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1 Introduction 

This is an introduction to how R can be used to perform multilevel analyses typical to 

organizational researchers. Multilevel analyses are applied to data that have some form of a 

nested structure. For instance, individuals may be nested within workgroups, or repeated 

measures may be nested within individuals, or firms may provide several years of data in what is 

referred to as panel data. Nested structures are often accompanied by some form of non-

independence. In work settings, individuals in the same workgroup typically display some 

similarity with respect to performance or they provide similar responses to questions about 

aspects of the work environment. Likewise, in repeated measures data, individuals or firms 

usually display a high degree of similarity in responses over time. Non-independence may be 

considered either a nuisance variable or something to be substantively understood but working 

with nested data requires tools to deal with non-independence. 

  The term “multilevel analysis” is used to describe a set of analyses also referred to as 

random coefficient models, random effects, and mixed-effects models (see Bryk & Raudenbush, 

1992; Clark & Linzer, 2014; Kreft & De leeuw, 1998; Pinheiro & Bates, 2000; Raudenbush & 

Bryk, 2002; Snijders & Bosker, 1999). Mixed-effects models (the term primarily used in this 

document) are not without limitations (e.g., Clark & Linzer, 2014), but are generally well-suited 

for dealing with non-independence (Bliese, Schepker, Essman & Ployhart, 2020).  Prior to the 

widespread use of mixed-effects models, analysts used a variety of techniques to analyze data 

with nested structures and many of these techniques such as the econometric fixed-effect model 

are still widely used. In organizational research, mixed-effects models are often augmented by 

tools designed to quantify within-group agreement and group-mean reliability and the 

multilevel package contains many functions designed around testing within-group 

agreement and reliability. 

This document is designed to cover a broad range of tools and approaches for analyzing 

multilevel data. Having worked for over two decades with both R and with multilevel data from 

numerous contexts, I routinely leverage different approaches and different packages depending 

upon the specific circumstances. Therefore, my goal in writing this document is to show how R 

can cover a wide range of inter-related topics related to multilevel analyses including: 

• Data aggregation and merging for multilevel analyses 

• Within-group agreement and reliability 

• Contextual and basic econometric fixed-effect OLS models 

• Covariance theorem decomposition of correlations 

• Random Group Resampling 

• Mixed Effects Models for nested group data 

• Variants of Mixed Effects Models for Repeated Measures Data  

Some of the basic analyses can conducted using R’s base packages, but many of the analyses 

use functions in the multilevel package. As a broad overview, the multilevel package 

provides (a) functions for estimating within-group agreement and reliability indices, (b) 

functions for manipulating multilevel and longitudinal (panel) data, (c) simulations for 
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estimating power and generating multilevel data, and (d) miscellaneous functions for estimating 

reliability and performing simple calculations and data transformations. The multilevel 

package also contains several datasets to illustrate concepts. 

The other library that is frequently used is the non-linear and linear mixed-effects (nlme) 

model package, (Pinheiro & Bates, 2000). The nlme package provides functions to estimate a 

variety of models for both data nested in groups and for repeated measures data collected over 

time (growth models). Functions in the nlme package have remarkable flexibility and can 

estimate a variety of alternative statistical models. In some cases, the lme4 package developed 

by Doug Bates after the nlme package provides additional flexibility, so some functions from 

the lme4 package are also detailed. I tend to use lme4 when dealing with dichotomous 

dependent variables, or when data are partially or fully crossed, or when I want to generate an 

interaction plot (many more recent plotting packages were designed to work with lme4 rather 

than nlme). 

2 Reading data from files 

Before detailing multilevel analyses, I provide a short section on reading in data. There are 

numerous options for reading in data, so this section is in no way exhaustive. I provide what has 

been a simple and reliable way to import external files into dataframes. 

In almost all cases working with research partners either in industry or academia, I have found 

that EXCEL files are a common platform particularly since EXCEL can read comma-delimited 

(csv) files. One additional advantage to EXCEL is that it is easy to quickly scan the data file for 

potential problems. I tend to avoid bringing in columns containing large amounts of text, and I 

often add an additional row under the header row with new R-friendly names (some research 

partners provide column headers the length of a small novel).  

2.1.1 Reading data directly from EXCEL (Windows and MAC) 

2.1.1.1 Windows 

Consider the following data and notice how it has been highlighted and copied into the 

Window’s clipboard (Ctrl-C): 
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Once the file is in the Windows “clipboard”, the following command reads the data into R: 

 
> cohesion<-read.table(file="clipboard",sep="\t",header=T) 

 

An even simpler variation is to use: 

 
> cohesion<-read.delim(file="clipboard") 

 

The read.delim function is variant of read.table that assumes the data are tab-delimited 

with a header. I have found that this simple approach covers about 95% of all my data entry 

needs to include importing either csv or EXCEL files with tens of thousands of observations. 

2.1.1.2 MAC 

If using a MAC, the basic ideas are the same, but the clipboard is accessed differently using 

pipe. 

 
> cohesion<-read.delim(pipe("pbpaste")) 

 

2.1.2 Reading external csv files with file.choose (Windows and MAC) 

In cases where datasets are too large to read into EXCEL using the file.choose() 

function with read.csv or other read.table functions helps having to specify the path as 

in: 
 

 >cohesion<-read.csv(file.choose()) 
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Using file.choose() opens the graphic user interface (gui) so one can select the file 

using a mouse or other device.  This option is particularly useful when data are stored in complex 

network file structures. 

2.1.3 Writing R files to EXCEL (Windows and MAC) 

2.1.3.1 Windows 

Because the "clipboard" option also works with write.table it is also a useful way to 

export the results of data analyses to EXCEL or other programs.  For instance, if we create a 

correlation matrix from the cohesion data set, we can export this correlation table directly to 

EXCEL. 

 
> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs") 

> CORMAT 

          COH01     COH02     COH03     COH04     COH05 

COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426 

COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316 

COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837 

COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961 

COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000 

 

> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA) 

 

Going to EXCEL and issuing the Windows "paste" command (or Ctrl-V) will insert the 

matrix into the EXCEL worksheet.  Note the somewhat counter-intuitive use of 

col.names=NA in this example. This command does not mean omit the column names 

(achieved using col.names=F); instead the command puts an extra blank in the first row of 

the column names to line up the column names with the correct columns.  Alternatively, one can 

use the option row.names=F to omit the row numbers. 

 

Written objects may be too large for the default memory limit of the Window’s clipboard.  

For instance, writing the full bh1996 dataset from the multilevel package into the 

clipboard results in the following error (truncated): 

 
> library(multilevel) 

> data(b1996)  #Bring data from the library to the workspace 

> write.table(bh1996,file="clipboard",sep="\t",col.names=NA) 

Warning message: 

In write.table(x, file, nrow(x),... as.integer(quote),  : 

  clipboard buffer is full and output lost 

   

To increase the size of the clipboard to 1.5MG (or any other arbitrary size), the 

"clipboard" option can be modified as follows:  "clipboard-1500".  The options 

surrounding the use of the clipboard are specific to various operating systems and may 

change with different versions of R so it will be worth periodically referring to the help files. 

2.1.3.2 MAC 

If using a MAC, the “clipboard” option does not work, so the command line would be: 
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> write.table(bh1996, file=pipe("pbcopy"),sep="\t",col.names=NA) 
 

Unlike Windows, the pipe option does not appear to need to be resized to accommodate large 

files. 

 

2.1.4 The foreign package and SPSS files 

The foreign package contains functions to import SPSS, SAS, Stata and minitab files. Help 

files are available for different formats.  Below is a command to bring in an SPSS file as a 

dataframe and numbers (e.g., 4) instead of the number’s value label (e.g., “agree”). 

  
> library(foreign) 

> help(read.spss)     #look at the documentation on read.spss 

> cohesion<-read.spss(file.choose(),use.value.labels=F, to.data.frame=T) 

> cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

2.1.5 Checking your dataframes with str and summary 

With small data sets it is easy to verify that the data has been read in correctly.  Often, 

however, one will be working with large data sets that are difficult to visual verify.  

Consequently, functions such as str (structure) and summary provide easy ways to examine 

dataframes. 
 
> str(cohesion) 

`data.frame':   11 obs. of  7 variables: 

$ UNIT   : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ... 

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ... 

 $ COH01  : int  4 3 2 3 4 3 3 3 3 2 ... 

 $ COH02  : int  5 NA 3 4 4 3 3 1 3 2 ... 

 $ COH03  : int  5 5 3 3 3 2 3 4 3 2 ... 

 $ COH04  : int  5 5 3 4 4 2 3 3 3 3 ... 

 $ COH05  : int  5 5 3 4 4 1 3 4 3 2 ... 

 

> summary(cohesion) 

    UNIT   PLATOON     COH01           COH02          COH03       

 1044B:6   1ST:5   Min.   :1.000   Min.   :1.00   Min.   :1.000   

 1044C:5   2ND:6   1st Qu.:2.500   1st Qu.:2.25   1st Qu.:2.500   

                   Median :3.000   Median :3.00   Median :3.000   

                   Mean   :2.818   Mean   :2.90   Mean   :3.091   

                   3rd Qu.:3.000   3rd Qu.:3.75   3rd Qu.:3.500   

                   Max.   :4.000   Max.   :5.00   Max.   :5.000   
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                                   NA's   :1.00                   

     COH04           COH05       

 Min.   :2.000   Min.   :1.000   

 1st Qu.:3.000   1st Qu.:3.000   

 Median :3.000   Median :3.000   

 Mean   :3.455   Mean   :3.364   

 3rd Qu.:4.000   3rd Qu.:4.000   

 Max.   :5.000   Max.   :5.000 

 

2.1.6 Loading data from packages 

One of the useful attributes of R is that the data used in the examples are almost always 

available to the user.  These data are associated with specific packages.  For instance, the 

multilevel package uses a variety of data files to illustrate specific functions.  To gain access to 

these data, one uses the data command:   

>data(package="multilevel") 

This command lists the data sets associated with the multilevel package, and the command 

>data(bh1996, package="multilevel") 

copies the bh1996 data set to the workspace making it possible to work with the bh1996 

dataframe. If a package has been attached by the library function its datasets are 

automatically included in the search, so that if 

>library(multilevel) 

has been run, then 

>data(bh1996) 

copies the data from the package to the workspace without specifying the package.  

2.2 A Brief Review of Matrix Brackets 

One of the unique aspects of R is the use of matrix brackets to access various parts of a 

dataframe. While the bracket notation may initially appear cumbersome, mastering the use of 

matrix brackets provides considerable control. 

The overall notation is [rows, columns]. So accessing rows 1,5,and 8 and columns 3 and 4 of 

the cohesion dataframe would be done like so: 
 

> cohesion[c(1,5,8),3:4] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 

Alternatively, we can specify the column names (this helps avoid picking the wrong columns). 
 

> cohesion[c(1,5,8),c("COH01","COH02")] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 
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It is often useful to pick specific rows that meet some criteria.  So, for example, we might want 

to pick rows that are from the 1ST PLATOON 
 

> cohesion[cohesion$PLATOON=="1ST",] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

2 1044B     1ST     3    NA     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

Upon inspection, we might want to further refine our choice and exclude missing values.  We do 

this by adding another condition using AND operator "&" along with the NOT operator "!". 
 

> cohesion[cohesion$PLATOON=="1ST"&!is.na(cohesion$COH02),] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

These simple examples should provide an idea of how to subset large datasets when conducting 

analyses. 

3 Multilevel Analyses 

The remainder of this document illustrates how R can be used in multilevel modeling 

beginning with several R functions particularly useful for preparing data for subsequent analyses  

3.1 Multilevel data manipulation functions 

3.1.1 The merge Function 

One of the key data manipulation tasks that must be accomplished prior to estimating several 

of the multilevel models (specifically contextual models and mixed-effects models) is that group-

level variables must be “assigned down” to the individual. To make a dataframe containing both 

individual and group-level variables, one typically begins with two separate dataframes. One 

dataframe contains individual-level data, and the other dataframe contains group-level data. 

Combining these two dataframes using a group identifying variable common to both produces a 

single dataframe containing both individual and group data.  In R, combining dataframes is 

accomplished using the merge function. 

  For instance, consider the cohesion data introduced when showing how to read data from 

external files.  The cohesion data is included as a multilevel data set, so we can use the data 

function to bring it from the multilevel package to the working environment 
 

>data(cohesion) 

>cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 
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5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

Now assume that we have another dataframe with platoon sizes.  We can create this dataframe 

as follows: 

 
> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"), 

PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3)) 

> group.size  #look at the group.size dataframe 

   UNIT PLATOON PSIZE 

1 1044B     1ST     3 

2 1044B     2ND     3 

3 1044C     1ST     2 

4 1044C     2ND     3 

To create a single file (new.cohesion) that contains both individual and platoon 

information, use the merge command. 

 
> new.cohesion<-merge(cohesion,group.size,by=c("UNIT","PLATOON")) 

> new.cohesion 

     UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE 

1  1044B     1ST     4     5     5     5     5     3 

2  1044B     1ST     3    NA     5     5     5     3 

3  1044B     1ST     2     3     3     3     3     3 

4  1044B     2ND     3     4     3     4     4     3 

5  1044B     2ND     4     4     3     4     4     3 

6  1044B     2ND     3     3     2     2     1     3 

7  1044C     1ST     3     3     3     3     3     2 

8  1044C     1ST     3     1     4     3     4     2 

9  1044C     2ND     3     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2     3 

11 1044C     2ND     1     1     1     3     3     3 

Notice that every individual now has a value for PSIZE – a value that reflects the number of 

individuals in the platoon. 

In situations where there is a single unique group identifier, the by option can be simplified to 

include just one variable.  For instance, if the group-level data had reflected values for each 

UNIT instead of PLATOON nested in unit, the by option would simply read by="UNIT".  In 

the case of PLATOON, however, there are numerous platoons with the same name (1ST, 2ND), 

so unique platoons need to be identified within the nesting of the larger UNIT.  

3.1.2 The aggregate function 

In many cases in multilevel analyses, we create a group-level variable by mean aggregating 

individual responses. Consequently, the aggregate function is often used in combination with 

the merge function.  In our cohesion example, we can assign platoon means for the variables 

COH01 and COH02 back to the individuals using aggregate and merge. 
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The first step is to create a dataframe with group means using the aggregate function. The 

aggregate function has three key arguments: the first is matrix of variables to convert to 

group-level variables. Second is the grouping variable(s) as a list, and third is the function 

(mean, var, length, etc.) executed on the variables.  To calculate the means of COH01 and 

COH02 (columns 3 and 4 of the cohesion dataframe) issue the command:  

 
> TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),mean) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000       NA 

2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

Notice that COH02 has an “NA” value for the mean.  The NA value occurs because there was 

a missing value in the individual-level file. If we decide to base the group mean on the non-

missing individual values from group members we can add the parameter na.rm=T, to 

designate that NA values should be removed prior to calculating the group mean. 

 
> TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),  

  mean,na.rm=T) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000 4.000000 

2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

To merge the TEMP dataframe with the new.cohesion dataframe, we need to align the 

merge columns from both dataframes and control how the merge handles variables with the same 

names using the suffixes= c("",".G")option which leaves the variable name unchanged 

in the first dataframe but adds a .G suffix on the second dataframe.  
 
> final.cohesion<-merge(new.cohesion,TEMP,by.x=c("UNIT","PLATOON"), 

+ by.y=c("Group.1","Group.2"),suffixes=c("",".G")) 

> final.cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE  COH01.G  COH02.G 

1  1044B     1ST     4     5     5     5     5     3 3.000000 4.000000 

2  1044B     1ST     3    NA     5     5     5     3 3.000000 4.000000 

3  1044B     1ST     2     3     3     3     3     3 3.000000 4.000000 

4  1044B     2ND     3     4     3     4     4     3 3.333333 3.666667 

5  1044B     2ND     4     4     3     4     4     3 3.333333 3.666667 

6  1044B     2ND     3     3     2     2     1     3 3.333333 3.666667 

7  1044C     1ST     3     3     3     3     3     2 3.000000 2.000000 

8  1044C     1ST     3     1     4     3     4     2 3.000000 2.000000 

9  1044C     2ND     3     3     3     3     3     3 2.000000 2.000000 

10 1044C     2ND     2     2     2     3     2     3 2.000000 2.000000 

11 1044C     2ND     1     1     1     3     3     3 2.000000 2.000000 

The aggregate and merge functions provide tools necessary to manipulate data and 

prepare it for subsequent multilevel analyses.  Again, note that this illustration uses a relatively 

complex situation where there are two levels of nesting (Platoon within Unit).  In cases where 
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there is only one grouping variable (for example, UNIT) the commands for aggregate and 

merge contain the name of a single grouping variable.  For instance, 

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T) 

3.2 Within-Group Agreement and Reliability 

The data used in this section are taken from Bliese, Halverson & Rothberg (2000) using the 

bhr2000 data set from the multilevel package. 
 

