
Statistics with R and S-Plus
tutorial presented at the Third Workshop on

Experimental Methods in Language Acquisition

Research (EMLAR)

Hugo Quené

Utrecht institute of Linguistics OTS, Utrecht University

hugo.quene@let.uu.nl

www.hugoquene.nl

7 November 2006

Abstract

This workshop will introduce the R programming environment for
statistical analysis. Contrary to SPSS which is procedure-oriented
(commands are verbs, e.g. “compute”), R is object-oriented (objects
are nouns, e.g. “factor”). In this workshop, we will try to ease the
learning curve of using R for your data analysis. Experience with sta-
tistical software is NOT required! We will use data simulation as well
as real data sets, to explore topics like t-tests, chi-square tests, and lo-
gistic regression. We will also show how R produces publication-quality
figures. If time permits, we will also explore how to extend R with your
own routines for analyzing and/or plotting data. You are encouraged
to bring your own data set, if accompanied by a “codebook” file speci-
fying variables (columns), data codes, etc. (Both files must be in plain
ASCII).

1 Introduction

This tutorial offers a first introduction into R, which is an improved and
freeware version of S. For most tasks, the freeware R and its commercial
sister S-Plus work in the same way and produce similar results. Most of the
ideas in this tutorial apply to both R and S-Plus, although this document
focuses on R in the interest of clarity.

R is available as freeware from http://www.r-project.org, where one
can also find a wealth of information and documentation. S-Plus is dis-

1

http://www.r-project.org

tributed in the Netherlands from CAN (http://www.candiensten.nl) in
Amsterdam.

This document assumes that R is already properly installed in an MS
Windows environment. You, the reader, are assumed to have a some basic
knowledge about statistics, equivalent to an introductory course in statis-
tics. This tutorial introduces the R software for statistical analyses, and
not the statistical analyses themselves. This tutorial occasionally mentions
differences with SPSS, but the tutorial is also intended for novice users of
statistical software.

One interesting property of R is that users can develop their own exten-
sions, called packages, and distribute them to other users (similar to “exten-
sions” for Mozilla web browsers). Packages may contain custom datasets,
additional functions, re-formulations of existing functions, and more.

1.1 What is R?

Somewhat surprisingly, R is several things at once:

• a program for statistical analyses
one.lm <- lm(mlu~age,data=mydata) # linear-model regression

• a calculator
(log(110)-log(50)) / log(2^(1/12)) # compute and show

• a programming language (based on the S language)
function to convert hertz to semitones, by Mark Liberman
h2st <- function(h,base=50) {
semi1<-log(2^(1/12)); return((log(h)-log(base))/semi1) }

The assignment operator (<-) is further explained in §3.1 below. The hash # indi-
cates comment which is not processed.

1.2 object-oriented philosophy

R works in an object-oriented way. This means that objects are the most
important things in R, and not the actions we perform with these objects.
Let’s use a culinary example to illustrate this. In order to obtain pancakes,
a cook needs flour, milk, eggs, some mixing utensils, a pan, oil, and a fire.
An object-oriented approach places primary focus on these six objects. If
the relations between these are properly specified, then a nice pancake will
result. If all necessary objects exist, then the R syntax for my personal
recipe would be as follows:
batter <- mixed(flour,milk/2) # mix flour and half of milk
batter <- mixed(batter,egg*2) # add 2 eggs
batter <- mixed(batter,milk/2,use=whisk) # add other half of milk

2

http://www.candiensten.nl

while (enough(batter)) # FALSE if insufficient for next
pancake <- baked(batter,in=oil,with=pan,temp=max(fire))
This example illustrates that R is indeed a full programming language1.

In fact, there is no recipe, in the traditional sense. This “pancake” script
merely specifies the relations between the ingredients and the result. Note
that some relations are recursive: batter can be both input and output of
the mixing operation. Also note that the mixed relation takes an optional
argument use=whisk, which will produce a fatal error message if there is no
whisk in the kitchen. Such arguments, however, allow for greater flexibility
of the mixed relation. Likewise, we might specify baked(in=grease) if there
is no oil in the kitchen. The only requirement for the object supplied as in
argument is that one can bake in it, so this object must have some attribute
goodforbaking==TRUE.

