”. This is especially important when data contains pieces of
text instead of single words:

> m <- c("Plantago major", "Plantago lanceolata",
+ "Littorella uniflora")

> do.call(rbind, strsplit(m, split=" ")) # one space inside quotes
[, 1] [, 2]

[1, 1 "Plantago" "major"

[2, ] "Plantago" "lanceolata"

[3, ] "Littorella" "uniflora"

(Vectorized function call do.call() constructs a function call its arguments.)

There is also the data encoding operation which converts categorical data into binary
(0/1) form. Several ways are possible:

> m.o

[1] L S XL XXL S M L

Levels: S < M < L < XL < XXL

> model.matrix( ~ m.o - 1, data=data.frame(m.o))
m.oS m.oM m.oL m.oXL m.oXXL

0 0 1 0 0

NOY O AW N
(SR R S R~
S 2 OO0
2 0O 0000
OO0 A0
(SR  I S I S B

> Tobin(m.o, convert.names=FALSE) # shipunov

S ML XL XXL
[1, 1001 0 @
[2, 1100 0 @
[3,]000 1 0
[4,]000 0 1
[5,]100 0 0
[6, ]0610 0 0
[7, 1001 0 @
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R and TgX are friendly software so it is possible to make them work together in order
to automate book processing. Such books will be “semi-static” where starting data
comes from the regularly updated database, and then R scripts and TgX work to create
typographically complicated documents.

Flora and fauna manuals and checklists are perfect candidates for these semi-static
manuals. This book supplements contain the Rmanual archived folder rmanual.zip
which illustrates how this approach works on example of imaginary “kubricks” (see
above).

C.2 R and time

If we measure same object multiple times, especially at regular (sampling) intervals,
we will finally have the time series, specific type of measurement data. While many
common options of data analysis are applicable to time series, there are multiple
specific methods and plots.

Time series frequently have two components, non-random and random. The first
could in turn contain the seasonal component which is related with time periodi-
cally, like year seasons or day and night. The trend is the second part of non-random
component, it is both no-random and non-periodical.

If time series has the non-random component, the later values should correlate with
earlier values. This is autocorrelation. Autocorrelation has lags, intervals of time
where correlation is maximal. These lags could be organized hierarchically.

Different time series could be cross-correlated if they are related.

If the goal is to analyze the time series and (1) fill the gaps within (interpolation) or
(2) make forecast (extrapolation), then one need to create the time series model (for
example, with arima() function).

But before the start, one will need to convert the ordinary data frame or vector into
time series. Conversion of dates is probably most complicated:

> dates.df <- data.frame(dates=c("2011-01-01","2011-01-02",
+ "2011-01-03","2011-01-04","2011-01-05"))

> str(dates.df$dates)

Factor w/ 5 levels "2011-01-01","2011-01-02",..: 1 2 3 4 5
> dates.q1 <- as.Date(dates.df$dates, "%Y-Zm-%d")

> str(dates.1)

Date[1:5], format: "2011-01-01" "2011-01-02" "2011-01-03"
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"2011-01-04"

In that example, we showed how to use as.Data() function to convert one type to
another. Actually, our recommendation is to use the fully numerical date:

> d <- c(20130708, 19990203, 17650101)
> as.Date(as.character(d), "%Y#%m%d")
[1] "2013-07-08" "1999-02-03" "1765-01-01"

The advantage of this system is that dates here are accessible (for example, for sort-
ing) both as numbers and as dates.

And here is how to create time series of the regular type:

> ts(1:10, # sequence
+ frequency = 4, # by quartile
+ start = c(1959, 2)) # start in the second quartile 1959

Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10

(If the time series is irregular, one may want to apply its() from the its package.)

It is possible to convert the whole matrix. In that case, every column will become
the time series:

z <- ts(matrix(rnorm(30), 10, 3),
start=c(1961, 1), # start in January 1961
frequency=12) # by months

> class(z)

[1] "mts" "ts" "matrix" # multivariate ts

+ + v

Generic plot () function “knows” how to show the time series (Fig. C.1):

> plot(z,

+ plot.type="single", # place all series on one plot

+ lty=1:3)

(There is also specialized ts.plot() function.)

There are numerous analytical methods applicable to time series. We will show some
of them on the example of “non-stop” observations on carnivorous plant—sundew
(Drosera rotundifolia). In nature, leaves of sundew are constantly open and close in

hope to catch and then digest the insect prey (Fig. C.2). File sundew.txt contains
results of observations related with the fourth leaf of the second plant in the group
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Figure C.1: Three time series with a common time.

observed. The leaf condition was noted every 40 minutes, and there were 36 obser-
vations per 24 hours. We will try to make the time series from SHAPE column which
encodes the shape of leaf blade (1 flat, 2 concave), it is the ranked data since it is
possible to imagine the SHAPE = 1.5. Command file.show() reveals this structure:

WET ; SHAPE
2;1

1;1
1351

)

Now we can read the file and check it:

> leaf <- read.table("data/sundew.txt", h=TRUE, sep=";")
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Figure C.2: Sundew, Drosera rotundifolia. These carnivorous plants know their time
to eat.

> str(leaf)
'data.frame': 80 obs. of 2 variables:
$WET :int 2112111111

$ SHAPE int 1112222222 ...
> summary(leaf)
WET SHAPE

Min. :1.000 Min. :1.0

1st Qu.:1.000 1st Qu.:1.0

Median :1.000 Median :2.0

Mean :1.325 Mean 1.7

3rd Qu.:2.000 3rd Qu.:2.0

Max. :2.000 Max. :2.0
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Everything looks fine, there are no visible errors or outliers. Now convert the SHAPE
variable into time series:

> shape <- ts(leaf$SHAPE, frequency=36)
Let us check it:

> str(shape)
Time-Series [1:80] from 1 to 3.19: 1112222222 ...