> data(bhr2000)#imports the data into the working environment 

> names(bhr2000) 

 [1] "GRP"   "AF06"  "AF07"  "AP12"  "AP17"  "AP33"  "AP34"  

 "AS14"  "AS15" "AS16"  "AS17"  "AS28"  "HRS"   "RELIG" 

> nrow(bhr2000) 

[1] 5400 

The names function identifies 14 variables.  The first one, GRP, is the group identifier. The 

variables in columns 2 through 12 are individual responses on 11 items that make up a leadership 

scale.  HRS represents individuals’ reports of work hours, and RELIG represents individuals’ 

reports of the degree to which religion is a useful coping mechanism.  The nrow command 

indicates that there are 5400 observations.  To find out how many groups there are we can use 

the length command in conjunction with the unique command 
 

> length(unique(bhr2000$GRP)) 

[1] 99 

There are several functions in the multilevel library that are useful for calculating and 

interpreting agreement indices.  These functions are rwg, rwg.j, rwg.sim, rwg.j.sim, 

rwg.j.lindell, awg, ad.m, ad.m.sim and rgr.agree.   The rwg function calculates 

the James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function calculates 

the James et al. (1984) rwg(j) for multi-item scales.  The rwg.j.lindell function calculates 

r*wg(j) (Lindell,  & Brandt, 1997; 1999).  The awg function calculates the awg agreement index 

proposed by Brown and Hauenstein (2005).  The ad.m function calculates average deviation 

(AD) values for the mean or median (Burke, Finkelstein & Dusig, 1999).   

A series of functions with “sim” in the name (rwg.sim, rwg.j.sim and ad.m.sim) can 

be used to simulate agreement values from a random null distributions to test for statistical 

significance agreement.  The simulation functions are based on work by Dunlap, Burke and 

Smith-Crowe (2003); Cohen, Doveh and Eich (2001) and Cohen, Doveh and Nuham-Shani 

(2009).  Finally, the rgr.agree function performs a Random Group Resampling (RGR) 

agreement test (see Bliese, et al., 2000). 

In addition to the agreement measures, there are two multilevel reliability measures, ICC1 

and ICC2 than can be used on ANOVA models. As Bliese (2000) and others (e.g., Kozlowski & 

Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1) and 

ICC(2) are fundamentally different from agreement measures; nonetheless, they often provide 

complementary information to agreement measures, so this section illustrates the use of each of 

these functions using the dataframe bhr2000.  
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3.2.1 Agreement: rwg, rwg(j), and r*wg(j) 

Both the rwg and rwg.j functions are based upon the formulations described in James et al. 

(1984).  he functions require three pieces of information. The first piece is the variable of interest 

(x), the second is the grouping variable (grpid), and third is the expected random variance 

(ranvar).  The default estimate of ranvar is 2, which is the expected random variance based 

upon the rectangular distribution for a 5-point item (i.e., EU
2

) calculated using the formula 

ranvar=(A^2-1)/12 where A represents the number of response options associated with the scale 

anchors. See help(rwg), James et al., (1984), or Bliese et al., (2000) for details on selecting 

appropriate ranvar values. 

Below is an example using the rwg function to calculate agreement for the “coping using 

religion” item: 
 

> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2) 

> RWG.RELIG[1:10,]  #examine first 10 rows of data 

   grpid        rwg gsize 

1      1 0.11046172    59 

2      2 0.26363636    45 

3      3 0.21818983    83 

4      4 0.31923077    26 

5      5 0.22064137    82 

6      6 0.41875000    16 

7      7 0.05882353    18 

8      8 0.38333333    21 

9      9 0.14838710    31 

10    10 0.13865546    35 

The function returns a dataframe with three columns. The first column contains the group 

names (grpid), the second column contains the 99 rwg values – one for each group.  The third 

column contains the group size.  To calculate the mean rwg value use the summary command: 
 

> summary(RWG.RELIG) 

     grpid             rwg             gsize        

 1      : 1       Min.   :0.0000   Min.   :  8.00   

 10     : 1       1st Qu.:0.1046   1st Qu.: 29.50   

 11     : 1       Median :0.1899   Median : 45.00   

 12     : 1       Mean   :0.1864   Mean   : 54.55   

 13     : 1       3rd Qu.:0.2630   3rd Qu.: 72.50   

 14     : 1       Max.   :0.4328   Max.   :188.00   

 (Other):93  

The summary command informs us that the average rwg value is .186 and the range is from 0 

to 0.433.  By convention, values at or above 0.70 are considered good agreement, so there 

appears to be low agreement among individuals within the same work groups with respect to 

coping using religion. The summary command also provides information about the group sizes. 

 To calculate rwg for work hours, the expected random variance (EV) needs to be changed 

from its default value of 2.  Work hours was asked using an 11-point item, so EV based on the 

rectangular distribution (EU
2

) is 10.00 (EU
2

=(112-1)/12) – see the rwg help file for details).  
 

> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00) 

> mean(RWG.HRS[,2]) 
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[1] 0.7353417 

There is apparently much higher agreement about work hours within groups than there was 

about using religion as a coping mechanism in this sample.  By convention, this mean value 

would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide 

evidence of agreement. 

The use of the rwg.j function is nearly identical to the use of the rwg function except that 

the first argument to rwg.j is a matrix instead of a vector. In the matrix, each column 

represents one item in the multi-item scale, and each row represents an individual response. For 

instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale. The items 

were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the 

expected random variance is (5^2-1)/12 or 2. 
 

> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2) 

> summary(RWGJ.LEAD) 

     grpid            rwg.j            gsize        

 1      : 1       Min.   :0.7859   Min.   :  8.00   

 10     : 1       1st Qu.:0.8708   1st Qu.: 29.50   

 11     : 1       Median :0.8925   Median : 45.00   

 12     : 1       Mean   :0.8876   Mean   : 54.55   

 13     : 1       3rd Qu.:0.9088   3rd Qu.: 72.50   

 14     : 1       Max.   :0.9440   Max.   :188.00   

 (Other):93                                                                    

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt & 

Whitney, 1999) have raised concerns about the mathematical underpinnings of the rwg(j) formula.  

Specifically, they note that this formula is based upon the Spearman-Brown reliability estimator.  

Generalizability theory provides a basis to believe that reliability should increase as the number 

of measurements increase, so the Spearman-Brown formula is defensible for measures of 

reliability. In contrast, there may be no theoretical grounds to believe that generalizability theory 

applies to measures of agreement. That is, there may be no reason to believe that agreement 

should increase as the number of measurements on a scale increase (but also see LeBreton, 

James & Lindell, 2005). 

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the 

r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into 

the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group 

Variance/Expected Random Variance).  Note that Lindell and colleagues also recommend 

against truncating the Observed Group Variance value so that it matches the Expected Random 

Variance value in cases where the observed variance is larger than the expected variance. Their 

modification results r*wg(j) values being able to take on negative values. We can use the function 

rwg.j.lindell to estimate the r*wg(j) values for leadership. 
 

> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12], 

bhr2000$GRP,ranvar=2) 

> summary(RWGJ.LEAD.LIN) 

     grpid         rwg.lindell         gsize        

 1      : 1       Min.   :0.2502   Min.   :  8.00   

 10     : 1       1st Qu.:0.3799   1st Qu.: 29.50   

 11     : 1       Median :0.4300   Median : 45.00   

 12     : 1       Mean   :0.4289   Mean   : 54.55   
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 13     : 1       3rd Qu.:0.4753   3rd Qu.: 72.50   

 14     : 1       Max.   :0.6049   Max.   :188.00   

 (Other):93  

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed 

earlier. 

3.2.2 The awg Index 

Brown and Hauenstein (2005) argue that the rwg family of agreement indices have three major 

limitations: (1) the magnitude of the measures are dependent on sample size, (2) the scale used to 

assess the construct influences the magnitude of the measure, and (3) the use of the uniform null 

distribution is an invalid comparison upon which to base an estimate of agreement. To overcome 

these limitations, Brown and Hauenstein proposed the awg index as a multi-rater agreement 

measure analogous to Cohen’s kappa. The awg index is calculated using the awg function. 

The awg function has three arguments: x, grpid, and range. The x argument represents 

the item or scale upon which to calculate awg values. The awg function determines whether x is a 

vector (single item) or multiple item matrix (representing the items in a scale), and performs the 

awg calculation appropriate for the type of input. The second function, grpid, is a vector 

containing the group ids associated with the x argument. The third argument, range, represents 

the upper and lower limits of the response options. The range defaults to c(1,5) which 

represents a 5-point scale from (for instance) strongly disagree (1) to strongly agree (5). 

The code below illustrates the use of the awg function for the multi-item leadership scale. 
 

> AWG.LEAD<-awg(bhr2000[,2:12],bhr2000$GRP) 

> summary(AWG.LEAD) 

     grpid         a.wg            nitems      nraters        avg.grp.var     

 1      : 1   Min.   :0.2223   Min.   :11   Min.   :  8.00   Min.   :0.2787   

 10     : 1   1st Qu.:0.3654   1st Qu.:11   1st Qu.: 29.50   1st Qu.:0.4348   

 11     : 1   Median :0.4193   Median :11   Median : 45.00   Median :0.5166   

 12     : 1   Mean   :0.4125   Mean   :11   Mean   : 54.55   Mean   :0.5157   

 13     : 1   3rd Qu.:0.4635   3rd Qu.:11   3rd Qu.: 72.50   3rd Qu.:0.5692   

 14     : 1   Max.   :0.5781   Max.   :11   Max.   :188.00   Max.   :0.9144   

 (Other):93                                                                 

Notice that ratings of the awg tend to more similar in magnitude to the r*wg(j)  which likely 

reflects the facts that (a) large variances can result in negative ratings reflecting disagreement, 

and (b) the denominator for the measure is fundamentally based upon the idea of maximum 

possible variance (similarly to the r*wg(j)) rather than a uniform distribution. 

One final note is that Brown and Hauenstein (2005) contend that the class of rwg agreement 

indices should not be estimated in cases where group size (or number of raters) is less than the 

number of response options (scale anchors) associated with the items (A).  In this example, A is 

5 representing the scale anchors from strongly disagree to strongly agree.  In contrast, however, 

Brown and Hauenstein (2005) state that it is appropriate to estimate awg on the number of 

anchors minus 1. The reason why awg can be estimated on smaller groups is that awg (unlike rwg) 

uses a sample-based variance estimate in the denominator whereas rwg uses a population-based 

variance estimate (recall that the formula for the rectangular variance distribution is 

ranvar=(A^2-1)/12 which represents a population-based value (EU
2

)). In the example there is no 

issue with group size given that the smallest group has eight members.   
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3.2.3 Significance testing using rwg.sim and rwg.j.sim 

As noted in section 3.2.1, rwg and rwg(j) values at or above .70 are conventionally considered 

providing evidence of within-group agreement. A series of studies by Charnes and Schriesheim 

(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen, 

Doveh and Nahum-Shani (2009) lay the groundwork for establishing tests of statistical 

significance for rwg and rwg(j). The basic idea behind these simulations is to draw observations 

from a known null distribution (generally a uniform or rectangular null), and repeatedly estimate 

rwg or rwg(j).  Because the observations are drawn from a uniform random null, rwg or rwg(j) 

estimates in the simulation should be zero. Occasionally, however, the rwg or rwg(j) values will be 

larger than zero reflecting sampling variability associated with the specific attributes of the 

simulation. Repeatedly drawing random numbers and estimating rwg and rwg(j) provides a way to 

calculate expected null values and confidence intervals. 

The simulations conducted by Cohen et al., (2001) varied several factors, but the two factors 

found to be most important for the expected null values of the rwg(j) were (a) group size and (b) 

the number of items. Indeed, Cohen et al., (2001) found that the expected null rwg(j) values in the 

simulations differed considerably as group size and the number of items varied. These findings 

imply that the conventional value of .70 may be a reasonable cut-off value for significance with 

some configurations of group sizes and items but may not be reasonable for others. Thus, Cohen 

et al., (2001) recommended researchers simulate parameters based on the specific characteristics 

of the researchers' samples when determining whether rwg(j) values are significant. 

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg 

using the idea of simulating null distributions. Their work showed that the 95% confidence 

interval for the single item measure varied as a function of (a) group size and (b) the number of 

response options. In the case of 5 response options (e.g., strongly disagree, disagree, neither, 

agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3 

to 0.12 for a group of 150. That is, one would need an rwg estimate of 1.00 with groups of size 

three to be 95% certain the groups agreed more than chance levels, but with groups of size 150 

any value equal to or greater than 0.12 would represent significant agreement. 

The function rwg.sim provides a way to replicate the results presented by Dunlap and 

colleagues.  For instance, to estimate the 95% confidence interval for a group of size 10 on an 

item with 5 response options one would provide the following parameters to the rwg.sim 

function keeping in mind that the results from a separate run will not match these results exactly 

because no random seed was set: 
 

> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000) 

> summary(RWG.OUT) 

$rwg 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.0000  0.0000  0.0000  0.1221  0.2167  0.8667  

 

$gsize 

[1] 10 

$nresp 

[1] 5 

$nitems 

[1] 1 

$rwg.95 
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[1] 0.5277778 

The results in the preceding example are based on 10,000 simulation runs.  In contrast, 

Dunlap et al., (2003) used 100,000 simulation runs.  Nonetheless, both Table 2 from Dunlap et 

al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a 

group of size 10 with five response options.   

Because the estimation of  rwg in the simulations produces a limited number of possible 

responses, the typical methods for establishing confidence intervals (e.g., the generic function 

quantile) cannot be used.  Thus, the multilevel package provides a quantile method for 

the objects of class agree.sim created using rwg.sim. To obtain 90%, 95% and 99% 

confidence interval estimates (or any other values) one would issue the following command: 
 

> quantile(RWG.OUT,c(.90,.95,.99)) 

  quantile.values confint.estimate 

1            0.90        0.4222222 

2            0.95        0.5277778 

3            0.99        0.6666667 

Cohen et al. (2009) expanded upon the work of Dunlap et al., (2003) and the early work by 

Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to 

multiple item scales in the case of rwg(j) values. The function rwg.j.sim is based upon the 

work of Cohen et al., (2009) and simulates rwg(j) values from a uniform null distribution for user 

supplied values of (a) group size, (b) number of items in the scale, and (c) number of response 

options on the items. Users also provide the number of simulation runs (repetitions) upon which 

to base the estimates.  In most cases, the number of simulation runs will be 10,000 or more 

although the examples illustrated here will be limited to 1,000.   

The final optional argument to rwg.j.sim is itemcors.   If this argument is omitted, the 

simulated items used to comprise the scale are assumed to be independent (non-correlated).  If 

the argument is provided, the items comprising the scale are simulated to reflect a given 

correlational structure. Cohen et al., (2001) showed that results based on independent (non-

correlated) items were similar to results based on correlated items; nonetheless, the model with 

correlated items is more realistic and thereby preferable (see Cohen et al., 2009). 

For an example of using rwg.j.sim with non-correlated items, consider a case where a 

researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where 

group size was 15 using a 7-item scale with 5 response options for the items (A=5).   The call to 

rwg.j.sim would be: 
 

> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000) 

 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.009447 0.161800 0.333900 0.713700  

$gsize 

[1] 15 

$nresp 

[1] 5 

$nitems 

[1] 7 

$rwg.j.95 
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[1] 0.5559117 

In this example, the upper expected 95% confidence interval is 0.56. This is lower than 0.70, 

and suggests that in this case the value of 0.70 might be too stringent. Based on this simulation, 

one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).    

Using the simulation, one can show that as group size increases and the number of items 

increase, the criteria for what constitutes significant agreement decreases. 

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will 

examine whether group members agreed about three questions specific to mission importance in 

the lq2002 data set. These data were also analyzed in Cohen et al., 2009. We begin by 

estimating the mean rwg(j) for the 49 groups in the sample and obtaining a value of .58.  This 

value is below the .70 conventional criteria and suggests a lack of agreement.   

 
> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")], 

  lq2002$COMPID,ranvar=2) 

> summary(RWG.J) 

     grpid        rwg.j            gsize       

 10     : 1   Min.   :0.0000   Min.   :10.00   

 13     : 1   1st Qu.:0.5099   1st Qu.:18.00   

 14     : 1   Median :0.6066   Median :30.00   

 15     : 1   Mean   :0.5847   Mean   :41.67   

 16     : 1   3rd Qu.:0.7091   3rd Qu.:68.00   

 17     : 1   Max.   :0.8195   Max.   :99.00   

 (Other):43  

 

To determine whether the value of .58 is significant, we use the rwg.j.sim function using 

item correlations and average group size (41.67 rounded to 42).  In this case, notice the 

simulation suggests that a value of .35 is significant providing evidence of significant agreement.   
 

> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5, 

   itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]), 

   nrep=1000) 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.007224 0.088520 0.162500 0.548600  

$gsize 

[1] 42 

$nresp 

[1] 5 

$nitems 

[1] 3 

$rwg.j.95 

[1] 0.346875  

3.2.4 Average Deviation (AD) Agreement using ad.m 

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as 

measures of within-group agreement. Cohen et al., (2009) note that AD indices are also referred 

to as Mean or Median Average Deviation. AD indices are calculated by first computing the 

absolute deviation of each observation from the mean or median. Second, the absolute deviations 
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are averaged to produce a single AD estimate for each group. The formula for AD calculation on 

a single item is: 

AD = Σ|xij - Xj|/N 

where xij represents an individual observation (i) in group j; Xj represents the group mean or 

median, and N represents the group size.  When AD is calculated on a scale, the AD formula 

above is estimated for each item on the scale, and each item's AD value is averaged to compute 

the scale AD score. 

AD values are considered practically significant when the values are less than A/6 where A 

represents the number of response options on the item.  For instance, A is 5 when items are asked 

on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format so any value less 

than .83 (5/6) would be considered practically significant. 