For contrast, we might imagine how the pancake recipe would be formu-
lated in a more traditional, procedure-oriented approach. Ingredients and a
spoon are again assumed to be present.

MIX batter = flour + milk/2 . # utensil?
MIX batter = batter + eggs .
MIX batter = batter + milk/2 .
BAKE batter IN oil .
BAKE batter IN water . # garbage in garbage out

The programmer of this recipe has defined the key procedures MIX and BAKE,
and has stipulated boundary conditions such as utensils and temperatures.
Optional arguments are allowed for the BAKE command, but only within the
limits set by the programmer2.

So far, you may have thought that the difference between the two recipes
was semantic rather than pragmatic. To demonstrate the greater flexibility
of an object-oriented approach, let us consider the following variant of the
recipe, again in R syntax:
batter is done
while (number(pancakes)<2) # first bake 2 pancakes
pancake <- baked(batter,in=oil,with=pan,temp=max(fire))

feed(pancake,child) # feed one to hungry spectator
define new function, data ’x’ split into ’n’ pieces
chopped <- function(x,n=1000) { return(split(x,n)) }
pieces <- chopped(pancake) # new data object, array of 1000 pieces
batter <- mixed(batter,pieces) # mix pancake pieces into batter

1Technically speaking, R and S are interpreted languages, and not compiled languages.
This allows for great flexibility during an interactive session, at the cost of computational
speed. Indeed R can be slow for some tasks, although this is hardly an issue with the
present hardware configurations.

2Moreover, because this is a pre-compiled language, the inner workings of the BAKE
command remain a mystery.

3

etc
Such complex relations between objects are quite difficult to specify, if there
are strong a priori limits to what one can MIX or BAKE. Thus, object-oriented
programs such as R allow for greater flexibility than procedure-oriented pro-
grams.

Users of Praat (http://www.praat.org) are already familiar with this
basic idea. Praat has an object window, listing the known objects. These
objects are the output of previous operations (e.g. Create, Read, ToSpec-
trum), as well as input for subsequent operations (e.g. Write, Draw). R
takes this basic idea even further: users may create their own classes of
data objects (e.g. ReversedSound) and may create their own methods or
relations to work with such objects (e.g. HideInSong, etc etc)3.

This object-oriented philosophy results in a different behavior than ob-
served in procedure-oriented software:

There is an important difference in philosophy between S (and
hence R) and the other main statistical systems. In S a statistical
analysis is normally done as a series of steps, with intermediate
results being stored in objects. Thus whereas SAS and SPSS will
give copious output from a regression or discriminant analysis,
R will give minimal output and store the results in a fit object
for subsequent interrogation by further R functions.
— http://cran.r-project.org/doc/manuals/R-intro.html

2 Objects

2.1 vectors

A vector is a simple, one-dimensional list of data, like a single column in
Excel or in SPSS. Typically a single vector holds a single variable of in-
terest. The data in a vector can be either numeric, character (strings of
letters, always enclosed in double quotes), or boolean (TRUE or FALSE, may
be abbreviated to T or F).

c Atomic data are combined into a vector by means of the c (combine,
concatenate) operator.

seq The sequence operator, also abbreviated as a colon :, creates subse-
quent values.
R> x <- 1:5
R> x
[1] 1 2 3 4 5
R> 2*(x-1)
[1] 0 2 4 6 8

3Praat allows the latter but not the former.