Looks perfect because our observations lasted for slightly more than 3 days. Now
access the periodicity of the time series (seasonal component) and check out the
possible trend (Fig. C.3):

> (acf(shape, main=expression(italic("Drosera")x" leaf")))
Autocorrelations of series ‘shape’, by lag

0.0000 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1944 0.2222

(Please note also how expression() was used to make part of the title italic, like it
is traditional in biology.)

Command acf () (auto-correlation function) outputs coefficients of autocorrelation
and also draws the autocorrelation plot. In our case, significant periodicity is absent
because almost all pikes lay within the confidence interval. Only first tree pikes are
outside, these correspond with lags lower than 0.05 day (about 1 hour or less). It
means that within one hour, the leaf shape will stay the same. On larger intervals
(we have 24 h period), these predictions are not quite possible.

However, there is a tendency in pikes: they are much smaller to the right. It could
be the sign of trend. Check it (Fig. C.4):

> plot(stl(shape, s.window="periodic")$time.series, main="")

As you see, there is a tendency for decreasing of SHAPE with time. We used st1()
function (STL—"Seasonal Decomposition of Time Series by Loess” to show that. STL
segregates the time series into seasonal (day length in our case), random and trend
components.

WET is the second character in our sundew dataset. It shows the wetness of the
leaf. Does wetness have the same periodicity and trend as the leaf shape?
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Figure C.3: Autocorrelation plot for the sundew leaf.

C.3 R and bootstrap

All generalities like standard deviation and mean are normally taken from sample
but meant to represent the whole statistical population. Therefore, it is possible that
these estimations could be seriously wrong. Statistical techniques like bootstrapping
were designed to minimize the risk of these errors. Bootstrap is based only on the
given sample but try to estimate the whole population.

The idea of bootstrap was inspired by from Buerger and Raspe “Baron Munchausen’s
miraculous adventures”, where the main character pulls himself (along with his
horse) out of a swamp by his hair (Fig. C.5). Statistical bootstrap was actively pro-
moted by Bradley Efron since 1970s but was not used frequently until 2000s because
it is computationally intensive. In essence, bootstrap is the re-sampling strategy
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Figure C.4: Seasonal decomposition plot for the leaf of sundew. The possible trend
is shown in the middle.

which replaces part of sample with the subsample of its own. In R, we can simply
sample() our data with the replacement.

First, we will bootstrap the mean (Fig. C.6) using the advanced boot package:

library(boot)
## Statistic to be bootstrapped:
ave.b <- function (data, indices)

>

>

>

+ {

+ d <- data[indices]
+ return(mean(d))

+

>

>

3

(result.b <- boot(data=trees$Height, statistic=ave.b, R=100))
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Figure C.5: Baron Munchausen pulls himself out of swamp. (Illustration of Gustave
Doré.)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data=trees$Height, statistic=ave.b, R=100)

Bootstrap Statistics :
original bias std. error
t1% 76 -0.1480645 0.9632468

(Note that here and in many other places in this book number of replicates is 100.
For the working purposes, however, we recommend it to be at least 1,000.)
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> plot(result.b)
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Figure C.6: Graphical representation of bootstrapping sample median.

Package boot allows to calculate the 95% confidence interval:

> boot.ci(result.b, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates

CALL :
boot.ci(boot.out = result.b, type = "bca")

Intervals :

Level BCa
95% (73.99, 77.97 )
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Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

More basic bootstrap package bootstraps in a simpler way. To demonstrate, we will
use the spur.txt data file. This data is a result of measurements of spur length
on 1511 Dactylorhiza orchid flowers. The length of spur is important because only
pollinators with mouth parts comparable to spur length can successfully pollinate
these flowers.

> spur <- scan("data/spur.txt")

Read 1511 items

> library(bootstrap)

> result.b2 <- bootstrap(x=spur, 100, function(x) mean(x))

> ## Median of bootstrapped values:

> median(result.b2$thetastar)

[1] 7.52141

> ## Confidence interval:

> quantile(result.b2$thetastar, probs=c(0.025, 0.975))
2.5% 97.5%

7.446906 7.598170

Jackknife is similar to the bootstrap but in that case observations will be taking out
of the sample one by one without replacement:

> result.j <- jackkRnife(x=spur, function(x) mean(x))

> ## Median of jackknifed values:

> median(result. j$jack.values)

[1] 7.516424

> ## Standard error:

> result. j$jack.se

[1] 0.04258603

> ## Confidence interval:

> quantile(result. j$jack.values, probs=c(0.025, 0.975))
2.5% 97.5%

7.513775 7.517748

This is possible to bootstrap standard deviation and mean of this data even without
any extra package, with for cycle and sample():

> boot <- 100
> tt <- matrix(ncol=2, nrow=boot)
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for (n in 1:boot)

{

spur.sample <- sample(spur, length(spur), replace=TRUE)

tt[n, 1] <- mean(spur.sample)

tt[n, 2] <- sd(spur.sample)

}

(result <- data.frame(spur.mean=mean(spur), spur.sd=sd(spur),
boot.mean=mean(tt[, 1]), boot.sd=mean(tt[, 2])))

spur.mean spur.sd boot.mean boot.sd

1 7.516082 1.655386 7.513148 1.647674

+ VvV V V.V V Vv Vv

(Alternatively, tt could be an empty data frame, but this way takes more computer
time which is important for bootstrap. What we did above, is the pre-allocation,
useful way to save time and memory.)