The function ad.m is used to compute the average deviation of the mean or median. The 

function requires the two arguments, x and grpid. The x argument represents the item or scale 

upon which to estimate the AD value. The ad.m function determines whether x is a vector 

(single item) or multiple item matrix (multiple items representing a scale), and performs the AD 

calculation appropriate for the nature of the input variable. The second function, grpid, is a 

vector containing the group ids of the x argument. The third argument is optional. The default 

value is to compute the Average Deviation of the mean. The other option is to change the type 

argument to "median" and compute the Average Deviation of the median. 

  For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a 

leadership scale.  The items were assessed using 5-point response options (Strongly Disagree to 

Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.83.  The AD 

estimates for the first five groups and the mean of the overall sample are provided below: 
 

> data(bhr2000) 

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP) 

> AD.VAL[1:5,] 

  grpid      AD.M gsize 

1     1 0.8481366    59 

2     2 0.8261279    45 

3     3 0.8809829    83 

4     4 0.8227542    26 

5     5 0.8341355    82 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8690723 54.5454545 

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about 

ratings of leadership. The overall AD estimate is 0.87, which is also higher than 0.83 and 

suggests a general lack of agreement. 

The AD value estimated using the median instead of the mean, in contrast, suggests 

practically significant agreement for the sample as a whole. 
 

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median") 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8297882 54.5454545 
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To use the ad.m function for single item variables such as the work hours (HRS) variable in 

the bhr2000 data simply include the HRS vector instead of a matrix as the first argument. Recall 

that work hours is asked on an 11-point response format scale so practical significance is 11/6 or 

1.83.  The average observed AD value of 1.25 suggests within-group agreement about work 

hours across the sample as a whole. 
 

> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP) 

> mean(AD.VAL.HRS[,2:3]) 

     AD.M     gsize  

 1.249275 54.545455 

3.2.5 Significance testing ad.m.sim 

The function ad.m.sim is used to simulate AD values and test for significance of various 

combinations of group size, number of response options and number of items in multiple-item 

scales. The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to 

test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg, 

the ad.m.sim function works with both single items and multiple-item scales. 

The ad.m.sim function is based upon the work of Cohen et al. (2009) and of Dunlap et al., 

(2003). The function simulates AD values from a uniform null distribution for user supplied 

values of (a) group size, (b) number of items in the scale, and (c) number of response options on 

the items. Based on Cohen et al. (2009), the final optional parameter can include a correlation 

matrix when simulating multiple-item scales. The user also provides the number of simulation 

runs (repetitions) upon which to base the estimates. Again in practice, the number of simulation 

runs will typically be 10,000 or more although the examples illustrated here will be limited to 

1,000.   

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000 

dataframe.  Recall the AD value based on the mean suggested that groups failed to agree about 

leadership.  In contrast, the AD value based on the median suggested that groups agreed.  To 

determine whether the overall AD value based on the mean is statistically significant, one can 

simulate data matching the characteristics of the bhr2000 sample: 
 
> AD.SIM<-ad.m.sim(gsize=55,nresp=5, 

itemcors=cor(bhr2000[,2:12]),type="mean",nrep=1000) 

> summary(AD.SIM) 

$ad.m 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.087   1.182   1.208   1.209   1.236   1.340  

 

$gsize 

[1] 55 

 

$nresp 

[1] 5 

 

$nitems 

[1] 11 

 

$ad.m.05 

[1] 1.138212 
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$pract.sig 

[1] 0.8333333 

 

The simulation suggests that any AD mean value less than or equal to 1.14 is statistically 

significant. Thus, while the AD value for the leadership items (0.87) may not meet the criteria 

for practical significance, it does for statistical significance.  As with the rwg simulation 

functions, the ad.m.sim function has a specifically associated quantile function to identify 

different cut-off points. The example below illustrates how to identify values corresponding to 

the .90 (.10), .95 (.05) and .99 (.01) significance levels.  That is, to be 99% certain that a value 

was significant, it would need to be smaller than or equal to 1.114.  
 

> quantile(AD.SIM,c(.10,.05,.01)) 

  quantile.values confint.estimate 

1            0.10         1.155763 

2            0.05         1.138212 

3            0.01         1.114170 

3.2.6 Agreement:  Random Group Resampling 

The final agreement related function in the multilevel library is rgr.agree.  In some ways 

this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to 

draw inferences about agreement.  The difference is that the rgr.agree function uses the 

actual group data, while the rwg.j.sim function simulates from an expected distribution (the 

uniform null). 

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and 

calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of 

significance to determine whether actual group and pseudo group variances differ. To use 

rgr.agree, one must provide three variables. The first is a vector representing the variable 

upon which one wishes to estimate agreement. The second is group membership (grpid). The 

third parameter is the number of pseudo groups to generate. 

The third parameter requires a little explanation, because in many cases the number of pseudo 

groups returned in the output will not exactly match the third parameter. For instance, in our 

example, we will request 1000 pseudo groups, but the output will return only 990.  This is 

because the rgr.agree algorithm creates pseudo groups that are identical in size 

characteristics to the actual groups. In so doing, the algorithm creates sets of pseudo groups in 

“chunks.”  The size of each chunk is based upon the number of actual groups. So, if there are 99 

actual groups, then the total number of pseudo groups must be evenly divisible by 99.  Nine-

hundred-and-ninety is evenly divisible by 99, while 1000 is not. Rather than require the user to 

determine what is evenly divisible by the number of groups, rgr.agree will do this 

automatically.  Below is an example of using rgr.agree on the work hours variable. 
 

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000) 

The first step is to create an RGR Agreement object named RGR.HRS. The object contains 

several components.  In most cases, however, users will be interested in the estimated z-value 

indicating whether the within-group variances from the actual groups are smaller than the 

variances from the pseudo groups.  A useful way to get this information is to use the summary 
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command.  When summary is applied to the RGR agreement object it provides standard 

deviations, variance estimates, an estimate of the z-value, and upper and lower confidence 

intervals. 
 

> summary(RGR.HRS) 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990      3.322772      0.762333       2.646583 -8.82554 

 

$"Lower Confidence Intervals (one-tailed)" 

    0.5%       1%     2.5%       5%      10%  

1.648162 1.795134 1.974839 2.168830 2.407337  

 

$"Upper Confidence Intervals (one-Tailed)" 

     90%      95%    97.5%      99%    99.5%  

4.251676 4.545078 4.832813 5.642410 5.845143 

 

The first section of the summary provides key statistics for contrasting within-group variances 

from real group with within-group variances from random groups. The second and third sections 

provide lower and upper confidence intervals. Keep in mind that if one replicates this example 

one is likely to get slightly different results because no random seed was set. While the exact 

numbers may differ, the conclusions drawn should be the same. 

The first section of the summary shows that the average within-group variance for the random 

groups was 3.32 with a Standard Deviation of 0.76. In contrast, the average within-group 

variance for the real groups was considerably smaller at 2.65. The estimated z-value suggests 

that, overall, the within-group variances in ratings of work hours from real groups were 

significantly smaller than the within-group variances from the random groups. These results 

suggest that group members agree about work hours. Recall that a z-value greater than or less 

than 1.96 signifies significance at p<.05, two-tailed. 

The upper and lower confidence interval information allows one to estimate whether specific 

groups do or do not display agreement. For instance, only 5% of the pseudo groups had a 

variance less than 2.17. Thus, if we observed a real group with a variance smaller than 2.17, we 

could be 95% confident this group variance was smaller than the variances from the pseudo 

groups. Likewise, if we want to be 90% confident we were selecting groups showing agreement, 

we could identify real groups with variances less than 2.41.   

To see which groups meet this criterion, use the tapply function in conjunction with the 

sort function. The tapply function partitions the first variable by levels of the second 

variable and performs a specified function much like the aggregate function (see section 

3.1.2). Below we partition HRS into separate Groups (GRP) and calculate the variance for each 

group (var).  Using sort in front of this command makes the output easier to read.   

 
> sort(tapply(bhr2000$HRS,bhr2000$GRP,var)) 

       33        43        38        19         6        39        69        17  

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282  

       20        99        98        44         4        53        61        63  

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430  
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       66        14        76        71        21        18        59        50  

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667  

       48        60        83         8        22         2        75        11  

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947  

       96        23        54        47        55        26        74        57  

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858  

       45        97        64        35        32        41         1        24  

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678  

       82        37        81        68        42        73        34        25  

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000  

       93        62        92        12        40        88         5        29  

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616  

       85        70        77        51         3        13        79        87  

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569  

        7        95        78        84        46        27        36        15  

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287  

       89        16        58        49         9        31        90        72  

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714  

       91        80        86        10        94        28        30        56  

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707  

       65        52        67  

4.7537594 5.2252964 5.3168148  

If we start counting from group 33 (the group with the lowest variance of 0.82) we find 46 

groups with variances smaller than 2.41. That is, we find 46 groups that have smaller than 

expected variance using the 90% confidence estimate. 

It may also be interesting to see what a “large” variance is when defined in terms of pseudo 

group variances.  This information is found in the third part of the summary of the RGR.HRS 

object. A variance of 4.55 is in the upper 95% of all random group variances. Given this 

criterion, we have five groups that meet or exceed this standard.  In an applied setting, one might 

be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.  

That is, one might be interested in determining what drives certain groups to have very large 

differences in how individuals perceive work hours. 

Finally, for confidence intervals not given in the summary, one can use the quantile 

function with the random variances (RGRVARS) in the RGR.HRS object. For instance to get the 

lower .20 confidence interval: 

 
> quantile(RGR.HRS$RGRVARS, c(.20)) 

     20%  

2.695619 

Note that rgr.agree only works on vectors.  Consequently, to use rgr.agree with the 

leadership scale we would need to create a leadership scale score.  We can do this using the 
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rowMeans function.  We will create a leadership scale (LEAD) and put it in the bhr2000 

dataframe, so the specific command we issue is: 

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12],na.rm=TRUE) 

Now that we have created a leadership scale score, we can perform the RGR agreement 

analysis on the variable. 

 
> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000)) 

 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990     0.6011976     0.1317229      0.5156757 -6.46002 

 

$"Lower Confidence Intervals (one-tailed)" 

     0.5%        1%      2.5%        5%       10%  

0.2701002 0.3081618 0.3605966 0.3939504 0.4432335  

 

$"Upper Confidence Intervals (one-Tailed)" 

      90%       95%     97.5%       99%     99.5%  

0.7727185 0.8284755 0.8969857 0.9651415 1.0331922 

The results indicate that the variance in actual groups about leadership ratings is significantly 

smaller than the variance in randomly created groups (i.e., individuals agree about leadership).  

For interesting cases examining situations where group members do not agree see Bliese & 

Halverson (1998a) and Bliese and Britt (2001). 

Ongoing research continues to examine the nature of RGR based agreement indices relative to 

ICC(1), ICC(2) and other measures of agreement such as the rwg (e.g., Lüdtke & Robitzsch, 

2009).  This work indicates that measures of RGR agreement are strongly related to the 

magnitude of the ICC values. 

3.2.7 Reliability:  ICC(1) and ICC(2) 

Reliability indices differ from agreement indices (see Bliese, 2000; LeBreton & Senter, 2008), 

and the multilevel package contains the ICC1 and ICC2 functions to estimate reliability. These 

two functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as 

described by Bartko, (1976), James (1982), and Bliese (2000).  

These two functions are applied to a one-way analysis of variance model using aov. Notice 

the as.factor function on GRP in the command below which designates GRP (a numeric 

vector) as being categorical or nominal. Once specified as categorical, R creates N-1 dummy 

codes in the model matrix using GRP 1 as the referent. More specifically, the contrast default in 

as.factor is contr.treatment which uses the first factor as the referent; however, R 

provides numerous options for controlling dummy and effects coding – see 

help(contrasts) for details. In the present example, the 99 groups result in 98 dummy-

coded categories (98 df). 
 

> data(bhr2000) 

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000) 

> summary(hrs.mod) 

                 Df  Sum Sq Mean Sq F value    Pr(>F)     
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as.factor(GRP)   98  3371.4    34.4  12.498 < 2.2e-16 *** 

Residuals      5301 14591.4     2.8                       

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

 

The ICC1 and ICC2 functions are then applied to the aov object. 

> ICC1(hrs.mod) 

[1] 0.1741008 

> ICC2(hrs.mod) 

[1] 0.9199889 

The ICC(1) value is equivalent to the ICC term referred to the mixed-effects model literature 

(e.g., Bryk & Raudenbush, 1992; 2002) and a value of .17 indicates that 17% of the variance in 

individual perceptions of work hours can be “explained” by group membership. The ICC(2) is a 

measure of group-mean reliability and a value of .92 indicates that groups can be reliably 

differentiated in terms of average work hours (see Bliese, 2000). 

3.2.8 Estimate multiple ICC values:  mult.icc 

The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a 

given data set.  Code to estimate the ICC(1) and ICC(2) values for work hours, coping with 

religion, and three different leadership items in the bhr2000 data set is provided below. In the 

function, the first element is a subset of the dataframe with the variables of interest and the 

second element is the grouping variable. 

 
> mult.icc(bhr2000[,c("HRS","RELIG","AF06","AF07","AP12")],bhr2000$GRP) 

  Variable        ICC1      ICC2 

1      HRS 0.177543969 0.9217206 

2    RELIG 0.009801542 0.3506163 

3     AF06 0.103492912 0.8629524 

4     AF07 0.087490365 0.8394800 

5     AP12 0.149052933 0.9052514 

The results suggest that individuals use of religion as a coping mechanism had the lowest 

ICC(1) value (less than 1% of the variance in an individual’s response can be explained by group 

membership). The mult.icc function is based upon lme from the nlme package so it returns 

slightly different ICC(1) and ICC(2) estimates for Work Hours (0.178 and 0.922, respectively) 

than estimates based on the aov models (0.174 and 0.920). If group sizes equal, the lme and 

aov approach would provide virtually identical values. In general, the preferred method with 

unbalanced data would be to use lme. One other difference (not illustrated here) is that ICC(1) 

values estimated in OLS can be negative, but ICC(1) values based on mixed-effects models have 

a lower bound of zero.  

3.2.9 Comparing ICC values with a two-stage bootstrap: boot.icc 

When examining ICC values, it can often be informative to estimate a sampling distribution to 

determine whether ICC values differ. For instance, the ICC(1) values for Work Hours is 0.178 

(mixed-effects model), but it is not clear whether the other values which are lower significantly 

differ from 0.178. One way to answer the question of whether ICC values differ is to estimate a 

measure of variability around the point estimates. The boot.icc is an experimental function 
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that performs a two-stage bootstrap.  A two-stage first samples with replacement from level-2 

units (the groups) followed by sampling with replacement from individuals within the level-2 

units. The function is computationally intensive, but is illustrated below both with using lme 

(the default) and aov (an option) as the computational algorithm underlying the ICC(1) estimate: 

 

> system.time(OUT.HRS.lme<-boot.icc3(bhr2000$HRS,bhr2000$GRP,1000)) 

   user  system elapsed  

 292.87    0.53  295.86  

> quantile(OUT.HRS.lme,c(0.025,.975)) 

     2.5%     97.5%  

0.1372000 0.2211409  

 

> system.time(OUT.HRS.aov<-boot.icc3(bhr2000$HRS,bhr2000$GRP,1000, 

  aov.est=TRUE)) 

   user  system elapsed  

 301.93    3.35  307.89  

> quantile(OUT.HRS.aov,c(0.025,.975)) 

     2.5%     97.5%  

0.1302396 0.2160199  

Notice that the aov option is slightly slower and the values are slightly smaller which is not 

surprising given that the aov estimate of the ICC(1) is smaller than the lme estimate. The lme 

percentile-based 95% confidence interval for the ICC(1) for work hours is [0.137, 0.221] 

suggesting that single point estimates of ICC(1) values outside this range would significantly 

differ from those associated with Work Hours. In the example using mult.icc everything 

except AP12 (I am impressed by the quality of leadership in this company) has a smaller ICC(1) 

value than the lower confidence interval of 0.137 for work hours. A more thorough comparison 

would involve estimating confidence intervals for AP12 and using both sets of confidence 

intervals to draw inferences (Cummings & Finch, 2005). Finally note that performing a non-

parametric bootstrap of nested data is controversial because it is not clear how to best sample 

with replacement. 

3.2.10 Visualizing an ICC(1) with graph.ran.mean 

It is often valuable to visually examine the group-level properties of data to see the form of 

the group-level effects. Levin (1967) observed that high ICC(1) values can be the product of one 

or two highly aberrant groups rather than indicating generally shared group properties among the 

entire sample. 

One way to examine the group-level properties of the data is to contrast the observed group 

means with group means that are the result of randomly assigning individuals to pseudo groups.  

If the actual group means and the pseudo-group means are identical, there is no evidence of 

group effects. If one or two groups are clearly different from the pseudo-group distribution it 

suggests the ICC(1) value is simply caused by a few aberrant observations. If a number of groups 

have higher than expected means, and a number have lower than expected means, it suggests 

fairly well-distributed group-level properties. 

The graph.ran.mean function can be used to visually contrast actual group means with 

pseudo group means. The function requires three parameters. The first is the variable of interest.  

The second is the group designator, and the third is a smoothing parameter (nreps) determining 

how many sets of pseudo groups should be created to create the pseudo group curve. Low 
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numbers (<10) for this last parameter create a choppy line while high numbers (>25) create 

smooth lines.  In cases where the parameter bootci is TRUE (see optional parameters), nreps 

should equal 1000 or more. 