4

http://www.praat.org
http://cran.r-project.org/doc/manuals/R-intro.html

Computations are also done on whole vectors, as exemplified above.
In the last example, we see that the result of the computation is not
assigned to a new object. Hence the result is displayed — and then
lost. This may still be useful however when you use R as a pocket
calculator.

rep Finally, the repeat operator is very useful in creating repetitive se-
quences, e.g. for levels of an independent variable.
R> x <- rep(1:5,each=2)
R> x
[1] 1 1 2 2 3 3 4 4 5 5

2.2 factors

Factors constitute a special class of variables. A factor is a variable that
holds categorical, character-like data. R realizes that variables of this class
hold categorical data, and that the values are category labels or levels rather
than real characters or digits.
R> x1 <- rep(1:4,each=2) # create vector of numbers
R> print(x1) # numeric
[1] 1 1 2 2 3 3 4 4
R> summary(x1) # numeric
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.75 2.50 2.50 3.25 4.00

R> x2 <- as.character(x1) # convert to char
R> print(x2) # character
[1] "1" "1" "2" "2" "3" "3" "4" "4"
R> x3 <- as.factor(x1) # convert to factor
R> print(x3) # factor
[1] 1 1 2 2 3 3 4 4
Levels: 1 2 3 4
R> summary(x3) # cf summary(x1)
1 2 3 4
2 2 2 2

2.3 complex objects

Simple objects, like the ones introduced above, may be combined into com-
posite objects. For example, we can combine all pancake ingredients into a
complex object:
R> pancake.ingr <- list(flour,milk,eggs,...)

In R we often use a data frame object to hold data; this is a complex
object like an Excel worksheet or SPSS data sheet. The columns represent
variables, and the rows represent observations — these may be “cases”, or

5

participants, or repeated measurements, depending on the study4.
The easiest way to create a data object is to read it from a plain-text

(ASCII) file, using the command read.table. Remember to use double
backslashes in the file specification. An optional header=TRUE argument in-
dicates whether the first line contains the names of the variables; argument
sep specifies the character(s) that separate the variables in the input file.
R> myexp <- read.table(file="f:\\temp\\myexp.txt",header=T,sep=",")

3 Basic operations

3.1 basics

<- This is the assignment operator: the expression to its right is evalu-
ated (if applicable) and then assigned to the object on the left of the
operator. Hence the expression a<-10 means that the object a, a sin-
gle number, “gets” (is assigned) the value of 10. The symbol resembles
an arrow in the direction of assignment.

indicates a comment: everything following this symbol, on the same
line of input, is ignored.

scan This command reads a simple vector from the keyboard. Make sure
to assign the result to a new object! Read in the numbers 1 to 10, and
assign them to a new object.

A missing value in any vector is indicated by the special code NA
(Not Available). R treats all other values as valid data, and you
have to specify other missing data values explicitly.

R is case-sensitive, so that X and x are different objects.

Some common functions and operators in R have single-character
names: e.g. c and t. Do not use these for your own objects,
because these functions will then no longer be accessible.
You can always check whether an intended object name is already
in use, by typing the intended object name (see below).

objects This command shows a list of all objects in memory (similar to the con-
tents of the Praat Objects window). With objects(pattern="...")
the list is filtered so that only the objects matching the pattern are
shown.

rm Objects are removed forever with this command.
4For repeated measures analyses, R does not require a multivariate layout, with re-

peated measures for each participant on a single row, as in SPSS. R uses a univariate
layout, with each measurement on a single row of input.

6

print Contents of an object can be inspected with this command, or by just
entering the name of the object, as in some examples above.

summary This command offers a summary of an object. The result depends on
the data class of the object, as illustrated in section 2.2 above.

workspace R holds its objects in memory. The whole workspace, containing all
data objects, can be stored from the RGui console window (File >
Save Workspace ...). This allows you to save a session, and continue
your work later (File > Load Workspace...).

save (to write) and

load (to read) an object from/to memory to hard disk. By default, R data
objects have the extension .rda.

The backslash \ is a special character in R. If you specify a path
(folder) in the filename, you must use double backslashes.
R> save(x3,file="f:\\temp\\x3.rda")

3.2 subselection

Subselection within an object is a very powerful tool in R. The subselection
operator x[...] selects only those data from object x that match the ex-
pression within brackets. This expression can be a single index number, a
sequence or list of numbers, or an evaluated expression, as illustrated in the
following example.
R> # ’x’ contains 30 numbers from normal distribution,
R> # but 3 of them are NA.
R> # is.na returns TRUE/FALSE for each member of ’x’.
R> # table summarizes categorical data, e.g. output of is.na
R> table(is.na(x))
FALSE TRUE