Actually, spur length distribution does not follow the normal law (check it yourself).
It is better then to estimate median and median absolute deviation (instead of mean
and standard deviation), or median and 95% range:

> dact <- scan("data/dact.txt")
Read 48 items
> quantile(dact, c(@0.025, 0.5, 0.975))
2.5% 50% 97.5%
3.700 33.500 104.825
> apply(replicate(100, quantile(sample(dact, length(dact),
+ replace=TRUE), c(0.025, 0.5, 0.975))), 1, mean)
2.5% 50% 97.5%
5.284 38.695 101.672

(Note the use of replicate() function, this is another member of apply() family.)

This approach allows also to bootstrap almost any measures. Let us, for example,
bootstrap 95% confidence interval for Lyubishchev’s K:

> sleep.K.rep <- replicate(100, K(extra ~ group,
+ data=sleep[sample(1:nrow(sleep), replace=TRUE), 1))
> quantile(sleep.K.rep, c(0.025, 0.975))
2.5% 97.5%
0.003506551 1.832521405

Bootstrap and jackknife are related with numerous resampling techniques. There are
multiple R packages (like coin) providing resampling tests and related procedures:
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> library(coin)
> wilcox_test(V1 ~ V2, data=subset(grades, V2 %in%Z c("A1", "B1")),
+ conf.int=TRUE)
Asymptotic Wilcoxon-Mann-Whitney Test
data: V1 by V2 (A1, B1)
Z = -1.9938, p-value = 0.04618
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-9.999284e-01 -1.944661e-05
sample estimates:
difference in location
-1.053879e-05

Bootstrap is also widely used in the machine learning. Above there was an example
of Jclust () function from the shipunov package. There also are BootA(), BootRF ()
and BootKNN() to boorstrap non-supervised and supervised results.

In the open repository, data file cuscuta.txt (and companion cuscuta_c.txt)
reflect measurements of the parasitic dodder plant (Cuscuta epithymum) infesta-
tion on multiple meadow plants. Please find if the infestation is different between
lady’s mantle (Alchemilla) and widow flower (Knautia) plants. Use bootstrap and
resampling methods.

C.4 R and shape

Analysis of biological shape is a really useful technique. Inspired with highly influ-
ential works of D’Arcy Thompson!, it takes into account not the linear measurements
but the whole shape of the object: contours of teeth, bones, leaves, flower petals, and
even 3D objects like skulls or beaks.

Naturally, shape is not exactly measurement data, it should be analyzed with special
approaches. There are methods based on the analysis of curves (namely, Fourier
coefficients) and methods which use landmarks and thin-plate splines (TPS). The last
method allows to visualize aligned shapes with PCA (in so-called tangent space) and
plot transformation grids.

In R, several packages capable to perform this statistical analysis of shape, or geo-
metric morphometry. Fourier analysis is possible with momocs, and landmark analysis
used below with geomorph package:

1Thompson D. W. 1945. On growth and form. Cambridge, New York. 1140 pp.
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> library(geomorph)
> TangentSpace2 <- function(A)

+ {

+ X <- two.d.array(A)

+ pc.res <- prcomp(x)

+ pcdata <- pc.res$x

+ list(array=x, pc.summary=summary(pc.res), pc.scores=pcdata)
+

3

(One additional function was defined to simplify the workflow.)

Data comes out of leaf measures of alder tree. There are two data files: classic mor-
phometric dataset with multiple linear measurements, and geometric morphometric
dataset:

> am <- read.table("data/bigaln.txt", sep=";", head=TRUE)
> ag <- readland.tps("data/bigaln.tps", specID="imageID")

Figure C.7: Example of three alder leaf contours with landmark locations.

Geometric morphometric data was prepared with separate program, tpsDig?. In the
field, every leaf was contoured with sharp pencil, and then all images were scanned.

Next, PNG images were supplied to tpsDig and went through landmark mapping>. In
total, there were 12 landmarks: top, base, and endpoints of the first (lower) five pairs
of primary leaf veins (Fig. C.7). Note that in geometric morphometry, preferable
number of cases should be > 11 times bigger then number of variables.

2Rohlf F.]. tpsDig. Department of Ecology and Evolution, State University of New York at Stony Brook.
Freely available at http://life.bio.sunysb.edu/morph/

3Actually, geomorph package is capable to digitize images with digitize2d() function but it works
only with JPEG images.

405


http://life.bio.sunysb.edu/morph/

Next step is the Generalized Procrustes Analysis (GPA). The name refers to bandit
from Greek mythology who made his victims fit his bed either by stretching their
limbs or cutting them off (Fig. C.8). GPA aligns all images together:

Figure C.8: Procrustes wants to fit Theseus for his bed (from Attic red-figure neck-
amphora, 470-460 BC).

> gpa.ag <- gpagen(ag)
... and next—principal component analysis on GPA results:

> ta.ag <- TangentSpace2(gpa.ag$coords)
> screeplot(ta.ag$pc.summary) # importance of principal components
> pca.ag <- ta.ag$pc.summary$x

(Check the PCA screeplot yourself.)

Now we can plot the results (Fig. C.9). For example, let us check if leaves from top
branches (high P. 1 indices) differ in their shape from leaves of lower branches (small
P.1 indices):

pca.ag.ids <- as.numeric(gsub(".png", "", row.names(pca.ag)))

branch <- cut(am$P.1, 3, labels=c("lower", "middle", "top"))
b.code <- as.numeric(Recode(pca.ag.ids, am$PIC, branch,
char=FALSE)) # shipunov

plot(pca.ag[, 1:2], xlab="PC1", ylab="PC2", pch=19, col=b.code)
legend("topright", legend=paste(levels(branch), "branches"),
pch=19, col=1:3)

+ vvVv + v vyv

Well, the difference, if even exists, is small.
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Figure C.9: Alder leaves shapes in two-dimensional tangent space made with Pro-

crustes analysis.