  Three optional parameters control the y axis limits (limits); whether a plot is created 

(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence 

intervals are estimated and plotted (bootci=TRUE).  The default for limits is to use the 

lower 10% and upper 90% values of the raw data.  The default for graph is to produce a plot, 

but returning a dataframe can be useful for exporting results for subsequent graphing in 

ggplot2 or other packages.  Finally, the default for bootci is to return a plot or a dataframe 

without bootstrap confidence interval estimates. In the following example, we plot the observed 

and pseudo group distribution of the work hours variable from the data set bhr2000. 
 

> data(bhr2000) 

> graph.ran.mean(bhr2000$HRS,bhr2000$GRP,nreps=1000, 

limits=c(8,14),bootci=TRUE) 

 

The function produces the resulting plot where the bar chart represents each groups' average 

rating of work hours sorted from highest to lowest, and the line represents a random distribution 

where 99 pseudo groups (with exact size characteristics of the actual groups) were created 1000 

times and the sorted values were averaged across the 1000 iterations.  The dotted lines represent 

the upper and lower 95% confidence interval estimates.  In short, the line represents the expected 

distribution if there were no group-level properties associated with these data. The graph 

suggests fairly evenly distributed group-level properties associated with the data although two 

groups do stand out – one on the extreme high end and one on the extreme low end. In the end, 

though, the graph along with the results from the two-stage bootstrap analyses (section 3.2.11) 

which placed the ICC(1) estimate of 0.178 fairly close to the center of the 95% confidence 

interval of [0.137, 0.221]  suggests that the ICC(1) values are not being driven by extreme 

groups (experience with other data suggests that a few extreme groups stand out in graphs and 

they also produce confidence intervals asymmetrical to the point estimate). 
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3.2.11 Simulating ICC(1) values with sim.icc 

ICC(1) values play a key role in multilevel data; therefore, the ability to simulate ICC(1) 

values can be a valuable tool to help understand multilevel data and analyses. The sim.icc 

function generates data with specific ICC(1) values. Multiple vectors (items) can be generated in 

one of two ways:  either with or without level-1 correlations. The function is used to generate a 

single vector (VAR1) below: 
 

> set.seed(1535324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15) #Simulate a single vector 

> ICC.SIM[c(1:3,11:13),]  # Examine a few rows of simulated data 

   GRP       VAR1 

1    1  0.2800938 

2    1 -1.4002869 

3    1 -2.1422593 

11   2 -1.3098119 

12   2 -2.7164491 

13   2 -0.3160884  
 

> ICC1(aov(VAR1~as.factor(GRP), ICC.SIM)) 

[1] 0.16681 

 

In the next example, four items are generated without any level-1 correlation among items.  

These data would represent a situation in which any observed raw correlation would be the due 

to the ICC(1) value. The example below uses the waba function discussed in section 3.4.1 to 

perform a variance decomposition of several raw correlations. 

 
> set.seed(15324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4) 
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> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) 

  Variable      ICC1      ICC2 

1     VAR1 0.2035837 0.7188047 

2     VAR2 0.1442111 0.6275778 

3     VAR3 0.2229725 0.7415725 

4     VAR4 0.1549414 0.6470794 

 

> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem  #Examine CorrW  

     RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy       CorrW 

1 0.07728039 0.530273 0.4775097 0.5939511 0.847827 0.8786265 -0.09815005 

 

> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy       CorrW 

1 0.1769287 0.530273 0.5464122 0.6723887 0.847827 0.8375164 -0.02520087 

 

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy      CorrW 

1 0.1943248 0.530273 0.4874644 0.6127858 0.847827 0.8731429 0.04853107 

 

Notice that the ICC(1) values for each item are variable (a function of small group sizes and a 

relatively small number of groups).  Notice also that the CorrW (within-group correlation) 

values for three of the bivariate correlations vary around zero while RawCorr (the raw 

correlations) varies around .15 which corresponds to the simulated ICC(1) value. 

 

As a final example, the code below incorporates a level-1 correlation of .30 among variables.  

Notice that the within-group correlation varies around .30 and the raw correlation increases as a 

function of the level-1 correlation and the ICC(1) value. 
 

> set.seed(15324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4,item.cor=.3)  

> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) 

  Variable      ICC1      ICC2 

1     VAR1 0.1669452 0.6671118 

2     VAR2 0.1558558 0.6486689 

3     VAR3 0.1381652 0.6158502 

4     VAR4 0.1715351 0.6743219 

 

> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3987741 0.498367 0.4883034 0.6976093 0.8669662 0.8726739 0.3026887 

 

> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3746905 0.498367 0.4718088 0.7083573 0.8669662 0.8817009 0.2722794 

 

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3732463 0.498367 0.5024739 0.7104143 0.8669662 0.8645924 0.2606111 

 

3.3 Regression and Contextual OLS Models 

Contextual models represent a basic form a multilevel model where both the raw predictor 

and the group-mean of the same predictor are included in the model. For instance, regressing 
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Well-Being on individual work hours and group average work hours would represent a basic 

contextual model. A significant effect for the group-mean predictor indicates that the slope for 

the group-means differs from the slope for the individual-level variables and suggests a 

contextual effect is present (Firebaugh, 1978; Snijders & Bosker, 1999).  

Prior to the introduction of multilevel mixed-effects models, OLS regression models were 

widely used to detect contextual effects. Firebaugh (1978) provides a good methodological 

discussion of these types of contextual models as does Kreft and De Leeuw (1998) and James 

and Williams (2000). While OLS regression has historically been used to estimate contextual 

regression models, the models can severely underestimate the standard error associated with the 

group-level effect producing tests that are too liberal. For this reason, mixed-effects models are 

the more appropriate way to identify contextual effects. 

3.3.1 Contextual Effect Example 

  In this example, we use the bh1996 dataframe to illustrate a contextual model involving 

work hours, group work hours and well-being presented in Bliese (2002).  The bh1996 

dataframe has group mean variables included along with the group-mean center or demeaned 

variables. 
 

> data(bh1996) 

> names(bh1996) 

 [1] "GRP"      "COHES"    "G.COHES"  "W.COHES"  "LEAD"     "G.LEAD"   

 [7] "W.LEAD"   "HRS"      "G.HRS"    "W.HRS"    "WBEING"   "G.WBEING" 

[13] "W.WBEING" 

 

> tmod<-lm(WBEING~HRS+G.HRS,data=bh1996)  

> round(summary(tmod)$coef,4) 

            Estimate Std. Error  t value Pr(>|t|) 

(Intercept)   4.7831     0.1364  35.0680        0 

HRS          -0.0465     0.0049  -9.4307        0 

G.HRS        -0.1308     0.0130 -10.0596        0 

Notice that G.HRS is significant with a t-value of –10.06 suggesting a significant contextual 

effect. Later we show that this t-value is highly inflated by a standard error that is too small. 

Nonetheless, it is informative to plot the form of the relationship showing that the group-mean 

slope (the dotted line) is considerably steeper than the individual slope (the solid line). Notice the 

use of !duplicated(bh1996$GRP) to select only the first row with a specific group’s 

group-level data effectively reducing the sample size to 99 group means: 
 

> plot(bh1996$HRS,bh1996$WBEING,xlab="Work Hours", 

  ylab="Well-Being",type="n") #type = n omits the 7,382 points 

 

> abline(lm(WBEING~HRS,data=bh1996)) # plots the individual-level slope 

> abline(lm(G.WBEING~G.HRS,data=bh1996[!duplicated(bh1996$GRP),]), 

  lty=2) #group-level slope 
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The idea that relationship strength might differ across levels is fundamental to multilevel 

analyses, so the basic idea of contextual regression is important. Fortunately, the problem with 

using OLS regression and having a standard error that is too small can be fixed in mixed-effect 

models (illustrated in section 4).  For more details on the effects of non-independence see Bliese 

(2002); Bliese and Hanges (2004); Kenny and Judd, (1986) and Snijders and Bosker, (1999). 

3.3.2 Contextual Effect Plot Using ggplot2 

As an example of some of R’s graphics capabilities, I reproduce the contextual effect using 

ggplot2.  

 
library(ggplot2) 

 

win.graph(height=4.75,width=6) #quartz() for MAC 

 

data(bh1996) 

 

bh1996.grp<-bh1996[!duplicated(bh1996$GRP), 

      c("G.COHES","G.LEAD","G.HRS","G.WBEING")] 

 

g <- ggplot(bh1996.grp, aes(x=G.HRS, y=G.WBEING))+ 

  labs(title = "Group Work Hours and Well-Being", 

       subtitle = "(Individual-Level Slope in Red)", 

       x = "Company Work Hours", 

       y = "Company Well-Being") 

 

g+coord_cartesian(xlim = c(5, 15),ylim=c(1,5))+ 

  geom_point(color="#477b7d")+ 

  geom_smooth(method="lm",fullrange=TRUE, 

              se=FALSE,color="#477b7d")+ 
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  geom_smooth(data=bh1996,aes(x=HRS,y=WBEING), 

              method="lm",color="firebrick4")+ 

  scale_x_continuous(breaks=seq(0,24,by=2))+ 

  theme( 

    plot.title = element_text(color="black", size=14,  

                      hjust=0.5,face="bold.italic"), 

    plot.subtitle = element_text(color="black", size=13,  

                              hjust=0.5,face="italic"), 

    axis.title.x = element_text(color="black", size=14), 

    axis.title.y = element_text(color="black", size=14), 

    axis.text = element_text(color="black",size=13,face="bold"), 

    panel.border = element_rect(fill = NA, colour = "black", 

                                size = rel(1)), 

    panel.background = element_rect(fill = "transparent", 

                                    colour = NA), 

    panel.grid = element_line(colour = "grey87"),  

    panel.grid.major = element_line(size = rel(1)),  

    panel.grid.minor = element_line(size = rel(0.25)),  

    axis.ticks = element_line(colour = "black", 

                              size = rel(0.5)) 

  ) 

ggsave(filename = "c:\\temp\\plotgg.jpg", 

       device = "jpeg") 

 

 

3.4 Correlation Decomposition and the Covariance Theorem 

OLS contextual models provide a way to determine whether regression slopes based on group 

means differ from regression slopes based on individual-level variables (while the OLS 
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contextual model for the group-mean predictor is biased by being too liberal, a null effect from 

the group-mean is informative). The covariance theorem provides a contextual model analog for 

correlations by breaking down a raw correlation into two separate components – the portion of 

the raw correlation attributable to within-group (individual) processes, and the portion of the 

correlation attributable to between-group (group-level) processes. 

Robinson (1950) proposed the covariance theorem, and Dansereau and colleagues 

incorporated the theorem it into an analysis system they labeled WABA for Within-And-

Between-Analyses (Dansereau, Alutto  & Yammarino, 1984). WABA has two components: 

WABA I and WABA II. The first component (WABA I) uses decision tools based on eta values 

to inform decisions about the individual or group-level nature of the data. Eta values, however, 

are highly influenced by group size and unfortunately WABA I makes no group size 

adjustments; consequently, there is little value in using WABA I criteria unless one is working 

with dyads (see Bliese, 2000; Bliese & Halverson, 1998b).   

Arguably a more useful way to draw inferences from eta-values is to contrast eta-values from 

actual groups to eta-values from pseudo groups. I illustrate this in a Random Group Resampling 

extension of the covariance theorem decomposition (see section 3.4.2). We begin, however, with 

a simple WABA analysis. 

3.4.1 The waba and cordif functions 

WABA II revolves around estimating the covariance theorem components, and the waba 

function in the multilevel library provides these components. The example partitions the raw 

correlation between work hours and well-being using the same data as used in the OLS 

contextual model example (section 3.3.1). The within-group correlation (CorrW) is group-mean 

centered (or demeaned) X and Y values. The group-level correlation (CorrB) represents the 

correlation between group means weighted by the size of each group. 
 

> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP) 

$Cov.Theorem 

     RawCorr     EtaBX     EtaBY      CorrB     EtaWX     EtaWY      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

$n.obs 

[1] 7382 

$n.grps 

[1] 99 

The waba function returns a list with three elements. The first is the covariance theorem with 

all its components. The second is the number of observations, and the third is the number of 

groups.  The latter two elements should routinely be examined because the waba function, by 

default, performs listwise deletion of missing values. 

The raw correlation = (EtaBX*EtaBY*CorrB) + (EtaWX*EtaWY*CorrW) or 

 
> (.379*.236*-.712)+(.925*.972*-.111) 

[1] -0.1634842  

The first set of parentheses represents the between-group component of the correlation, and 

the second set of parentheses represents the within-group component. 
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The weighted group-mean correlation of -.71 appears significantly larger than the within-

group correlation of -.11. Since these two correlations are independent, we can contrast them 

using the cordif function. This function performs an r to z' transformation of the two 

correlations (see also the rtoz function) and then tests for differences between the two z' values 

using the formula provided in Cohen and Cohen (1983, p. 54). Four arguments are provided to 

cordif: (1) the first correlation of interest, (2) the second correlation of interest, (3) the N on 

which the first correlation is based, and (4) the N on which the second correlation is based. In our 

example, we already have the two correlations of interest (-.11 and -.71) and the relevant N 

values for the number of groups (99). The N for the within-group correlation is calculated as the 

total N minus the number of groups (see Dansereau, et al., 1984) which is 7,382 minus 99 or 

7,283.  
 

> cordif(rvalue1=-.1107, rvalue2=-.7122, n1=7283, n2=99) 

$"z value" 

[1] 7.597172 

The z-value is larger than 1.96, so we conclude that the two correlations are significantly 

different for each other. This finding mirrors what we found in our contextual analysis but with 

an appropriate z-value.  

3.4.2 Random Group Resampling of Covariance Theorem (rgr.waba) 

As noted above, it may be interesting to see how the eta-between, eta-within, between group 

and within-group correlations vary as a function of the group-level properties of the data. The 

rgr.waba function provides a way to examine the group-level properties of elements of the 

covariance theorem. Essentially, the rgr.waba function allows one to answer questions such as 

"is the eta-between value for x larger than would be expected by chance?".  The rgr.waba 

function randomly assigns individuals into pseudo groups having the exact size characteristics as 

the actual groups, and then calculates the covariance theorem parameters. By repeatedly 

assigning individuals to pseudo groups and re-estimating the covariance theorem components, 

one can create sampling distributions of the covariance theorem components to see if actual 

group results differ from pseudo group results (see Bliese & Halverson, 2002). Below I illustrate 

the use of rgr.waba.  Note that this is a very computationally intensive routine, so it may take 

some time to complete.   
 
> with(bh1996, waba(HRS,WBEING,GRP))$Cov.Theorem  

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

> RGR.WABA<-rgr.waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP,1000) 

> round(summary(RGR.WABA),dig=4) 

       RawCorr     EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 

Mean   -0.1632    0.1154    0.1151   -0.1614    0.9933    0.9933   -0.1632 

SD      0.0000    0.0082    0.0081    0.0961    0.0010    0.0009    0.0013 

 

The summary of the rgr.waba object produces a table giving the number of random 

repetitions, the means and the standard deviations from analysis. Notice that when there are no 

meaningful group differences, the between-group correlation, the raw correlation, and the within-

group correlation all have the same value (with some rounding error). The raw correlation has a 
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standard deviation of zero because it does not change. In contrast, the between-group correlation 

has the highest standard deviation (.096) indicating that it varied the most across the pseudo 

group runs. All of covariance theorem components in the actual groups significantly vary from 

their counterparts in the pseudo group analysis because most actual group values are more than 

two standard deviations different from the pseudo group means. 

To further test for significant differences, we can examine the sampling distribution of the 

random runs, and use the 2.5% and 97.5% sorted values to approximate 95% confidence 

intervals. Any values outside of this range would be considered significantly different from their 

pseudo group counterparts.  

 

> quantile(RGR.WABA,c(.025,.975)) 

           EtaBx      EtaBy       CorrB     EtaWx     EtaWy      CorrW 

2.5%  0.09944367 0.09916248 -0.34021577 0.9913014 0.9914049 -0.1658118 

97.5% 0.13161137 0.13082964  0.03106165 0.9950432 0.9950713 -0.1607501 

 

  All of the covariance theorem values based on the actual groups are outside of the 95% 

confidence interval estimates. In other words, all the actual group results are significantly 

different than would be expected if individuals had been randomly assigned to groups (p<.05). 

The 99% confidence intervals draw the same conclusion at a more stringent confidence level. 

 
> quantile(RGR.WABA,c(.005,.995)) 

           EtaBx      EtaBy      CorrB     EtaWx     EtaWy      CorrW 

0.5%  0.09307571 0.09416619 -0.4065661 0.9907133 0.9908819 -0.1666120 

99.5% 0.13596781 0.13473339  0.1049678 0.9956590 0.9955565 -0.1596676 

 

Keep in mind that a replication is likely to differ slightly from results presented here because 

we did not start by setting a random seed. 

3.5 Simulate Multilevel Correlations (sim.mlcor) 

Contextual effects where relationships significantly differ across levels such as the illustration 

involving work hours and well-being are common. In many cases, the effects are less dramatic 

than having a within-group correlation of -.11 and a between-group correlation of -.71, but 

contextual effects exist and what drives them is relatively unexplored. One necessary, but not 

sufficient, condition for observing contextual effects is that both variables must have non-zero 

ICC(1) values (see Bliese, 1998). For this reason, researchers who are focused on modeling 

shared properties of constructs such as safety climate, cohesion, or team emotional cultures need 

to develop measures that have good ICC1 values and differentiate groups (see Bliese, Maltarich, 

Hendricks, Hofmann & Adler, 2019). 