27 3
R> ok <- !is.na(x) # exclamation mark means NOT
R> which(!ok) # which index numbers are NOT ok? inspect!
[1] 14 15 16
R> mean(x[ok]) # select ok values, compute mean, display
[1] -0.4491975
R> x[!ok] <- mean(x[ok]) # replace NAs by mean

4 Exploratory data analyses

R is more graphically oriented than most other statistical packages; it relies
more on plots and figures for initial exploratory data analysis. Numerical

7

summaries are of course also available.

hist This command produces a histogram. There is a useful optional ar-
gument breaks to specify the number of bins (bars), or a vector of
breaks between bins.

plot The default version of this command produces a scattergram of two
variables. If you enter just one variable, then the index numbers of
the observations are used on the horizontal axis, and the values on
the vertical axis. Useful arguments are title, and xlab and ylab for
axis labels. In addition, you can use a third variable to vary the plot
symbols.

rug This command produces tick marks at the actual data values, yielding
the visual effect of a rug. This is useful in combination with a scatter-
gram or histogram. Try it out, with the following commands5:
R> x<-rnorm(100); hist(x); rug(x,col=4)

boxplot This yields a boxplot summary of one variable. You can also spec-
ify the dependent and independent variable, with argument dv~iv;
this will produce multiple boxplots for the dependent variable, bro-
ken down by the independent variable. Two useful arguments for this
command are:
notch=T to give additional information about the distribution, and
varwidth=T to scale the size of the boxes to the numbers of observa-
tions.

qqnorm This produces a quantile–quantile (QQ) plot. This plots the observed
quantiles against the expected quantiles if the argument variable is
distributed normally. If the variable is indeed distributed normally,
then the data should fall on a straight line. Deviations of this line
indicate deviations from normality. You can also plot the expected
regression line with qqline.

summary This command produces a numerical summary of the argument vari-
able. However it does not supply standard measures of variability. We
often need

var to compute the variance of the argument variable. Standard deviation
and standard error may be computed with self-defined functions, e.g.
sd<-function(x,...){ return(sqrt(var(x,...))) }
Here the dots are used to pass along additional arguments to function
var when calling function sd.

5The semicolon ; separates multiple commands on a single line of input.

8

length returns the length of the argument variable, i.e. the number of obser-
vations in that vector. This is useful for checking the number of data,
as a preliminary for further analyses.
valid.n <- function(x){ length(x)-length(which(is.na(x))) }

Now that we have obtained such insightful figures, we like to include
these in our documents. The best procedure is to activate the graphics
window, by clicking on its title bar. This changes the menu and buttons in
the main R window. Choose File > Save as... and select your desired
output format. Figures in (MS Windows) Metafile format (with extensions
emf,wmf) are easy to import into MS Office applications. Figures in PNG
format (extension png) are easy to include in LATEXdocuments.

5 Testing hypotheses

formula When testing hypotheses, and building regression models, we need to
specify the relations between variables. This is done in R by means of
a formula, which is needed in many statistical functions. In general,
such a formula consists of a response variable, followed by the tilde
symbol ~, followed by a list of independent variables and/or factors.
In this list, the colon : indicates an interaction effect (instead of the
sequence operator), and the asterisk * is shorthand for main effects
plus interactions (instead of the multiplication operator). By default,
the intercept ~1 is included in the formula, unless suppressed explic-
itly (~-1). We have already encountered formulas above, e.g. in the
boxplot example.

y ~ x1+x2 # only main effects
y ~ x1*x2 # x1 + x2 + (x1:x2)

Further shorthand abbreviations are also available:
only main effects and second-order interactions
y ~ (x1*x2*x3*x4)^2

Consult the help files for further information on how to specify complex
models.

t.test There are three ways to use the t test. First we create some simulated
data to work with:
R> y1 <- rnorm(n=100,mean=0) # random from normal distr
R> y2 <- rnorm(n=100,mean=0.2)
R> x <- rep(1:2,each=50) # to use as IV

In a one-sample test, the mean is compared against an expected mean,
with
R> t.test(x2,mu=0).