Now plot consensus shapes of top and lower leaves. First, we need mean shapes for the
whole dataset and separately for lower and top branches, and then links to connect

landmarks:

> c.lower <- mshape(gpa.ag$coords[, , b.code == 1])

> c.top <- mshape(gpa.ag$coords[, , b.code == 3])

> all.mean <- mshape(gpa.ag$coords)

> ag.links <- matrix(c(1, rep(c(2:7, 12:8), each=2), 1),
+ ncol=2, byrow=TRUE)

Finally, we plot D’Arcy Thompson’s transformation grids (Fig. C.10):

> old.par <- par(mfrow=c(1, 2))
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> GP <- gridPar(grid.col="grey",
+ tar.link.col="darkseagreen", tar.pt.bg=0)
> plotRefToTarget(c.lower, all.mean, links=ag.links, gridPars=GP)
> title(main="1lower branches", line=-5, cex=0.8)
> plotRefToTarget(c.top, all.mean, links=ag.links, gridPars=GP)
> title(main="top branches", line=-5, cex=0.8)
> par(old.par)
lower branches top branches
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Figure C.10: D’Arcy Thompson’s transformation grids (referenced to the overall
mean shape) for alder leaves.

Small difference is clearly visible and could be the starting point for the further re-
search.

C.5 R and Bayes

Most of statistical test and many methods use “throwing coin” assumption; however
long we throw the coin, probability to see the face is always 1.

There is another approach, “apple bag”. Suppose we have closed, non-transparent
bag full of red and green apples. We took the first apple. It was red. We took the
second one. It was red again. Third time: red again. And again.

This means that red apples are likely dominate in the bag. It is because the apple
bag is not a coin: it is possible to take all apples from bag and leave it empty but
it is impossible to spend all coin throws. Coin throwing is unlimited, apple bag is
limited.
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So if you like to know proportion of red to green apples in a bag after you took several
apples out of it, you need to know some priors: (1) how many apples you took, (2) how
many red apples you took, (3) how many apples are in your bag, and then (4) calculate
proportions of everything in accordance with particular formula. This formula is a
famous Bayes formula but we do not use formulas in this book (except one, and it is
already spent).

All in all, Bayesian algorithms use conditional models like our apple bag above. Note
that, as with apple bag we need to take apples first and then calculate proportions,
in Bayesian algorithms we always need sampling. This is why these algorithms are
complicated and were never developed well in pre-computer era.

Below, Bayesian approach exemplified with Bayes factor which in some way is a re-
placement to p-value.

Whereas p-value approach allows only to reject or fail-to-reject null, Bayes factors
allow to express preference (higher degree of belief) towards one of two hypotheses.

If there are two hypotheses, M1 and M2, then Bayes factor of:

< 0 negative (support M2)

0-5 negligible

5-10 substantial

10-15 strong

15-20 very strong

> 20 decisive

So unlike p-value, Bayes factor is also an effect measure, not just a threshold.

To calculate Bayes factor in R, one should be careful because there are plenty of
hidden rocks in Bayesian statistics. However, some simple examples will work:

Following is an example of typical two-sample test, traditional and Bayesian:

## Restrict to two groups

> chickwts <- chickwts[chickwts$feed %in% c("horsebean"”, "linseed"), ]
## Drop unused factor levels

> chickwts$feed <- factor(chickwts$feed)

## Plot data

> plot(weight ~ feed, data=chickwts, main="Chick weights")
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## traditional t test

> t.test(weight ~ feed, data=chickwts, var.eq=TRUE)

## Compute Bayes factor

> library(BayesFactor)

> bf <- ttestBF(formula = weight ~ feed, data=chickuwts)
> bf

Bayes factor analysis

[1] Alt., r=0.707 : 5.98 +0%

Against denominator:

Null, mul-mu2 = 0

Bayes factor type: BFindepSample, JZS

Many more examples are at http://bayesfactorpcl.r-forge.r-project.org/

C.6 R, DNA and evolution

In biology, majority of research is now related with DNA-based phylogenetic stud-
ies. R is aware of these methods, and one of examples (morphological though) was
presented above. DNA phylogeny research includes numerous steps, and the script-
ing power of R could be used to automate procedures by joining them in a sort of
workflow which we call Ripeline.

Book supplements contain archived folder ripeline.zip which includes R scripts
and data illustrating work with DNA tabular database, FASTA operations, DNA align-
ment, flank removal, gapcoding, concatenation, and examples of how to use internal
and external tree estimators.

C.7 R and reporting

Literal programming, the idea of famous Donald Knuth, is the way to interleave the
code and explanatory comments. Resulted document is the living report: when you
change your code or your data, it will be immediately reflected in the report. There
many ways to create living reports in R using various office document formats but
the most natural way is to use KIgX. Let us create the text file and call it, for example,
test_sweave.rnw:

1| \documentclass[b5paper,12pt]{article}
2| \usepackage {Sweave}
3
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O N o 1

\begin{document} % Body of the document
\textsf{R} as a calculator:

<<echo=TRUE, print=TRUE>>=
1+ 1

1 + pi

sin(pi/2)

@

Image:

<<fig=TRUE>>=
plot(1:20)

@
\end{document}

On the next step, this file should be “fed” to the R:

> Sweave("test_sweave.rnw")
Writing to file test_sweave.tex
Processing code chunks ...
1 : echo print term verbatim
2 : echo term verbatim eps pdf
You can now run LaTeX on 'test_sweave.tex'

After that, you will have the new KETiX file, test_sweave. tex. Finally, with a help of
pdfETRX you can obtain the PDF which is shown on the Figure C.11.