The sim.mlcor (simulate multilevel correlation) function was designed to help explore 

how measurement properties at different levels impact observed raw, within, and between-group 

correlations. We could examine, for example, how correlations would have differed if we had 

been able to increase the ICC(1) values or alpha values of the variables. 

In the function, users provide group size, the number of groups, a between-group correlation, 

a within-group correlation, an ICC(1) for x, an ICC(1) for y, and alpha values for both x and y. 

The function returns a simulated dataset. 
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We can create a simulated dataset for our running example involving work hours and well-

being by first obtaining the values from the actual data: 

 
> data(bh1996) 

> with(bh1996,waba(HRS,WBEING,GRP)) 

$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

 

$n.obs 

[1] 7382 

 

$n.grps 

[1] 99 

 

> mult.icc(bh1996[,c("HRS","WBEING")],bh1996$GRP) 

  Variable       ICC1      ICC2 

1      HRS 0.12923699 0.9171286 

2   WBEING 0.04337922 0.7717561 

 

In this case, the group-level correlation of -.71 is smaller than it would have been if group 

means had reliabilities of 1. Instead, the ICC(2) values show that the  group-mean reliability for 

work hours is .92 and for well-being the value is .77. We can correct the -.71 value by adjusting 

the incremental effect (the difference between the within-group and between-group correlation) 

for attenuation using ICC(2) values and adding this effect back to the within-group correlation. 

 
> (-0.7121729--0.1107031)/sqrt(0.9171286*0.7717561)+-0.1107031 

[1] -0.8256251 

 

From this correction we can assume that if the ICC(2) values for both variables had been 1, 

the group-mean correlation would have been -.826. Using these data in the simulation and 

assuming an average group sizes of 75 (7382/99) and alpha values of 1, we obtain the following 

simulated dataset with results that mirror our actual data. Here I set a seed so exact results can be 

replicated. 

 
> set.seed(578323) 

> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+                       icc1x=0.04338,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP)) 

$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1699012 0.2317119 0.3804799 -0.7353652 0.9727844 0.9247892 -0.1167938 

 

$n.obs 

[1] 7425 

 

$n.grps 

[1] 99 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable       ICC1      ICC2 
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1        X 0.04142764 0.7642263 

2        Y 0.13448630 0.9209720 

 

To see the implications of having had a zero ICC(1) for the one of the variables, we can rerun 

the simulation and show that the between-group correlation no longer differs from the within or 

raw. This result is entirely expected because a necessary condition for contextual effects is a non-

zero ICC(1) on both variables. 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+                       icc1x=0,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1304409 0.1256461 0.3688716 -0.1483209 0.9920751 0.9294803 -0.1340036 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable        ICC1      ICC2 

1        X 0.002640832 0.1656842 

2        Y 0.125605587 0.9150646 

 

To see the implications of improved the group-level measurement properties of the well-being 

measure to better differentiate groups, we can increase the ICC(1) for X to be .10 which 

produces a between-group correlation of -.76 in this particular run. The raw correlation also 

inherits more from the group correlation and increases to -.19. 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+             icc1x=.10,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1947374 0.3607571 0.3796512 -0.7638527 0.9326598 0.9251297 -0.1044453 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable      ICC1      ICC2 

1        X 0.1195602 0.9105922 

2        Y 0.1338431 0.9205681 

 

Finally, to illustrate one of Bliese et al.’s (2019) main points that individual reliability indices 

such as alpha are largely irrelevant to the magnitude of between-group correlations, we can 

change the alpha for both X and Y to be .70.  In this case, note that the within-correlation is now 

-.08 and would be adjusted back to -.11 if corrected for attenuation (-.08/sqrt(.7*.7)) 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+             icc1x=0.04338,icc1y=0.12924,alphax=.7,alphay=.7) 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy       CorrW 

1 -0.1356601 0.2287517 0.3741004 -0.6967766 0.9734848 0.9273882 -0.08421891 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable       ICC1      ICC2 

1        X 0.04003354 0.7577361 

2        Y 0.12957194 0.9177936 
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For detailed examinations of measurement properties, the examples presented would need to 

be put within a Monte Carlo function and averaged across multiple iterations, but the 

sim.mlcor function provides a way to generate multilevel correlations.   

4 Mixed-Effects Models for Multilevel Data  

This section illustrates the use of mixed-effects models to analyze multilevel data using the 

nlme package (Pinhiero & Bates, 2000). Most of the examples described in this section are 

taken from Bliese (2002) and use the Bliese and Halverson (1996) data (bh1996). Model 

notation is based on Bryk and Raudenbush’s (1992) and Raudenbush and Bryk (2002). 

A complete description of mixed-effects modeling is beyond the scope of this document; 

nonetheless, a short overview is presented to help facilitate the illustration of the methods. For 

more detailed discussions see Bliese, (2002); Bliese, Maltarich and Hendricks, 2018; Bryk and 

Raudenbush, (1992); Hofmann, (1997); Hox (2002); Kreft and De Leeuw, (1998); Pinheiro and 

Bates (2000); Raudenbush and Bryk (2002) and Snidjers and Bosker (1999). 

One can think of mixed-effects models as ordinary regression models that have additional 

variance terms for handling non-independence due to group membership. The key to mixed-

effects models is to understand how nesting individuals within groups can produce additional 

sources of variance (non-independence) in data. 

The first variance term that distinguishes a mixed-effects model from a regression model is a 

term that reflects the degree to which groups differ in their mean values (intercepts) on the 

dependent variable (DV). A significant variance term (00) indicates that groups significantly 

differ in terms of the DV and further suggests that it may be useful to include group-level 

variables as predictors. Group-level variables (or level-2 variables) differ across groups but are 

consistent for members within the same groups.  For example, group average work hours are the 

same across all members of the same group and represents a level-2 variable that could 

potentially be used to predict group-level variance (00) in well-being. 

The second variance term that distinguishes a mixed-effects model from typical regression 

reflects the degree to which slopes between independent and dependent variables vary across 

groups (11). Single-level regression models generally assume that the relationship between the 

IV and DV is constant across groups. In contrast, mixed-effects models permit testing whether 

the slope varies among groups.  If slopes significantly vary, we can explain the variation by 

including a cross-level interaction using a level-2 variable such as average group work hours to 

explain why the slope between IV and DV in some groups is stronger than the slopes in other 

groups.  

A third variance term is common to both mixed-effects models and regression models. This 

variance term, 2, reflects the degree to which an individual score differs from its predicted value 

within a specific group. 2 represents the within-group variance and is predicted individual-level 

or level-1 variables. Level-1 variables differ among members of the same group.  For instance, a 

level-1 variable such as participant age would vary among members of the same group. 

In summary, in a complete mixed-effect model analysis, one examines (1) level-1 factors 

related to the within-group variance 2; (2) group-level factors related to the between-group 

variation in intercepts 00; and (3) group-level factors related to within-group slope differences, 
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11.  The next sections re-analyze portions of the Bliese and Halverson (1996) data set to 

illustrate a typical sequence of steps used in multilevel modeling.  

4.1 Steps in multilevel modeling 

4.1.1 Step 1:  Examine the ICC for the Outcome   

Because multilevel modeling involves predicting variance at different levels, it is important to 

begin by determining the levels where significant variation exists. In the case of the two-level 

model (the only models considered here) we can assume there is significant variation in the 

within-group variance, 2. We do not necessarily assume there will be significant intercept 

variation (00) or between-group slope variation (11) so modeling often begins with variance 

decomposition of intercept variance (see Bryk & Raudenbush, 1992; Hofmann, 1997). If 00 does 

not differ by more than chance levels, there may be little reason to use mixed-effects models as 

simpler OLS models will suffice (though see Bliese et al., 2018 who argue that there is virtually 

no downside to estimating mixed-effect models even when If 00 is small or non-significant 

because in these cases the mixed-effect models just return the OLS estimates). Note that if slopes 

randomly vary (11) even if intercepts (00) do not, there may still be reason to estimate mixed-

effects models (see Snijders & Bosker, 1999). 

In Step 1, we first examine the group-level properties of the outcome variable to estimate the 

ICC(1) (commonly referred to simply as the ICC in mixed-effect models). Second, we determine 

whether the variance of the intercept (00) is significantly larger than zero. 

These two aspects of the outcome variable are examined by estimating an unconditional 

means or null model. An unconditional means model does not contain any predictors but 

includes a random intercept variance term for groups. The model estimates how much variability 

there is in mean Y values (i.e., how much variability there is in the intercept) relative to the total 

variability. In the two stage HLM notation, the model is: 

 

Yij = 0j+rij        

0j = 00 + u0j        

In combined form, the model is:  Yij =00 + u0j+rij.  The null model states that the dependent 

variable is a function of a common intercept 00, and two error terms: the between-group error 

term, u0j, and the within-group error term, rij.  The model essentially states that any Y value can 

be described in terms of an overall mean plus some error associated with group membership and 

some individual error. A summary of the variance components of the null model provides two 

estimates of variance; 00 associated with u0j reflecting the variance in how much each groups’ 

intercept varies from the overall intercept (00), and 2 associated with rij reflecting how much 

each individual’s score differs from the group mean. Bryk and Raudenbush (1992) note that the 

null model is directly equivalent to a one-way random effects ANOVA – an ANOVA model 

where one predicts the dependent variable as a function of group membership. 

We estimate the unconditional means model and other mixed-effects models using the lme 

(for linear mixed effects) function in the nlme package (see Pinheiro & Bates, 2000).  There are 

two formulas that must be specified in any lme call:  a fixed effects formula and a random 

effects formula. 
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  In the unconditional means model, the fixed portion of the model is 00 (an intercept term) 

and the random component is u0j+rij.  The random portion of the model states that intercepts can 

vary among groups.  We begin the analysis by attaching the multilevel package (which also 

loads the nlme package) and making the bh1996 data set in the multilevel package 

available for analysis. 
 

> library(multilevel) 

> data(bh1996) 

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996,  

     control=list(opt="optim")) 

In the model, the fixed formula is WBEING~1 indicating that the only predictor of well-being 

is an intercept term.  The model assumes that in the absence of any predictors, the best estimate 

of any specific outcome value is the mean value on the outcome. The random formula is 

random=~1|GRP which specifies that the intercept can vary as a function of group 

membership. A random intercept model is the most basic random formula, and in many 

situations a random intercept model may be all that is required to adequately account for the 

nested nature of the grouped data. The option control=list(opt="optim") in the call to 

lme instructs the program to use R’s general purpose optimization routine. Versions of lme 

after 2.2 default to nlmimb which has several advantages including better diagnostics when 

optimization fails. In practice, however, nlmimb tends to converge less often than the general 

purpose optimizater. Furthermore, the examples in this document were estimated under 

"optim", so for consistency we will revert back to the original optimizer. In practice, users 

likely want to use the default "nlmimb" optimizer; however, if models fail to converge it may 

be useful to revert to "optim".   

Estimating ICC.  The unconditional means model provides between-group and within-group 

variance estimates in the form of 00 and 2, respectively.  The formula for the ICC is 00/(00 + 

2) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes that the ICC 

is equivalent to Bartko’s ICC(1) formula  (Bartko, 1976)  and to Shrout and Fleiss’s ICC(1,1) 

formula (Shrout & Fleiss, 1979).  The VarCorr function provides estimates of variance for an 

lme object. 
 

> VarCorr(Null.Model) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.03580079 0.1892110 

Residual    0.78949727 0.8885366 

> 0.03580079/(0.03580079+0.78949727) #Calculate ICC  

[1] 0.04337922 

The estimate of 00 (between-group or Intercept variance) is 0.036, and the estimate of 2 

(within-group or residual variancel) is 0.789.  The ICC estimate (00/(00 + 2)) is .04. 

To verify that the ICC results from the mixed-effects models are similar to those from an 

ANOVA model and the ICC1 function (see section 0) we can perform an ANOVA analysis on 

the same data. 
 

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC1(tmod) 
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[1] 0.04336905 

The ICC value from the mixed-effects model and the ICC(1) from the ANOVA model are 

similar although they will tend to differ if group sizes vary dramatically given that the ANOVA 

models assume equal group sizes.  

Determining whether 00 is significant.  Returning to our original analysis involving well-

being from the bh1996 data set, we would likely be interested in knowing whether the intercept 

variance (i.e.,00) estimate of 0.036 is significantly different from zero. In mixed-effects models, 

we perform this test by comparing –2 log likelihood values between (1) a model with a random 

intercept, and (2) a model without a random intercept. 

A model without a random intercept can be estimated using the gls function in the nlme 

package.  The –2 log likelihood values (i.e., Deviance) for an lme or gls object are obtained 

using the logLik function and multiplying the returned value by –2.  If the –2 log likelihood 

value for the model with the random intercept is significantly smaller than the model without the 

random intercept (based on a Chi-square distribution), then we conclude that the model with the 

random intercept fits the data significantly “better” than does the model without the random 

intercept. In the R, model contrasts are conducted using the anova function. 
 
> Null.gls<-gls(WBEING~1,data=bh1996,  

  control=list(opt="optim")) 

 

> logLik(Null.gls)*-2 

`log Lik.' 19536.17 (df=2) 

 

> logLik(Null.Model)*-2 

`log Lik.' 19347.34 (df=3) 

 

> 19536.17-19347.34 

[1] 188.83 

 

> anova(Null.gls, Null.Model) 

           Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Null.gls       1  2 19540.17 19553.98 -9768.084                         

Null.Model     2  3 19353.34 19374.06 -9673.669 1 vs 2 188.8303  <.0001 

 

The –2 log likelihood value for the gls model without the random intercept is 19536.17. The 

difference of 188.8 is significant on a Chi-Squared distribution with one degree of freedom (one 

model estimated a variance term associated with a random intercept, the other did not, and this 

results in the one df difference).  These results indicate significant intercept variation. 

In summary, we would conclude that there is significant intercept variation in terms of general 

well-being scores across the 99 Army companies in our sample. We also estimate that 4% of the 

variation in individuals’ well-being score is a function of the group to which he or she belongs.  

Thus, a model that allows for random variation in well-being among Army companies is a better 

fit than a model that does not allow for this random variation. 

4.1.2 Step 2:  Explain Level 1 and 2 Intercept Variance   

At this point, we have two sources of variation that we can attempt to explain in subsequent 

modeling – within-group variation (2) and between-group intercept (i.e., mean) variation (00). 
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In many cases, these may be the only two sources of variation we are interested in explaining so 

let us begin by building a model that predicts these two sources of variation. 

In our running example, we assume that individual well-being is negatively related to 

individual reports of work hours. At the same time, however, we assume that average work hours 

in an Army Company are related to the average well-being of the Company over-and-above the 

individual-level work hours and well-being relationship. Using Hofmann and Gavin’s (1998) 

terminology, we are testing an incremental model where the level-2 variable predicts unique 

variance after controlling for level-1 variables. Our model is directly equivalent to the contextual 

model that we estimated in section 3.3.1 but we now use mixed-effect models rather than OLS 

regression. 

The form of the model using Bryk and Raudenbush’s (1992) notation is: 

  

 WBEINGij = 0j + 1j(HRSij)+rij      

         0j = 00 + 01(G.HRSj) + u0j     

1j = 10       

The first line indicates that individual well-being is a function of the groups’ intercept plus a 

component that reflects the linear effect of individual reports of work hours plus some random 

error.  The second line indicates that each groups’ intercept (mean) is a function of some 

common intercept (00) plus a component that reflects the linear effect of average group work 

hours plus some random between-group error. The third line states that the slope between 

individual work hours and well-being is fixed—it is not allowed to randomly vary across groups.  

Stated another way, we assume that the relationship between work hours and well-being varies 

by no more than chance levels among groups. 

When we combine the three rows into a single equation, we get an equation that looks like a 

common regression equation with an extra error term (u0j).  This error term indicates that 

WBEING intercepts (i.e., means) can randomly differ across groups.  The combined model is: 

 WBEINGij = 00 + 10(HRSij) + 01(G.HRSj) + u0j + rij     

This model is specified in lme as: 
 

> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996, 

  control=list(opt="optim")) 

 

> summary(Model.1) 

Linear mixed-effects model fit by REML 

 Data: bh1996  

       AIC      BIC   logLik 

  19222.28 19256.81 -9606.14 

 

Random effects: 

 Formula: ~1 | GRP 

        (Intercept)  Residual 

StdDev:   0.1163900 0.8832353 

 

Fixed effects: WBEING ~ HRS + G.HRS  

                Value  Std.Error   DF   t-value p-value 

(Intercept)  4.740829 0.21368746 7282 22.185808  <.0001 

HRS         -0.046461 0.00488798 7282 -9.505056  <.0001 
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G.HRS       -0.126926 0.01940357   97 -6.541368  <.0001 

 Correlation:  

      (Intr) HRS    

HRS    0.000        

G.HRS -0.965 -0.252 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-3.35320562 -0.65024982  0.03760797  0.71319835  2.70917777  

 

Number of Observations: 7382 

Number of Groups: 99  

 

Notice that work hours are significantly negatively related to individual well-being.  