9

In a two-sample test with independent observations, we often compare
the same dependent variable, broken down by an independent variable.
R> t.test(y1[x==1], y1[x==2]) # y1 broken down by x

The single equal-sign is used to pass parameters to functions, as
illustrated above when using rnorm. The double symbol == is the
is-equal-to operator; != is the is-not-equal-to operator.

In a two-sample test with paired observations, we often compare two
different observations, stored in two different variables.
R> t.test(y1, y2)
Note that the number of observations in the test (and hence d.f.) varies
in these examples.

chisq.test First, let us create two categorical variables, derived from a speaker’s
age (in years) and average phraselength (in syllables), for 80 speakers
in the Corpus of Spoken Dutch. Categorical variables are created here
with the cut function, to create breaks=2 categories of age (young
and old) and of phraselength (short and long).
R> age.cat <- cut(age,breaks=2)
R> phraselength.cat <- cut(phaselength,breaks=2)

The hypothesis under study is that older speakers tend to produce
shorter phrases. This hypothesis may be tested with a χ2 (chi square)
test.
R> table(age.cat,phraselength.cat) # show 2x2 table

phraselength.cat
age.cat (6.09,10.4] (10.4,14.6]

(21,40] 24 16
(40,59] 32 8

R> chisq.test(age.cat,phraselength.cat)
Pearson’s Chi-squared test with Yates’ continuity correction
X-squared = 2.9167, df = 1, p-value = 0.08767

Although the data in the table seem to support the research hypoth-
esis, the probability of these data under H0 is still p = .088, which
exceeds the conventional α = .05. Hence H0 is not rejected.

aov This function performs a between-subjects analysis of variance, with
only fixed factors. (More complex analyses of variance, with repeated
measures, are beyond the scope of this introductory tutorial.) In the
example below we create a response variable aa which is not normally
distributed6 (check with hist, qqnorm, etc).
R> a1 <- rpois(20,lambda=2)

6The dependent variable aa follows a Poisson distribution, with λ varying be-
tween conditions of x1. The Poisson distribution “expresses the probability of a
number of events occurring in a fixed period of time if these events occur with
a known average rate [λ], and are independent of the time since the last event”

10

R> a2 <- rpois(20,lambda=4)
R> a3 <- rpois(20,lambda=6)
R> aa <- c(a1,a2,a3)
R> x1 <- as.factor(rep(1:3,each=20))
R> x2 <- as.factor(rep(rep(1:2,each=10), 3))
R> model1.aov <- aov(aa~x1*x2)

6 Regression

lm This function is used for regression according to a linear model, i.e.
linear regression. It returns a model-class object. There are specialized
functions for such models, e.g. to extract residuals (resid), to extract
regression coefficients (coef), to modify (update) the model, etc.

In the following example, we construct two regression models. As a
preliminary, you should make scatterplots of the variables under study
(here with plot(age,phraselength)).
The first model is phraselength = b0, i.e., with only a constant inter-
cept. The second model includes the speakers’ age as a predictor, i.e.
phraselength = b0 + b1age. (The intercept is included in this model
too, by default, unless suppressed explicitly with ~-1 in the regression
formula). The key question here is whether inclusion of a predictor
yields a better model, with significantly smaller residuals and signifi-
cantly higher R2. The intercept-only model and the linear-regression
model are compared with the anova function.

R> model1.lm<-lm(phraselength~1,data=intra) # only intercept
R> model2.lm<-lm(phraselength~age,data=intra) # with intercept
R> anova(model1.lm,model2.lm) # compare models
Analysis of Variance Table
Model 1: phraselength ~ 1
Model 2: phraselength ~ 1 + age

Res.Df RSS Df Sum of Sq F Pr(>F)
1 79 318.36
2 78 305.42 1 12.94 3.3056 0.07288 .

Including the age predictor does improve the model a little bit, as in-
dicated by the somewhat smaller residual sums-of-squares (RSS). The
improvement, however, is too small to be of significance. The linear ef-
fect of a speaker’s age on his or her average phrase length (in syllables)
is not significant.

(http://en.wikipedia.org/wiki/Poisson_distribution). Counts of language events,
e.g. counts of speech errors or counts of discourse events, tend to follow this non-normal
distribution.