C.8 Answers to exercises
Answer to the sundew wetness question. Let us apply the approach we used for the
leaf shape:

> wet <- ts(leaf$WET, frequency=36)

> str(wet)

Time-Series [1:80] from 1 to 3.19: 2112111111
> acf(wet)

> plot(stl(wet, s.window="periodic")$time.series)

(Plots are not shown, please make them yourself.)

There is some periodicity with 0.2 (5 hours) period. However, trend is likely absent.
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R as a calculator:
> 1+ 1
1] 2
> 1+ pi
[1] 4.141593
> sin(pi/2)
(11 1
Image:
> plot(1:20)

20

15

1:20
10

5 10 15 20

Index

Figure C.11: The example of Sweave () report.
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Answer to the dodder infestation question. Inspect the data, load and check:

> cu <- read.table(
"http://ashipunov.info/shipunov/open/cuscuta.txt",
+ h=TRUE, sep="\t")

+

> str(cu)
'data.frame': 96 obs. of 3 variables:
$ HOST : Factor w/ 19 levels "Alchemilla","Briza",..: 1 1 1

$ DEGREE: int 32221210 0 1
$ WHERE : int 3333311001

(Note that two last columns are ranked. Consequently, only nonparametric methods
are applicable here.)

Then we need to select two hosts of question and drop unused levels:

> cu2 <- cu[cu$HOST %in% c("Alchemilla","Knautia"), 1
> cu2 <- droplevels(cu2)

It is better to convert this to the short form:

> cu2.s <- split(cu2$DEGREE, cu2$HOST)

No look on these samples graphically:

> boxplot(cu2.s)

There is a prominent difference. Now to numbers:

> sapply(cu2.s, median)
Alchemilla Knautia
2 0

> cliff.delta(cu2.s$Alchemilla, cu2.s$Knautia)
CLiff's Delta
delta estimate: 0.5185185 (large)
95 percent confidence interval:

inf sup
-0.1043896 0.8492326

> wilcox.test(cu2.s$Alchemilla, cu2.s$Knautia)

Wilcoxon rank sum test with continuity correction

data: cu2.s$Alchemilla and cu2.s$Knautia

W = 41, p-value = 0.09256

alternative hypothesis: true location shift is not equal to @
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Interesting! Despite on the difference between medians and large effect size, Wilcoxon
test failed to support it statistically. Why? Were shapes of distributions similar?

> ansari.test(cu2.s$Alchemilla, cu2.s$Knautia)

Ansari-Bradley test

data: cu2.s$Alchemilla and cu2.s$Knautia

AB = 40, p-value = 0.7127

alternative hypothesis: true ratio of scales is not equal to 1

library(beeswarm)

la <- layout(matrix(c(1, 3, 2, 3), ncol=2, byrow=TRUE))
> for (1 in 1:2) hist(cu2.s[[1]], main=names(cu2.s)[1],

+ xlab="", xlim=range(cu2.s))

> bxplot(cu2.s) ; beeswarm(cu2.s, cex=1.2, add=TRUE)

>
>

(Please note how to make complex layout with layout () command. This commands
takes matrix as argument, and then simply place plot number something to the po-
sition where this number occurs in the matrix. After layout was created, you can
check it with command layout.show(la).)

As both Ansari-Bradley test and plots suggest, shapes of distributions are really dif-
ferent (Fig. C.12). One workaround is to use robust rank order test which is not so
sensitive to the differences in variation:

> Rro.test(cu2.s$Alchemilla, cu2.s$Knautia) # shipunov
z p.value
1.9913639 0.0464409

This test found the significance.

Now we will try to bootstrap the difference between medians:

library(boot)

meddif.b <- function (data, ind) { d <- data[ind];
median(d[cu2$HOST == "Alchemilla"]) - median(
d[cu2$HOST == "Knautia"]) }

meddif.boot <- boot(data=cu2$DEGREE, statistic=meddif.b,
strata=cu2$HOST, R=999)

boot.ci(meddif.boot, type="bca")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

v + v + + v v
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Figure C.12: Histograms of two sample distributions, plus beswarm plot with boxplot
lines.

boot.ci(boot.out = meddif.boot, type = "bca")
Intervals :

Level BCa

95% (0, 2)

Calculations and Intervals on Original Scale

(Please note how strata was applied to avoid mixing of two different hosts.)

This is not dissimilar to what we saw above in the effect size output: large difference
but 0 included. This could be described as “prominent but unstable” difference.
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That was not asked in assignment but how to analyze whole data in case of so dif-
ferent shapes of distributions. One possibility is the Kruskal test with Monte-Carlo
replications. By default, it makes 1000 tries:

> library(coin)

> Rruskal_test(DEGREE ~ HOST, data=cu, distribution=approximate())
Approximative Kruskal-Wallis Test

data: DEGREE by

HOST (Alchemilla, Briza, Carex flava, Cirsium, Dactylis,
chi-squared = 24.063, p-value = 0.1223

There is no overall significance. It is not a surprise, ANOVA-like tests could some-
times contradict with individual or pairwise.