Furthermore, after controlling the individual-level relationship, average work hours (G.HRS) are 

related to the average well-being in a group. The interpretation of this model, like the 

interpretation of the contextual effect model (section 3.3.1) indicates that the slope at the group-

level significantly differs from the slope at the individual level. Indeed, in this example, each 

hour increase at the group level is associated with a -.163 (-.046+-.127) decrease in average well-

being.  The coefficient of -.127 reflects the degree of difference between the two slopes. 

Importantly, in the mixed-effect model, the t-value for G.HRS is -6.54 whereas in the OLS 

model the t-value was upwardly biased at -10.06. 

In this basic model, we can also estimate how much of the variance was explained by these 

two predictors. Because individual work hours were significantly related to well-being, we 

expect that it will have “explained” some of the within-group variance 2. Similarly, since 

average work hours were related to the group well-being intercept we expect that it will have 

“explained” some of intercept variance, 00.  Recall that in the null model, the variance estimate 

for the within-group residuals, 2, was 0.789; and the variance estimate for the intercept, 00, was 

0.036. The VarCorr function on the Model.1 object reveals that each variance component 

has changed slightly. 
 

> VarCorr(Model.1) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.01354663 0.1163900 

Residual    0.78010466 0.8832353 

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.   

That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the 

variance of the between-group intercepts decreased from 0.036 to 0.014.  We can calculate the 

percent of variance explained by using the following formula: 

 Variance Explained = 1 – (Var with Predictor/Var without Predictor) 

To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%) 

of the within-group variance in 2, and group-mean work hours explained 1 – (0.014/0.036) or 

0.611 (61%) of the between-group intercept variance 00. While the logic behind variance 

estimates appears straightforward (at least in models without random slopes), the variance 

estimates should be treated with some degree of caution because they are partially dependent 



Multilevel Models in R  45 

upon how one specifies the models. Interested readers are directed to Snijders and Bosker (1994; 

1999) for an in-depth discussion of variance estimates. 

4.1.3 Step 3:  Examine and Predict Slope Variance   

Let us continue our analysis by trying to explain the third source of variation, namely, 

variation in our slopes (11, 12, etc.).  To do this, we examine another variable from bh1996.  

This variable represents Army Company members’ ratings of leadership consideration (LEAD).  

Generally, individual soldiers’ ratings of leadership are related to well-being.  In this analysis, 

however, we will consider the possibility that the strength of the relationship between individual 

ratings of leadership consideration and well-being varies among groups. 

We begin by examining slope variation among the first 25 groups using xyplot from the 

lattice package. 
 

> library(lattice) 

> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,], 

  type=c("p","g","r"),col="dark blue",col.line="black", 

  xlab="Leadership Consideration", 

  ylab="Well-Being") 
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From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some 

slope variation.  The plot, however, does not tell us whether this variation is significant. We 

begin our analysis of slope variability by adding leadership consideration to our model and 

testing whether there is significant variation in the leadership consideration and well-being 

slopes across groups. Our base model is: 

 

WBEINGij =  0j + 1j(HRSij)+ 2j(LEADij) + rij     

                 0j = 00 + 01(G.HRSj) + u0j     

                     1j = 10 

                              2j = 20 

The last two lines include that neither the slope for HRS or LEAD is allowed to vary across 

groups. In combined form the model is: 

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +  u0j + rij.  

The model specification in lme is: 

 
> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~1|GRP, data=bh1996, 

+                control=list(opt="optim")) 

 

> round(summary(Model.2)$tTable,digit=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  2.559     0.216 7281  11.859       0 

HRS         -0.028     0.004 7281  -6.317       0 

LEAD         0.496     0.013 7281  38.786       0 

G.HRS       -0.079     0.019   97  -4.185       0 

 

> VarCorr(Model.2) 

GRP = pdLogChol(1)  

            Variance   StdDev    

(Intercept) 0.01418026 0.1190809 

Residual    0.64704412 0.8043905 

  

Across the sample, individuals’ perceptions of leadership have a strong, positive relationship 

to their well-being. To determine whether the strength of this relationship differs across groups, 

we need to estimate a model with a random slope for LEAD. This alternative model is: 

 

    WBEINGij =  0j + 1j(HRSij)+ 2j(LEADij) + rij     

                 0j = 00 + 01(G.HRSj) + u0j     

                     1j = 10 

                              2j = 20 + u2j 

The last line indicates that the slope between leadership consideration and well-being for any 

specific group is a function of a common slope 20 and a group-specific error term u2j. The 

variance term associated with u2j is 12. In this model, we have not permitted the slope between 

individual work hours and individual well-being to vary across groups. 

In combined form the model is: 
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 WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +  u0j + u2j * LEADij + rij. 

The model specification in lme and the relevant changes to the variance components are: 

 
> Model.2a<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996, 

+                control=list(opt="optim")) 

 

> VarCorr(Model.2a) 

GRP = pdLogChol(LEAD)  

            Variance   StdDev    Corr   

(Intercept) 0.14401197 0.3794891 (Intr) 

LEAD        0.01044352 0.1021935 -0.97  

Residual    0.64129330 0.8008079        

 

Changing the random component to (random=~LEAD|GRP) produces an estimate of the 

slope variance, 12, (.01) and an estimate of the correlation between the intercept and slope (-.97). 

To test whether this model provides significantly better fit, we test the –2 log likelihood ratios 

between a model with and a model without a random slope for leadership consideration and 

well-being. 
 

> anova(Model.2,Model.2a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Model.2      1  6 17862.68 17904.12 -8925.341                         

Model.2a     2  8 17838.58 17893.83 -8911.290 1 vs 2 28.10254  <.0001 

 

This comparison test is known to be conservative and we could halve the p-value (LaHuis & 

Ferguson, 2009), but even so the difference of 28.10 is significant on two degrees of freedom. 

The -2 log likelihood results indicate the model with the random effect for the leadership 

consideration and well-being slope provides a significantly better fit than the model without this 

random effect implying that the strength of the slope differs across groups. 

Another way to consider the differences between the two models is to examine the empirical 

Bayes’ estimates for each group. The values for the first five groups with the random intercept 

model are: 

 
> coef(Model.2)[1:5,] 

  (Intercept)         HRS      LEAD       G.HRS 

1    2.534036 -0.02827849 0.4956385 -0.07900961 

2    2.694639 -0.02827849 0.4956385 -0.07900961 

3    2.458733 -0.02827849 0.4956385 -0.07900961 

4    2.764899 -0.02827849 0.4956385 -0.07900961 

5    2.616261 -0.02827849 0.4956385 -0.07900961 

 

In this specification, group 4 has the highest level of well-being, and group 3 has the lowest, but 

these intercept (mean) differences are the only model parameters varying across groups. The 

slopes match the values from the summary of the t-table presented previously. In contrast, the 

empirical Bayes’ estimates for model with the random slope are: 
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> coef(Model.2a)[1:5,] 

  (Intercept)         HRS      LEAD       G.HRS 

1    2.195403 -0.02847764 0.5715939 -0.07050472 

2    2.839074 -0.02847764 0.4071772 -0.07050472 

3    2.398461 -0.02847764 0.4910177 -0.07050472 

4    2.846874 -0.02847764 0.4247142 -0.07050472 

5    2.608235 -0.02847764 0.4679652 -0.07050472 

 

In this specification, the slope indicated the strength of the relationship between individuals’ 

perceptions of leadership consideration and their well-being also varies by group. In group 1, the 

relationship between the two variables is stronger (.57) than in group 2 (.41). 

Given significant variation in the leadership and well-being slope, we can attempt to see what 

group-level properties are related to this variation. We propose that when groups are under a lot 

of strain from work requirements, the relationship between leadership consideration and well-

being will be relatively strong. In contrast, when groups are under little strain, we expect a 

relatively weak relationship between leadership consideration and well-being. Our proposition 

represents a contextual effect in an occupational stress model (see Bliese & Jex, 2002). 

Our proposition represents a cross-level interaction where the slope between individuals’ 

perceptions of leadership consideration and their ratings of well-being varies as a function of the 

level-2 variable of group work demands.  In mixed-effects models, we test this hypothesis by 

examining whether a level-2 variable explains a significant amount of the level-1 slope variation 

among groups. In our example, we test whether average work hours in the group “explains” 

group-by-group variation in the relationship between individual perceptions of leadership 

consideration and individual reports of well-being. In Bryk and Raudenbush’s (1992) notation, 

the model that we are testing is: 

 

  WBEINGij = 0j + 1j(HRSij)+ 2j(LEADij) + rij      

           0j = 00 + 01(G.HRSj) + u0j     

                 1j = 10 

           2j = 20 +21(G.HRSj) + u2j     

In combined form the model is: 

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) + 21(LEADij * G.HRSj)  + u0j + 

u2j *LEADij + rij. 

In lme, we specify the cross-level interaction by adding an interaction term between leadership 

(LEAD) and average group work hours (G.HRS).  Specifically, the model is: 
 

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

 

> round(summary(Final.Model)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  3.654     0.726 7280   5.032   0.000 

HRS         -0.029     0.004 7280  -6.391   0.000 

LEAD         0.126     0.217 7280   0.578   0.564 

G.HRS       -0.175     0.064   97  -2.751   0.007 
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LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

 

The tTable results from the final model indicate there is a significant cross-level interaction 

(the last row using a liberal p-value of less than .10).  This result indicates that average work 

hours “explained” a significant portion of the variation in 12 – the vertical cohesion and well-

being slope. 

4.1.4 Step 3 using the lme4 Package and Interaction Plot 

To plot the form of the interaction and make use of the graphics capabilities of ggplot2, we 

can use the lme4 package and rerun the model using lmer. The code also uses the lmerTest 

package for p-values and degrees of freedom and changes the optimizer because the default 

failed to converge. 

 
> library(lme4) 

> library(lmerTest) 

 

> Model.2b<-lmer(WBEING~HRS+LEAD*G.HRS+(LEAD|GRP), data=bh1996, 

+                control=lmerControl(optimizer = "Nelder_Mead")) 

 

> summary(Model.2b)$coef 

               Estimate  Std. Error         df   t value     Pr(>|t|) 

(Intercept)  3.64325839 0.732553188   87.67621  4.973370 3.243398e-06 

HRS         -0.02855876 0.004468026 7287.99657 -6.391807 1.740410e-10 

LEAD         0.12894421 0.218811339   89.83115  0.589294 5.571432e-01 

G.HRS       -0.17401949 0.064152902   87.45942 -2.712574 8.038535e-03 

LEAD:G.HRS   0.03216543 0.019187381   89.79663  1.676384 9.714129e-02 

 

With a lmer model, we can use the interactions library and the following code to plot values 

for group averages of 7 hours versus 12 hours of work.  

 
library(interactions) 

library(ggplot2) 

win.graph(height=4.75,width=6) #quartz() for MAC 

 

interact_plot(Model.2b,pred=LEAD,modx=G.HRS, 

              modx.values = c(7,12), 

              x.label = "Leadership Consideration", 

              y.label = "Well-Being", 

              legend.main="Group Work Hours")+ 

  theme_bw()+ 

  theme(legend.background=element_rect(fill="white", 

                   size=0.5, linetype="solid",color ="black"), 

        legend.position = c(0.5, 0.2), 

        axis.title.x = element_text(color="black", size=14), 

        axis.title.y = element_text(color="black", size=14), 

        legend.title = element_text(color="black", size=14), 

        legend.text = element_text(color="black", size=14) 

  ) 

 

ggsave(filename = "c:\\temp\\plotgg.jpg", 
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       device = "jpeg") 

 

 

Soldiers’ perceptions of leadership consideration are positively related to their well-being 

regardless of the group average work hours. The relationship between individuals’ ratings of 

leadership consideration and their well-being is stronger (steeper slope) in groups with high work 

hours than in groups with low work hours. Another way to think about the interaction is to note 

that well-being really drops (in relative terms) when a soldier perceives that leadership is low in 

consideration and one is a member of a group with high average work hours. This pattern 

supports our proposition that considerate leadership is relatively more important in a high work 

demand context. 

4.2 Plotting with interaction.plot 

The previous example used the lme4, interactions, and ggplot2 library to make a publication 

quality plot. A quick alternative is to use the interaction.plot function illustrated below. 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

  random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

 

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 

                     LEAD=c(2.12,2.12,3.66,3.66), 

                     G.HRS=c(7, 12, 7, 12), 

                     GRP=c(1,1,1,1)) 

 

> TDAT$WBEING<-predict(Final.Model,TDAT,level=1) 

> with(TDAT,interaction.plot(LEAD,G.HRS,WBEING)) 
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4.3 Some Notes on Centering 

In multilevel modeling, centering issues is a major consideration. In our examples, we have 

used raw variables as predictors.  In some cases, though, there may be good reasons to consider 

centering the level-1 variables with one of two centering options. 

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.  

Grand-mean centering is often worth considering because doing so helps reduce multicollinearity 

among predictors and random effect terms.  In cases where interactive terms are included, grand-

mean centering can be particularly helpful in reducing correlations between main-effect and 

interactive terms. Hofmann and Gavin (1998) and others have shown that grand-mean centered 

and raw variable models produce identical results for the predictors; however, grand-mean 

centered models may converge in situations where a model based on raw variables will not.  

Grand-mean centering can be accomplished in one of two ways. The explicit way is to 

subtract the overall mean from the raw variable. The less obvious way is to use the scale 

function. The scale function is used to standardize (mean=0, sd=1) variables, but can also be 

used to grand-mean center if the scale=FALSE option is selected.  Below I create grand-mean 

centered variables for leadership both ways. 
 

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD) 

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=FALSE) 

Group-mean centering (demeaning) is another centering option with level-1 variables. In 

group-mean centering, each individual score is subtracted from the group mean. Review section 

3.1 and the aggregate and merge functions for assigning a group-mean variable back to each 

individual. Once a group mean is assigned back to the individual, simply subtract the group 

mean from the raw score. A group-mean centered variable reflects how much an individual 

differs from their group average. Group-mean centering represents a different parameterization 

of the model than does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 

2002; Snijders & Bosker, 1999).  
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4.3.1.1 Centering and Cross-Level Interactions  

There is value in using group-mean centering when testing a cross-level interaction. Bryk and 

Raudenbush (1992) and Hofmann and Gavin (1998) point out that group-mean centering 

provides the “purest” estimate of the within-group slope in these situations. That is, slope 

estimates based on raw variables and grand-mean centered variables can be partially influenced 

by between-group factors.  In contrast, group-mean centered variables have had between-group 

effects removed. Bryk and Raudenbush (1992) show that group-level interactions can sometimes 

pose as cross-level interactions, so a logical strategy is to use raw or grand-mean centered 

variables to test for cross-level interactions but verify the final results with group-mean centered 

variables. 

The bh1996 dataframe has group-mean centered variables for all the predictors beginning 

with a "W" for "within". For comparisons, the first model uses a raw leadership variable and the 

second model below uses the group-mean centered leadership variable in both the fixed part of 

the model and in the random statement. 
 

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

+                  random=~LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> round(summary(Final.Model)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  3.654     0.726 7280   5.032   0.000 

HRS         -0.029     0.004 7280  -6.391   0.000 

LEAD         0.126     0.217 7280   0.578   0.564 

G.HRS       -0.175     0.064   97  -2.751   0.007 

LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

 

> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS, 

+             random=~W.LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> round(summary(Final.Model.R)$tTable,dig=3) 

              Value Std.Error   DF t-value p-value 

(Intercept)   4.733     0.214 7280  22.080   0.000 

HRS          -0.028     0.004 7280  -6.271   0.000 

W.LEAD        0.055     0.223 7280   0.249   0.804 

G.HRS        -0.145     0.019   97  -7.471   0.000 

W.LEAD:G.HRS  0.040     0.020 7280   2.037   0.042 

 

Notice that the cross-level interaction is now significant with a t-value of 2.037 versus 1.703 

in the model with raw variable. Thus, there are some minor differences between the two model 

specifications, but it would appear there is a significant cross-level interaction (p<.05) in the pure 

specification. For an interesting example of trying to determine whether cohesion buffering 

effects are cross-level or group-mean interactions see Campbell-Sills et al., (2022). 

4.3.1.2 Centering and Contextual Models 

Centering choice also has important implications for interpreting contextual models. When 

contextual models are based on raw level-1 variables, the level-2 coefficient represents the 

difference between the two slopes. In contrast, when the level-1 variable is group-mean centered, 

the level-2 coefficient captures the total effect (the level-1 slope plus any difference) and tests 

whether this total effect is different from zero. Below are the two models. 
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> tmod.raw<-lme(WBEING~HRS+G.HRS,random=~1|GRP,bh1996) 

> round(summary(tmod.raw)$tTable, dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  4.741     0.214 7282  22.187       0 

HRS         -0.046     0.005 7282  -9.505       0 

G.HRS       -0.127     0.019   97  -6.542       0 

>  

> tmod.cent<-lme(WBEING~W.HRS+G.HRS,random=~1|GRP,bh1996) 

> round(summary(tmod.cent)$tTable, dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  4.741     0.214 7282  22.187       0 

W.HRS       -0.046     0.005 7282  -9.505       0 

G.HRS       -0.173     0.019   97  -9.234       0 

 

The first model indicates that the G.HRS slope is -0.127 stronger than the within slope of -

0.046. The model represents a relative test. The second model tests whether the total between-

group slope of -0.173 differs from zero. It is relatively common for researchers to make errors 

when interpreting these two variants of the model (see Bliese et al., 2018). 