11

http://en.wikipedia.org/wiki/Poisson_distribution

glm For logistic regression we use function glm(family=binomial), again
with a regression formula as an obligatory argument. Logistic regres-
sion can be imagined as computing the logit of the hit-rate for each
cell, and then regressing these logits on the predictor(s). Here is an an-
notated example7. The response variable outcome indicates the death
(0) or survival (1) of 2900 patients in two hospitals.

R> ips1525 <- read.table(header=T,sep=","
+ file="e:\\hugo\\emlar\\ipsex1525.txt")

R> with(ips1525,table(outcome))
outcome
0 1
79 2821

R> 2821/(2821+79) # mean survival rate
[1] 0.9727586
R> # intercept-only logistic-regression model
R> model1.glm <- glm(outcome~1,data=ips1525,family=binomial)

R> summary(model1.glm)
...
Coefficients:

Estimate Std.Error z value Pr(>|z|)
(Intercept) 3.5754 0.1141 31.34 <2e-16 ***
R> antilogit # show my function to convert logit to prob
function(x) { exp(x)/(1+exp(x)) }
R> antilogit(3.5754)
[1] 0.9727587

Here we see that the intercept-only logistic regression does indeed
model the overall survival rate, converted from probability to logit.
Next, let’s try to improve this model, by including two predictors:
first, the hospital where the patient was treated, and second, the
patient’s condition at intake, classified as bad (0) or good (1) .

R> model2.glm <- glm(outcome~hospital,
+ data=ips1525,family=binomial)

R> model3.glm <- glm(outcome~hospital*condition,
+ data=ips1525,family=binomial)

R> anova(model1.glm,model2.glm,model3.glm)
Analysis of Deviance Table
Model 1: outcome ~ 1
Model 2: outcome ~ hospital
Model 3: outcome ~ hospital * condition

7The example is from D.S. Moore & G.P. McCabe (2003) Introduction to the Practice
of Statistics (4th ed.); New York, Freeman [ISBN 0-7167-9657-0]; Exercise 15.25.

12

Resid.Df Resid.Dev Df Deviance
1 2899 725.10
2 2898 722.78 1 2.33
3 2896 703.96 2 18.82

The deviance among logistic-regression models follows a χ2 distribu-
tion. Hence we can compare models by computing the χ2 probability
of their deviances, for which we use the pchisq function. Both model
2 and model 3 are compared here against model 1.
R> 1-pchisq(2.33,df=1)
[1] 0.1269019
R> 1-pchisq(18.82,df=2)
[1] 8.190095e-05
These results indicate that there is no significant difference among
hospitals in their survival rates (model 2, p > .05), but there is a sig-
nificant effect of intake condition on the outcome (model 3, p < .001).
Of course, you should also inspect the models themselves before draw-
ing conclusions.

7 Further reading

A wealth of useful information is available through the Help option in the
RGui window. Browse in the FAQ files, the help files, and the manuals, that
come with R.

More help is available within R by giving the command help(...) with
a command or operator in parentheses. If you wish to search helpfiles for
a keyword, use help.search("..."); this will provide useful pointers to
further help information.

There is also a lot more help available on the internet. Here is a brief
and personal selection of web resources:

• http://wiki.r-project.org/rwiki/doku.php

• http://maven.smith.edu/~lqian/tutorial/R-intro.pdf

• http://mercury.bio.uaf.edu/mercury/splus/splus.html

• http://www.math.ilstu.edu/dhkim/Rstuff/Rtutor.html

— Good luck!

13

http://wiki.r-project.org/rwiki/doku.php
http://maven.smith.edu/~lqian/tutorial/R-intro.pdf
http://mercury.bio.uaf.edu/mercury/splus/splus.html
http://www.math.ilstu.edu/dhkim/Rstuff/Rtutor.html

	Introduction
	What is R?
	object-oriented philosophy

	Objects
	vectors
	factors
	complex objects

	Basic operations
	basics
	subselection

	Exploratory data analyses
	Testing hypotheses
	Regression
	Further reading