Another possibility is a post hoc robust rank order test:

> pairwise.Rro.test (cu$DEGREE, cu$HOST) # shipunov
Pairwise comparisons using Robust rank order test
data: CU$DEGREE and cu$HOST

Alchemilla Briza Carex flava Cirsium Dactylis

Briza 0.0066 - - - -
Carex flava 0.3817 0.9310 - -
Cirsium 0.8392 0.1680 0.3164 -

Dactylis 0.3668 0.6628 0.8759 0.4834 -
Equisetum 0.8629 0.7886 0.8629 0.7460 0.9310
Erodium 0.7485 0.0022 0.7485 0.8282 0.7959
Galium 0.9427 0.0615 0.5541 0.8675 0.6320
Hieracium 0.8715 0.0615 0.6628 0.7859 0.6780
Hypericum 0.7859 < 2e-16 0.2910 0.9276 0.0269
Knautia 0.2647 0.8629 0.9427 0.3164 0.8769

P value adjustment method: BH

Now it found some significant differences but did not reveal it for our marginal, un-
stable case of Alchemilla and Knautia.
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Appendix D

Most essential R commands

This is the short collection of the most frequently used R commands based on the
analysis of almost 500 scripts (Fig. 3.8). For the longer list, check R reference card
attached to this book, or R help and manuals.

? Help

<~ Assign right to left

[ Select part of object

$ Call list element by name

abline() Add the line from linear re-
gression model

aov() Analysis of variation
as.character() Convert to text
as.numeric() Convert to number
as.matrix() Convert to matrix
boxplot() Boxplot

c() Join into vector

cbind() Join columns into matrix
chisq.test() Chi-squared test

cor() Correlation of multiple variables

colSums() Sum every column
cor.test() Correlation test
data.frame() Make data frame

dev.off() Close current graphic de-
vice

K+ s

dotchart() Replacement for “pie
chart

example() Call example of command

factor() Convert to factor, modify
factor

file.show() Show file from disk
function() ... Make new function
head() Show first rows of data frame
help() Help

hist() Histogram

ifelse() Vectorized condition



legend() Add legend to the plot
library() Load the installed package

length() Length (number of items) of
variable

list() Make list object

lines() Add lines to the plot
lm() Linear model

log() Natural logarithm

log10() Decimal logarithm
max() Maximal value

mean() Mean

median() Median

min() Minimal value

NA Missed value

na.omit Skip missing values
names() Show names of elements
nrow() How many rows?

order() Create order of objects
paste() Concatenate two strings
par() Set graphic parameters
pdf () Open PDF device

plot() Graph

points() Add points (dots) to the plot

predict() Predict values
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q("no") Quit R and do not save
workspace

qqnorm(); qqline() Visual check for
the normality

rbind() Join into matrix by rows

read.table() Read data file from disk
intoR

rep() Repeat
sample() Random selection

savehistory() Save history of com-
mands (does not work under ma-
cOS GUI)

scale() Make all variables comparable
sd() Standard deviation

source() Run script

str() Structure of object

summary() Explain the object, e.g., re-
turn main description statistics

t() Transpose matrix (rotate on right
angle)

t.test() Student test (t-test)
table() Make contingency table
text() Add text to the plot
url.show() Show the Internet file
wilcox.test() Wilcoxon test

write.table() Write to disk



Appendix E

The short R glossary

This very short glossary will help to find the corresponding R command for the most
widespread statistical terms. This is similar to the “reverse index” which might be
useful when you know what to do but do not know which R command to use.

Akaike’s Information Criterion, AIC — AIC() - criterion of the model optimality; the
best model usually corresponds with minimal AIC.

analysis of variance, ANOVA - aov() - the family of parametric tests, used to com-
pare multiple samples.

analysis of covariance, ANCOVA - lm(response ~ influencexfactor) - just an-
other variant of linear models, compares several regression lines.

“apply family” - aggregate(), apply(), lapply(), sapply(), tapply() and oth-
ers — R functions which help to avoid loops, repeats of the same sequence of
commands. Differences between most frequently used functions from this fam-
ily (applied on data frame) are shown on Fig. E.1.

arithmetic mean, mean, average — mean() — sum of all sample values divides to their
number.

bar plot — barplot () — the diagram to represent several numeric values (e.g., counts).

Bartlett test — bartlett.test() — checks the null if variances of samples are equal
(ANOVA assumption).

bootstrap — sample() and many others — technique of sample sub-sampling to esti-
mate population statistics.
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sapply(df, FUN)
lapply(df, FUN) tapply(var, factor, FUN) aggregate(df, factor, FUN)
apply(df, 2, FUN)

Figure E.1: Five frequently used finctions from “apply family”.

boxplot — boxplot () — the diagram to represent main features of one or several sam-
ples.

Chi-squared test — chisq.test() — helps to check if there is a association between
rows and columns in the contingency table.

cluster analisys, hierarchical — hclust () - visualization of objects’ dissimilarities as
dendrogram (tree).

confidence interval — the range where some population value (mean, median etc.)
might be located with given probability.

correlation analysis — cor.test() — group of methods which allow to describe the
determination between several samples.

correlation matrix — cor () - returns correlation coefficients for all pairs of samples.
data types — there is a list (with synonyms):
measurement:
continuous;
meristic, discrete, discontinuous;
ranked, ordinal;
categorical, nominal.

distance matrix — dist(), daisy(), vegdist() — calculates distance (dissimilarity)
between objects.
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distribution — the “layout”, the “shape” of data; theoretical distribution shows how
data should look whereas sample distribution shows how data looks in reality.

F-test — var.test() - parametric test used to compare variations in two samples.

Fisher’s exact test — fisher.test() — similar to chi-squared but calculates (not es-
timates) p-value; recommended for small data.

generalized linear models — glm() - extension of linear models allowing (for exam-
ple) the binary response; the latter is the logistic regression.

histogram - hist() — diagram to show frequencies of different values in the sample.

interquartile range — IQR() - the distance between second and fourth quartile, the
robust method to show variability.