4.4 Estimating Group-Mean Reliability (ICC2) with gmeanrel  

In mixed-effects models, it is possible to obtain an estimate of the group-mean reliability 

analogous to the ICC(2) (see section 3.2.7). Group mean reliability estimates are a function of 

the ICC and group size (see Bliese, 2000; Bryk & Raudenbush, 1992), and the gmeanrel 

function from the multilevel package calculates the ICC, the group size, and the group mean 

reliability for each group. 

The code below illustrates the gmeanrel function on the bhr2000 data set to show how 

the results compare to results in section 3.2.7 where the ICC(1) estimate from the ANOVA 

model was 0.174 and the ICC(2) estimate was 0.920. 

 
> Null.Model<-lme(HRS~1,random=~1|GRP,data=bhr2000, 

  control=list(opt="optim")) 

 

> GREL.DAT<-gmeanrel(Null.Model) 

> names(GREL.DAT) 

[1] "ICC"     "Group"   "GrpSize" "MeanRel" 

 

> GREL.DAT$ICC  #ICC estimate 

[1] 0.177544 

 

> GREL.DAT$MeanRel[1:20] #First 20 Reliability Estimates 

 [1] 0.9272005 0.9066657 0.9471382 0.8487743 0.9465280 

 [6] 0.7754791 0.7953197 0.8192754 0.8699945 0.8831157 

[11] 0.8119385 0.8622636 0.9379303 0.9452644 0.9260382 

[16] 0.8487743 0.9395503 0.9315061 0.8622636 0.9235985 

 

> mean(GREL.DAT$MeanRel)  

[1] 0.8955047 

 

The ICC estimate is 0.178 (the same as the value produced by mult.icc in section 3.2.8) 

and slightly higher than the ANOVA based estimate of 0.174. The average group-mean 
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reliability from gmeanrel is 0.896 which is smaller (but close) to the value of 0.920 from the 

ANOVA model. The output also illustrates that each group receives a separate estimate of group-

mean reliability. Values vary as a function of group size. 

5 Growth Modeling Repeated Measures Data 

Growth models are an important variation of multilevel models (see section 4). In growth 

models repeated observations from an individual represent the level-1 variables, and the 

attributes of the individual represent the level-2 variables. The fact that the level-1 variables are 

repeated over time poses some additional analytic issues; however, the steps used to analyze the 

basic growth model and the steps used to analyze a multilevel model share many key similarities. 

This chapter begins by briefly reviewing some of the methodological challenges associated 

with growth modeling. Following this, the chapter illustrates how data must be configured to 

conduct growth modeling. Finally, the chapter illustrates a complete growth modeling analysis 

using the nlme package. Much of this material is adapted from Bliese and Ployhart (2002). 

5.1 Methodological challenges 

Since longitudinal data is collected from single entities over multiple times, it is likely that 

there will be a high degree of non-independence in the responses. Multiple responses from an 

individual will tend to be related by virtue of being provided by the same person, and this non-

independence violates the statistical assumption of independence underlying many common data 

analytic techniques (Kenny & Judd, 1986).  

Issues about non-independence are similar to those that occur when working with lower-level 

data nested in higher-level groups. In longitudinal designs, however, there are additional 

complications associated with the lower-level responses. First, it is likely that responses 

temporally close to each other (e.g., responses 1 and 2) will be more strongly related than 

responses temporally far apart (e.g., responses 1 and 4). This pattern is defined as a simplex 

pattern or lag 1 autocorrelation in the residuals. Second, it is likely that responses will tend to 

become either more variable over time or less variable over time. For instance, individuals 

starting jobs may initially have a low degree of variability in performance, but over time the 

variance in job performance may increase.  In statistical terms, outcome variables in longitudinal 

data are likely to display heteroscedasticity. To obtain correct standard errors and to draw the 

correct statistical inferences, autocorrelation, and heteroscedasticity both need to be incorporated 

into the statistical model. 

The need to test for both autocorrelation and heteroscedasticity in growth models arises 

because the level-1 variables (repeated measures from an individual) are ordered by time.  One 

of the main differences between growth models and multilevel models revolves around 

understanding how to properly account for time in both the statistical models and in the data 

structures. 

In R, growth modeling can be estimated using the lme function from the nlme package 

(Pinhiero & Bates, 2000). The lme function is the same function used in multilevel modeling 

(see section 4); however, the nlme package has a variety of options available for handling 

autocorrelation and heteroscedasticity in growth models. 
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Before conducting growth modeling, the data has to be set up in a way that explicitly includes 

time as a variable. This data transformation is referred to as changing a data set from multivariate 

to stacked, long, or univariate form. In the next section, we show how to create a dataframe for 

growth modeling. 

5.2 Data Structure and the make.univ Function 

Often data are stored in a format where each row represents observations from one individual.  

For instance, an individual might provide three measures of job satisfaction in a longitudinal 

study, and the data might be arranged in multivariate form such that column 1 is the subject 

number; column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 

4 is job satisfaction at time 3, etc. 

The univbct dataframe in the multilevel library allows us to illustrate a common way of 

storing repeated measures data. This data set contains three measures taken six-months apart on 

three variables – job satisfaction, commitment, and readiness.  It also contains some stable 

individual characteristics such as respondent gender, marital status and age at the initial data 

collection time.  These latter variables are treated as level-2 predictors in subsequent modeling. 

The univbct dataframe is already in univariate form; however, for the purposes of 

illustration, we will select a subset of the entire univbct dataframe and transform it back into 

multivariate form. With this subset we will illustrate how to convert a typical multivariate 

dataframe back into the univariate form necessary for growth modeling. 

 
> library(multilevel) 

> data(univbct) 

> names(univbct) 

 [1] "BTN"     "COMPANY" "MARITAL" "GENDER"  "HOWLONG" "RANK"    "EDUCATE" 

 [8] "AGE"     "JOBSAT1" "COMMIT1" "READY1"  "JOBSAT2" "COMMIT2" "READY2"  

[15] "JOBSAT3" "COMMIT3" "READY3"  "TIME"    "JSAT"    "COMMIT"  "READY"   

[22] "SUBNUM"  

> nrow(univbct) 

[1] 1485 

> length(unique(univbct$SUBNUM)) 

[1] 495 

These commands indicate there are 1485 rows in the data set representing 495 individuals so 

each individual provides three rows of data.  To create a multivariate data set out of the 

univbct dataframe, we can select the first row for each participant in the univbct dataframe.  

In this illustration we restrict our analyses to the three job satisfaction scores and to respondent 

age at the initial data collection period. 
 

> GROWDAT<-univbct[!duplicated(univbct$SUBNUM),c(22,8,9,12,15)]   

> GROWDAT[1:3,] 

  SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 

1      1  20 1.666667       1       3 

4      2  24 3.666667       4       4 

7      3  24 4.000000       4       4 
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The dataframe GROWDAT now contains data from 495 individuals. The first individual was 20 

years old at the first data collection time.  At time 1, the first individual’s job satisfaction score 

was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0. 

Because the univbct dataframe in the multilevel package was already in univariate form, 

we illustrated the additional steps of converting it back to multivariate form. From a practical 

standpoint, though, the important issue is that the GROWDAT dataframe now represents a typical 

multivariate data set containing repeated measures. Specifically, the GROWDAT dataframe 

contains one row of information for each subject, and the repeated measures (job satisfaction) are 

represented by three different variables. 

From a growth modeling perspective, the key problem with multivariate dataframes like 

GROWDAT is that they do not contain a variable that indexes time. That is, we know time is an 

attribute of this data because we have three different measures of job satisfaction; however, 

analytically we have no way of explicitly modeling time in the multivariate form of the data.  

Therefore, it is critical to create a new variable that explicitly indexes time which requires 

transforming the data to univariate or a stacked format. 

The make.univ function from the multilevel package provides a simple way to perform this 

transformation.  Two arguments are required (x and dvs), and two are optional (tname and 

outname).  The first required argument is the dataframe in multivariate or wide format.  The 

second required argument is a subset of the entire dataframe identifying the columns containing 

the repeated measures.  The second required argument must be time-sorted -- column 1 must be 

time 1, column 2 must be time 2, and so on.  The two optional arguments control the names of 

the two created variables:  tname defaults to "TIME" and outname defaults to "MULTDV". 

  For instance, to convert GROWDAT into univariate form we issue the following command: 
 

> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5]) 

> UNIV.GROW[1:9,] 

    SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 TIME   MULTDV 

1        1  20 1.666667       1       3    0 1.666667 

1.1      1  20 1.666667       1       3    1 1.000000 

1.2      1  20 1.666667       1       3    2 3.000000 

4        2  24 3.666667       4       4    0 3.666667 

4.1      2  24 3.666667       4       4    1 4.000000 

4.2      2  24 3.666667       4       4    2 4.000000 

7        3  24 4.000000       4       4    0 4.000000 

7.1      3  24 4.000000       4       4    1 4.000000 

7.2      3  24 4.000000       4       4    2 4.000000 

   

Note that each individual now has three rows of data indexed by the variable “TIME”.   Time 

ranges from 0 to 2.  To facilitate model interpretation, the first time is coded as 0 instead of as 1.  

Doing so allows one to interpret the intercept in subsequent models as the level of job 

satisfaction at the initial data collection time. Second, notice that the make.univ function has 

created a variable called “MULTDV”.  This variable represents the multivariate dependent 

variable.  The variable “TIME” and the variable “MULTDV” are two of the primary variables 

used in growth modeling.  Finally, notice that AGE, SUBNUM and the values for the three job 

satisfaction variables were repeated three times for each individual.  By repeating the individual 

variables, the make.univ function has essentially created a dataframe with level-2 variables in 
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the proper format.  For instance, subject age can now be used as a level-2 predictor in subsequent 

modeling. 

In many cases, one may have only one dependent variable that needs to be converted into 

univariate or stacked format and therefore the make.univ function will suffice. If, however, it 

is necessary to create a univariate dataframe with multiple variables indexed by time, the 

mult.make.univ function in the multilevel package is available as is the reshape 

function in the base R program (see help files).  

5.3 Growth Modeling Illustration 

With the data in univariate form, we can begin to visually examine whether we see patterns 

between time and the outcome.  For instance, the commands below use the lattice package to 

produce a plot of the first 30 individuals: 

 
>library(lattice) 

>xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,], 

 type=c("p","r","g"),col="blue",col.line="black", 

 xlab="Time",ylab="Job Satisfaction") 

 

From this plot, it appears as though there is considerable variability both in overall levels of 

job satisfaction and in how job satisfaction changes over time. The goal in growth modeling is to 

determine whether we can find consistent patterns in the relationship between time and job 
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satisfaction. Therefore, we are now ready to illustrate growth modeling in a step-by-step 

approach.  In this illustration, we follow the model comparison approach outlined by Bliese and 

Ployhart (2002) and in also discussed in Ployhart, Holtz and Bliese (2002). 

As an overview of the steps, the basic procedure is to start by examining the nature of the 

outcome. Much as we did in multilevel modeling, we are interested in estimating the ICC and 

determining whether the outcome (job satisfaction) randomly varies among individuals.  Second, 

we are interested in examining the form of the relationship between time and the outcome.  

Basically, we want to know whether the outcome generally increases, decreases, or shows some 

other type of relationship with time.  The plot of the first 30 individuals shows no clear pattern in 

how job satisfaction is changing over time, but the analysis might identify an overall trend 

among the 495 respondents.  Third, we attempt to determine whether the relationship between 

time and the outcome is constant among individuals or whether it varies on an individual-by-

individual basis.  Fourth, we model in more complicated error structures such as autocorrelation, 

and finally we add level-2 predictors of intercept and slope variances. 

5.3.1 Step 1:  Examine the DV 

  The first step in growth modeling is to examine the properties of the dependent variable by 

estimating a null model and calculating the ICC. 

 
> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit, control=list(opt="optim")) 

 

> VarCorr(null.model) 

SUBNUM = pdLogChol(1)  

            Variance  StdDev    

(Intercept) 0.4337729 0.6586144 

Residual    0.4319055 0.6571952 

 

> 0.4337729/(0.4337729+0.4319055) 

[1] 0.5010786 

In our example, the ICC associated with job satisfaction is .50 indicating that 50% of the 

variance in any individual report of job satisfaction can be explained by the properties of the 

individual who provided the rating. Another way to think about this is that individuals tend to 

remain consistent in ratings over time (a person who has high job satisfaction at one time will 

then to have high job satisfaction at other times). At the same time, an ICC of .50 is low enough 

to allow for within-person change over time. In practice, ICC values between .30 and .70 tend to 

be good when modeling change over time. 

5.3.2 Step 2:  Model Time    

Step two involves modeling the fixed relationship between time and the dependent variable. 

In almost all cases, it is logical to begin by modeling a linear relationship and progressively add 

more complicated relationships such as quadratic, cubic, etc.  To test whether there is a linear 

relationship between time and job satisfaction, we regress job satisfaction on time in a model 

with a random intercept. 
 

> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit,control=list(opt="optim")) 

> summary(model.2)$tTable 
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                 Value  Std.Error  DF   t-value    p-value 

(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000 

TIME        0.05176461 0.02168024 903  2.387640 0.01716169  

Results indicate a significant linear relationship between time and job satisfaction such that 

job satisfaction increases by .05 each time period. Because the first time period was coded as 0, 

the intercept value of 3.22 represents the average level of job satisfaction at the first time period.  

More complicated time functions can be included in one of two ways – either through raising 

the time variable to various powers, or by converting time into power polynomials. Both 

techniques are illustrated. 

 
> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

 

> summary(model.2b)$tTable 

                  Value  Std.Error  DF    t-value   p-value 

(Intercept)  3.23308157 0.04262697 902 75.8459120 0.0000000 

TIME        -0.03373846 0.07816572 902 -0.4316273 0.6661154 

I(TIME^2)    0.04276425 0.03756137 902  1.1385167 0.2552071 

 

> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

> summary(model.2c)$tTable 

                   Value Std.Error  DF   t-value    p-value 

(Intercept)    3.2704416 0.0346156 902 94.478836 0.00000000 

poly(TIME, 2)1 1.5778835 0.6613714 902  2.385775 0.01724863 

poly(TIME, 2)2 0.7530736 0.6614515 902  1.138517 0.25520707 

  

Neither model finds evidence of a significant quadratic trend. Note that a key advantage of the 

power polynomials is that the linear and quadratic effects are orthogonal. Consequently, in the 

second model the linear effect of time is still significant even with the quadratic effect in the 

model so only one model needs to be estimated to identify both the linear and quadratic effects. 

When squaring time, it is important to run the linear model before running the model with both 

the linear and quadratic effect to ensure that the linear effect is identified. 

5.3.3 Step 3:  Model Slope Variability 

A potential limitation with model 2 is that it assumes that the relationship between time and 

job satisfaction is constant for all individuals. Specifically, it assumes that each individual 

increases job satisfaction by .05 points at each time. An alternative model is one that allows 

slopes to vary. Given the degree of variability in the graph of the first 30 respondents, a random 

slope model seems like a plausible alternative. The random slope model is tested by adding the 

linear effect for time as a random effect. In the running example, we can update model.2 by 

adding a different random effect component and contrast model 2 and model 3. 
 

> model.3<-update(model.2,random=~TIME|SUBNUM) 

> anova(model.2,model.3) 

        Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.2     1  4 3461.234 3482.194 -1726.617                         

model.3     2  6 3434.132 3465.571 -1711.066 1 vs 2 31.10262  <.0001 
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The results show that a model that allows the slope between time and job satisfaction to vary 

across individuals fits the data better than a model that fixes the slope to be a constant value. In 

cases where higher-level trends were also significant, one would also be interested in 

determining whether allowing the slopes of the higher-level variables to randomly vary also 

improved model fit. For instance, one might find that a quadratic relationship varied in strength 

among individuals. 

5.3.4 Step 4:  Modeling Error Structures 

The fourth step in developing the level-1 model involves assessing the error structure of the 

model. It is important to scrutinize the level-1 error structure because significance tests may be 

affected if error structures are not properly specified. The goal of step 4 is to determine whether 

one’s model fit improves by incorporating (a) an autoregressive structure with serial correlations 

and (b) heterogeneity in the error structures. 

Tests for autoregressive structure (autocorrelation) are conducted by including the 

correlation option in lme.  For instance, we can update model.3 and include lag 1 

autocorrelation as follows: 
 

> model.4a<-update(model.3,correlation=corAR1()) 

> anova(model.3,model.4a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.3      1  6 3434.132 3465.571 -1711.066                         

model.4a     2  7 3429.771 3466.451 -1707.886 1 vs 2 6.360465  0.0117 

A model that allows for autocorrelation fits the data better than does a model that assumes no 

autocorrelation.  A summary of model 4a reveals that the autocorrelation estimate is .367 (see the 

Phi coefficient). 
 

> summary(model.4a) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW  

       AIC      BIC    logLik 

  3429.771 3466.451 -1707.886 

..... 