Kolmogorov-Smirnov test — ks.test () — used to compare two distributions, includ-
ing comparison between sample distribution and normal distribution.

Kruskal-Wallis test — Rruskal.test() - used to compare multiple samples, this is
nonparametric replacement of ANOVA.

linear discriminant analysis — 1da() — multivariate method, allows to create classi-
fication based on the training sample.

linear regression — lm() — researches linear relationship (linear regression) between
objects.

long form — stack(); unstack() - the variant of data representation where group
(feature) IDs and data are both vertical, in columns:

SEX SIZE
M 1
M 1
F2
Foo1

LOESS - loess.smooth() — Locally wEighted Scatterplot Smoothing.

McNemar’s test — mcnemar.test() — similar to chi-squared but allows to check as-
sociation in case of paired observations.

Mann-Whitney test — wilcox.test() — see the Wilcoxon test.

median — median() - the value splitting sample in two halves.

model formulas — formula() - the way to describe the statistical model briefly:
response ~ influence: analysis of the regression;

response ~ influence? + influence2: analysis of multiple regression, addi-
tive model;
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response ~ factor: one-factor ANOVA;

response ~ factor1 + factor2: multi-factor ANOVA;

response ~ influence % factor: analysis of covariation, model with interac-
tions, expands into “response ~ influence + influence : factor”.

Operators used in formulas:

. all predictors (influences and factors) from the previous model (used to-

gether with update());
adds factor or influence;

removes factor or influence;

: interaction;

IO

all logical combinations of factors and influences;

inclusion, so “factor1 / factor2” means that factor?2 is embedded within
factor1 (like street is “embedded” in district, and district in city);

condition, “factor1 | factor2” means “split factor1 by the levels of
factor2”;

intercept, so response ~ influence - 1 means linear model without in-
tercept;

returns arithmetical values for everything in parentheses. It is also used
in data.frame() command to skip conversion into factor for character
columns.

multidimensional scaling, MDS - cmdscale() - builds something like a map from
the distance matrix.

multiple comparisons — p.adjust() — see XKCD comic for the best explanation
(Fig. E.2).

nonparametric — not related with a specific theoretical distribution, useful for the
analysis of arbitrary data.

normal distribution plot —
plot(density(rnorm(1000000))) - “bell”, “hat” (Fig. E.3).

normal distribution — rnorm() - the most important theoretical distribution, the
basement of parametric methods; appears, for example if one will shot into the
target for a long time and then measure all distances to the center (Fig. E.4):

> library(plotrix)
> plot(c(-1, 1), c(-1, 1), type="n", xlab="", ylab="", axes=FALSE)
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Figure E.2: Multiple comparisons (taken from XKCD, http://xkcd.com/882/).


http://xkcd.com/882/
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Figure E.3: Normal distribution plot.

> for(n in seq(0.1, 0.9, 0.1)) draw.circle(o, 0, n)
> set.seed(11); x <- rnorm(100, sd=.28); y <- rnorm(100, sd=.28)
> points(x, y, pch=19)

one-way test — oneway . test () — similar to simple ANOVA but omits the homogene-
ity of variances assumption.

pairwise t-test — pairwise.t.test() — parametric post hoc test with adjustment for
multiple comparisons.

pairwise Wilcoxon test — pairwise.wilcox.test() — nonparametric post hoc test
with adjustment for multiple comparisons.

parametric — corresponding with the known (in this book: normal, see) distribution,
suitable to the analysis of the normally distributed data.

424



Figure E.4: Similar to shooting practice results? But this is made in R using two
normal distributions (see the code above)!

post hoc - tests which check all groups pairwise; contrary to the name, it is not nec-
essary to run them after something else.

principal component analysis — princomp(), prcomp() — multivariate method “pro-
jected” multivariate cloud onto the plane of principal components.

proportion test — prop.test() — checks if proportions are equal.

p-value — probability to obtain the estimated value if the null hypothesis is true; if
p-value is below the threshold then null hypothesis should be rejected (see the
“two-dimensional data” chapter for the explanation about statistical hypothe-
ses).

robust — not so sensitive to outliers, many robust methods are also nonparametric.

quantile — quantile() - returns values of quantiles (by default, values which cut off
0, 25, 50, 75 and 100% of the sample).

scatterplot — plot(x, y) — plot showing the correspondence between two variables.
Shapiro-Wilk test — shapiro.test () — test for checking the normality of the sample.

short form — stack(); unstack() - the variant of data representation where group
IDs are horizontal (they are columns):

M.SIZE F.SIZE
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1 1

standard deviation — sd() — square root of the variance.
standard error, SE — sd(x)/sqrt(length(x)) — normalized variance.

stem-and-leaf plot - stem() — textual plot showing frequencies of values in the sam-
ple, alternative for histogram.

t-test — t.test() — the family of parametric tests which are used to estimate and/or
compare mean values from one or two samples.

Tukey HSD — TukeyHSD() - parametric post hoc test for multiple comparisons which
calculates Tukey Honest Significant Differences (confidence intervals).

Tukey’s line — 1ine() - linear relation fit robustly, with medians of subgroups.

uniform distribution — runif () - distribution where every value has the same prob-
ability.

variance — var() - the averaged difference between mean and all other sample val-
ues.

Wilcoxon test — wilcox.test() - used to estimate and/or compare medians from
one or two samples, this is the nonparametric replacement of the t-test.
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One Page R Reference Card

c(a, b): concatenate, vectorize # comment char

install.packages("packagel"): install package packagel

is.na(x1): TRUE if x1 == NA

library(packagel): load package packagel

NA: missing value 3e3: 3 x 103 = 3000 (e-notation)

options(scipen=100): get rid of e-notation

<- or assign(): assign

q("no"): quit R, do not save environment

history(Inf); savehistory(filel): look on command history;
save history (not on macOS GUI)

; used to separate commands  :: used as package: : command ()

Tab; Up; Ctrl+U: complete; repeat command; delete command
(not on macOS GUI)

Help

example (coml): run examples for command coml

help(coml) or ?coml: help about command coml

help(package=rpart): help for the package, e.g. rpart

functionl; methods (function?2); getAnywhere (method2): look
on the functionl and 2 codes

?7"topicl": finds topicl in all help files (slow!)

Entering and saving data

dir(...) and setwd(): list files in directory, go to another

read.table("filel", h=T, sep=";", as.is=T): read data into
data frame from filel which has header and semicolon as
separator; do not convert variables into factors

scan("filel", what="char": read one series of character codes
from disk into variable

sink("filel", split=TRUE): output to filel and to the termi-
nal until sink ()

source("filel.r"): run commands from file filel.r

write.table(x1l, "filel"): write object x1 to the file filel

Manage variables and objects

1:3or c(1, 2, 3): concatenate 1, 2, 3 into vector

as.data.frame(x1), as.matrix(x1l): conversion

cbind(al, bl, c1) or rbind(al, bl, cl): join columns or
rows into matrix

cut(vl, 2, labels=c("small", "big")): split vector v1 in
two intervals

data.frame(vl, v2): list from same-length vectors v1 and v2

df1$al: variable (column) named al from data frame df1

dimnames (mat1), or names(df1) and row.names(df1): names of
rows and columns of matl or df1

droplevels(factorl): drop unused factor levels

grep("stril", x1): search strl in x1

gsub("stri", "str2", x1): replace strl to the str2 in x1

head(df1): first rows of data frame

length(vl), nrow(matl), ncol(df1): sizes

list1[[-5]]: all list elements except 5th

1s(): list all active objects

matl[, 2:5] ormati[, c(2, 3, 4, 5)]: columns from 2nd to
5th

matrix(vectorl, rl, cl): transform vectorl into matrix with
r1 rows and c1 columns, columnwise

merge (df1, df2): merge two data frames

paste("cow", "boy", sep=""): outputs "cowboy"

rep(x1, nl): repeat vector x1 nl times

sample(x1, nl): sample nl elements from x1 without replace-
ment

seq(nl, n2, n3): sequence from n1 to n2 by n3 steps

stack() and unstack(): convert from short to long form and
back again

str(objl): structure of object obj1

t (matl): rotate 90° matrix or data frame

with(xl, ...): do something within x1

Cycles, conditions and functions

plot(.., pch=..): 1 o
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for (il in sequencel) dosomething : cycle

funl <- function(argsl) dosomething : define function
if (conditionl) ...else ...: single condition
ifelse(conditionl, yes, no): vectorized condition

Logic and math

is.factor(objl), is.atomic(objl), is.data.frame(objl):
check the type of object obj1

matl[matl > 0]: elements of matl which are positive

1<, &, 9 uequalw

|, ==: “not less”, “and”, “or”,

cumsum (x1); diff(x1l); prod(x1l); sum(xl): vector math

round (x1): round

unique(x1): list unique elements of x1 (could be sparse)

*, ~, sqrt(pi), abs(-3), log(1l): multiplication, degree, /T,
3, natural logarithm

x1 %in% x2: which elements of x1 are in x2

which(logic1): indexes of all TRUE’s

Descriptive statistics

aggregate(...): pivot table

apply(x1l, nl, function): apply function to all rows (if n1
=1) or columns (n1 = 2)

colSums (matl): calculate sums of every column

rev(xl), order(xl), scale(xl), sort(xl): reverse, sorting
indexes, scale and center, (ascending) sort

sapply(); lapply(); do.call(); replicate(): vectorize

summary (x1); IQR(x1); fivenum(x1); mad(x1); max(xl);
mean(x1); median(x1); min(x1); sd(x1); var(x1): de-
scriptive statistics

table(x1l, x2): cross-tabulation

tapply(x1, listl, f1): apply function £1 to x1 grouping by
listl

Inferential statistics

chisq.test(tabl): y>2-test for table tabl

cor(df1): (Pearson) correlations between all columns of the data
frame

cor.test(xl, x2): (Pearson) correlation test

ks.test(...); t.test(...), wilcox.test(...): other tests

Im(...); glm(...); aov(...); anova(...): linear and non-
linear models, analyses of variation (ANOVA)

predict(modell): predict from model

In(y ~ x + z, data=...): formula interface to the additive lin-
ear model, y responses on two variables, x and z

Multivariate statistics

dist(...): distance calculation

cmdscale(...): metric multidimensional scaling (MDA)
hclust(...): hierarchical cluster analysis

princomp(...); prcomp(...): principal component analyses

(PCA)
Plots

boxplot(...), dotchart(...), hist(...): useful plots
identify(...): reveal information from points using mouse
legend("topleft", legend="..."): add legend to the top left
corner
lines(...); points(...); text(...): add lines, then points,
then text
pdf("filel.pdf"): draw into filel.pdf until dev.off ()
oldpar <- par(mfrow=c(2,1)): plots will be stacked until
par (oldpar)
oldpar <- par(mar=c(0,0,0,0)): all plot margins set to zero
until par (oldpar)
plot(.., cex=1|2): normal dot size, double dot size
plot(.., col=0|112]|3): white, black, red, green color
plot(.., 1ty=0[112): no lines, straight line, dashed line
plot(.., type="pllls|n"): points, lines, stairs and no plot
gquorm(vecl); gqline(vecl): check normality
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