Correlation Structure: AR(1) 

 Formula: ~1 | SUBNUM  

 Parameter estimate(s): 

      Phi  

0.3676831  

It is important to note that the use of correlation=corAR1() in the default mode 

assumes data is structured such that time increases for each individual. Stacked data created 

using make.univ has this structure.  If data are imported or otherwise manipulated so that this 

order is not maintained, it will be necessary either to re-order the dataframe or to specify the 

structure to corAR1() with more detail (see help files).  For example, if the rows in 

GROW.UNIV are randomly ordered, the estimate for AR 1 changes: 
 

> UNIV.GROW2<-UNIV.GROW[order(rnorm(1485)),] 

> UNIV.GROW2[1:10,] 

       SUBNUM AGE  JOBSAT1  JOBSAT2  JOBSAT3 TIME   MULTDV 

6           2  24 3.666667 4.000000 4.000000    0 3.666667 

285.2      93  20 2.333333 3.000000 3.000000    2 3.000000 
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339.2     109  33 3.666667 3.000000 3.333333    2 3.333333 

228        74  23 5.000000       NA 5.000000    0 5.000000 

894       294  37 4.000000 4.000000 4.000000    0 4.000000 

1029.1    339  20 3.000000 3.333333 3.000000    1 3.333333 

1416      468  20 3.333333 3.333333 3.666667    0 3.333333 

696.2     228  19 4.000000 2.666667 3.333333    2 3.333333 

735.1     241  25 3.666667 3.000000 3.000000    1 3.000000 

51         17  20 3.666667 3.000000 3.000000    0 3.666667 

 

> tmod<-lme(MULTDV~TIME,random=~1|TIME,na.action=na.omit, 

data=UNIV.GROW2,corAR1()) 

 

> summary(tmod) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW2  

       AIC      BIC    logLik 

  3766.914 3793.113 -1878.457 

... 

Correlation Structure: AR(1) 

 Formula: ~1 | TIME  

 Parameter estimate(s): 

       Phi  

0.05763463  

In the truncated results, notice how the estimate of the phi-coefficient changed (replications 

will result in different estimates of the phi-coefficient because of different structures associated 

with the random sorting of the data).  To ensure the data is in the proper structure the order 

function can be used on any dataframe to restructure by higher-level entity and time: 
 

> UNIV.GROW3<-UNIV.GROW2[order(UNIV.GROW2$SUBNUM,UNIV.GROW2$TIME),] 

> UNIV.GROW3[1:10,] 

    SUBNUM AGE  JOBSAT1  JOBSAT2 JOBSAT3 TIME   MULTDV 

3        1  20 1.666667 1.000000       3    0 1.666667 

3.1      1  20 1.666667 1.000000       3    1 1.000000 

3.2      1  20 1.666667 1.000000       3    2 3.000000 

6        2  24 3.666667 4.000000       4    0 3.666667 

6.1      2  24 3.666667 4.000000       4    1 4.000000 

6.2      2  24 3.666667 4.000000       4    2 4.000000 

9        3  24 4.000000 4.000000       4    0 4.000000 

9.1      3  24 4.000000 4.000000       4    1 4.000000 

9.2      3  24 4.000000 4.000000       4    2 4.000000 

12       4  23 3.333333 3.666667       3    0 3.333333 

 

Finally, we can examine the degree to which the variance of the responses changes over time 

using the varExp option (see Pinheiro & Bates, 2000 for details). 

 
> model.4b<-update(model.4a,weights=varExp(form=~TIME)) 

> anova(model.4a,model.4b) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.4a     1  7 3429.771 3466.451 -1707.886                         

model.4b     2  8 3428.390 3470.309 -1706.195 1 vs 2 3.381686  0.0659 

The model that includes both autocorrelation and allows for decreases in variance fits the data 

marginally better (using a liberal p-value) than does the model that only includes autocorrelation.  
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In subsequent analyses, however, model.4b ran into convergence problems.  Consequently, we 

elect to use model.4a as our final level-1 model. 

With the completion of step 4, we have exhaustively examined the form of the level-1 

relationship between time and job satisfaction.  This analysis has revealed that (a) individuals 

vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not quadratic, 

relationship between time and job satisfaction, (c) the strength of the linear relationships varies 

among individuals, and (d) there is significant autocorrelation in the data.  At this point, we are 

ready to add level-2 variables to try and explain the random variation in intercepts (i.e., mean job 

satisfaction) and in the time-job satisfaction slope. 

5.3.5 Step 5:  Predicting Intercept Variation 

Step 5 in growth modeling is to examine factors that can potentially explain intercept 

variation. In our case, we are interested in examining factors that explain why some individuals 

have high job satisfaction while other individuals have low job satisfaction.  In this example, we 

explore the idea that age at the first data collection time is related to intercept variation. 

To model this relationship, the individual-level characteristic, age, is used as a predictor of the 

job satisfaction intercept. The model that we will test is represented below using the Bryk and 

Raudenbush (1992) notation.  

      Yij = 0j + 1j(Timeij) + rij       

       0j = 00 + 01(Agej) + u0j      

1j = 10 + u1j 

 

This equation states that respondent j’s mean level of job satisfaction (0j) can be modeled as a 

function of two things.  One is the mean level of job satisfaction (00) for all respondents.  The 

second is a coefficient associated with the individual’s age (01).  Note that the error term for the 

intercept (u0j) now represents the difference between an individuals’ mean job satisfaction and 

the overall job satisfaction after accounting for age. In lme the model is specified as: 

 
> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

 

> round(summary(model.5)$tTable,dig=3) 

            Value Std.Error  DF t-value p-value 

(Intercept) 2.347     0.146 897  16.086   0.000 

TIME        0.053     0.024 897   2.205   0.028 

AGE         0.034     0.005 486   6.241   0.000 

Model 5 differs only from Model 4a in that Model 5 includes AGE (age at the baseline 

survey). Notice that AGE is positively related to levels of job satisfaction. Also notice that there 

are fewer degrees of freedom for AGE than for TIME since AGE is an individual (level-2) 

attribute. The AGE parameter indicates that a 23-year-old in the baseline survey would have 

average job satisfaction scores across the three times that were 0.034 higher than a 22-year-old in 

the baseline survey.  
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5.3.6 Step 6:  Predicting Slope Variation 

The final aspect of growth modeling involves attempting to determine attributes of individual 

respondents that are related to slope variability. In this section, we attempt to determine whether 

respondent age can explain some of the variation in the time-job satisfaction slope. The model 

that we test is presented below: 

Yij = 0j + 1j(Timeij) + rij      

            0j = 00 + 01(Agej) + u0j       

            1j = 10 + 11(Agej) +  u1j      

 

This model is similar to the model specified in step 5 except that we now test the assumption 

that the slope between time and job satisfaction for an individual (1j) is a function of an overall 

slope (10), individual age (11), and an error term (u1j).  In lme, the model is specified as: 
 

> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

Note that the only difference between model 5 and model 6 is that we include an interaction 

term for TIME and AGE. A summary of model 6 reveals a significant interaction. 

 
> round(summary(model.6)$tTable,dig=3) 

             Value Std.Error  DF t-value p-value 

(Intercept)  2.098     0.186 896  11.264   0.000 

TIME         0.271     0.104 896   2.608   0.009 

AGE          0.043     0.007 486   6.180   0.000 

TIME:AGE    -0.008     0.004 896  -2.153   0.032 

 

5.3.7 Plot Growth Model Using the lme4 Package and Interactions Library 

To plot we first re-estimate the model in the lme4 package. The lmer function does not have 

the option to control for autocorrelation, but we can see that omitting this option does not change 

our substantive interpretation. 

 
> library(lme4) 

> library(lmerTest) 

 

> model.6a<-lmer(MULTDV~TIME*AGE+(TIME|SUBNUM),data=UNIV.GROW) 

> round(summary(model.6a)$coef,dig=3) 

            Estimate Std. Error      df t value Pr(>|t|) 

(Intercept)    2.078      0.186 470.301  11.176    0.000 

TIME           0.273      0.104 462.965   2.630    0.009 

AGE            0.044      0.007 469.523   6.276    0.000 

TIME:AGE      -0.008      0.004 461.280  -2.169    0.031 

 

The code below uses the lmer model to produce a plot using the defaults of the mean and 

one standard deviation above and below the mean AGE (a 32, 26 and 20 year old). 
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library(interactions) 

library(ggplot2) 

win.graph(height=4.75,width=6) 

interact_plot(model.6a,pred=TIME,modx=AGE, 

              modx.labels = c("20 Years Old","26 Years Old", 

                              "32 Years Old"), 

              x.label = "Time", 

              y.label = "Job Satisfaction", 

              legend.main="Age at Baseline")+ 

  theme_bw()+ 

  theme(legend.background=element_rect(fill="white", 

           size=0.5, linetype="solid",color ="black"), 

        legend.position = c(0.5, 0.2), 

        axis.title.x = element_text(color="black", size=14), 

        axis.title.y = element_text(color="black", size=14), 

        legend.title = element_text(color="black", size=13, 

                                    hjust=.5), 

        legend.text = element_text(color="black", size=12) 

  ) 

ggsave(filename = "c:\\temp\\plotgg.jpg", 

       device = "jpeg") 

 

 

Older individuals at baseline reported higher job satisfaction initially and tended to show a 

very slight increase over time.  In contrast, younger respondents tended to report lower initial job 

satisfaction, but showed a more pronounced increase in job satisfaction over time. 
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5.4 Discontinuous Growth Models 

In the previous example (section 5.3.2), two variants of time were examined (linear and 

quadratic).  Indeed, with only three periods it is difficult to explore more than a linear and 

quadratic trend (through one could treat time as a categorical variable and make no assumptions 

about trends).  In situations where numerous repeated measures are collected, however, a variety 

of interesting options exist for modeling time. 

One particularly interesting variant is the discontinuous growth model (DGM) a model also 

referred to as the piecewise hierarchical linear model (Raudenbush & Bryk, 2002; Hernández-

Lloreda et al., 2004) or the multiphase mixed-effects model (Cudeck & Klebe, 2002). The basic 

idea behind the DGM is to simultaneously use a set of two or three time-related covariates to 

capture a known discontinuity. 

For instance, Lang and Bliese (2009) use the DGM to model the performance impact of 

unexpectedly changing key elements of a complex computer-based task. In the design, 

participants worked on the task for six trials and then on the seventh trial the task became 

substantially more difficult. Although there are numerous variants for modeling a discontinuity 

of this nature (see Bliese & Lang, 2016), the basic form can be captured by the three terms 

TIME, TRANS, and POST. Because these time-varying predictors represent a system of 

equations, TIME captures the initial linear trend; TRANS captures the immediate response to the 

event, and POST captures the post-transition slope change. A fourth useful variant is to include a 

TIME.A (for absolute) that results in expressing the TRANS and POST parameters in absolute 

versus relative terms. 

5.4.1 Coding for DGM Simple Cases 

The data set tankdat from Lang and Bliese (2009) was used to illustrate variants of the 

DGM in Bliese and Lang (2016). Below we apply a subset of the R code from Appendix B of 

Bliese and Lang to illustrate basic form of the DGM. 
 

> data(tankdat) 

 

> tankdat$TRANS<-ifelse(tankdat$TIME<6,0,1) 

> tankdat$POST<-ifelse(tankdat$TIME>5,tankdat$TIME-6,0) 

> tankdat$TIME.A<-ifelse(tankdat$TIME<5,tankdat$TIME,5) 

 

> tankdat[1:12,c("TIME","TRANS","POST","TIME.A")] 

   TIME TRANS POST TIME.A 

1     0     0    0      0 

2     1     0    0      1 

3     2     0    0      2 

4     3     0    0      3 

5     4     0    0      4 

6     5     0    0      5 

7     6     1    0      5 

8     7     1    1      5 

9     8     1    2      5 

10    9     1    3      5 

11   10     1    4      5 

12   11     1    5      5 
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TRANS represents a dummy-coded variable that is zero before the event and one after the 

event. POST is slightly more complex in that it begins with a zero and then begins recounting 

(starting with zero) after the event occurs. TIME.A begins similarly to TIME, but holds the pre-

transition element (5 in this case) constant once the change has occurred. 

Below the basic DGM mixed-effect model is estimated and used to illustrate the difference 

between TIME and TIME.A. 

 
> tmod<-lme(SCORE~TIME+TRANS+POST, random=~1|ID,tankdat) 

> round(summary(tmod)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept) -3.686     0.631 2021  -5.837       0 

TIME         1.814     0.125 2021  14.461       0 

TRANS       -4.980     0.619 2021  -8.049       0 

POST        -1.220     0.177 2021  -6.880       0 

 

> tmod.a<-lme(SCORE~TIME.A+TRANS+POST, random=~1|ID,tankdat) 

> round(summary(tmod.a)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept) -3.686     0.631 2021  -5.837       0 

TIME.A       1.814     0.125 2021  14.461       0 

TRANS       -3.166     0.537 2021  -5.895       0 

POST         0.593     0.125 2021   4.732       0  

 

Notice that TIME and TIME.A have the same parameter estimate and standard errors and 

both indicate that the performance score increased by 1.81 each trial.  In the top model (TIME), 

the parameter estimate for TRANS is -4.98 and the POST estimate is -1.22 (both are significant). 

When using TIME, both TRANS and POST represent change relative to TIME, so the decline of 

-4.98 assumes this time period would have increased by 1.81. Likewise, the POST slope of -1.22 

indicates a slope that is 1.22 less steep than the 1.81 increase associated with TIME. 

The parameters associated with TIME.A are absolute, so in the lower model the value of -3.17 

represents the absolute change (relative to zero) in performance. Likewise, the now positive 

slope of 0.59 indicates that while the recovery slope is significantly less strong than the pre-

transition slope associated with TIME, the recovery slope is still significantly positive. 

The DGM model, like the growth model, can be examined in a series of steps examining 

person-level variability in each parameter and including predictors of this variability. Interested 

readers are directed to Bliese and Lang (2106) and Bliese, Kautz, and Lang (2020) for additional 

details. Several examples using the DGM include Kim and Ployhart, (2014); Li, Hausknecht and 

Dragoni (2020); Pagiavlas, et al., (2021) and Rupp et al., 2009; Stewart et al., (2017).  

5.4.2 Coding for DGM Complex Cases (dgm.code) 

In cases such as with the tank data from Lang and Bliese (2009), the coding of the time-

varying parameters is simple. In many applied settings, however, the coding can be more 

complicated for three reasons. First the longitudinal or panel data may be unbalanced such that 

each higher-level entity has a different number of repeated measures. Second, the event of 

interest may occur at different time points for each entity. Third, entities might not have the same 

number of events or any events at all. 
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For instance, a study of the impact of employee turnover on store performance might have 

panel data with thousands of stores providing quarterly data for 2 years. In each quarter, turnover 

may or may not have occurred, so each store has a unique pattern of turnover. Attempting to 

code the DGM time-varying covariates on a store-by-store basis would be challenging and time 

consuming.  

The dgm.code function was designed to produce a design matrix for cases where events 

occur on an irregular basis and/or where entities have different number of observations. Details 

on the using dgm.code are in the help files, but below I reproduce one example. 

 
> data(tankdat) 

>  

> # Add a marker (1 or 0) indicating an event at random 

> set.seed(343227) 

> tankdat$taskchange<-rbinom(nrow(tankdat),1,prob=.1) 

> tankdat[1:24,] 

   ID    CONSC TIME SCORE taskchange 

1   1 1.041923    0    -5          0 

2   1 1.041923    1     0          0 

3   1 1.041923    2    -3          0 

4   1 1.041923    3    -9          0 

5   1 1.041923    4    -7          0 

6   1 1.041923    5    -3          0 

7   1 1.041923    6    -7          0 

8   1 1.041923    7    -3          0 

9   1 1.041923    8   -11          0 

10  1 1.041923    9    -5          0 

11  1 1.041923   10    -1          1 

12  1 1.041923   11    -4          0 

 

13  2 1.426890    0     3          0 

14  2 1.426890    1    17          1 

15  2 1.426890    2    18          0 

16  2 1.426890    3    10          0 

17  2 1.426890    4    22          1 

18  2 1.426890    5    14          0 

19  2 1.426890    6    -3          1 

20  2 1.426890    7     6          0 

21  2 1.426890    8    10          0 

22  2 1.426890    9    15          0 

23  2 1.426890   10    14          0 

24  2 1.426890   11     7          0 

 

In this example, the first individual (ID=1) had a taskchange at time 10 while the second 

individual (ID=2) had a task change at times, 1, 4, and 6. This example illustrates several issues. 

First, there are clearly different patterns of events. Second, it is not clear how events to code. An 

additional issue is that the event may occur on the first observation in which case the TRANS 

and POST time-varying vectors cannot be estimated. If we attempt to create the DGM design 

matrix we get the following error identifying groups that start with a taskchange (truncated 

output): 

 
> OUT<-with(tankdat,dgm.code(ID,TIME,taskchange)) 
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[1] "The following groups start with an event" 

     grp time event 

97     9    0     1 

169   15    0     1 

193   17    0     1 

241   21    0     1 

337   29    0     1 

373   32    0     1 

385   33    0     1 

Truncated… 

 

 To handle both the issue of multiple events and an event starting on the first occasion, the 

dgm.code function contains two control options. By setting first.obs=TRUE we can recode the 

first observation to zero keeping a marker for whether we made this change. By setting n.events 

we can limit the design matrix to code only the first few events.  For instance, to code only two 

events and recode the first event to a zero the command would be: 

 
> OUT<-with(tankdat,dgm.code(ID,TIME,taskchange,n.events=2,first.obs=TRUE)) 

> OUT[1:24,] 

   grp time event trans1 trans2 post1 post2 time.a tot.events event.first 

1    1    0     0      0      0     0     0      0          1           0 

2    1    1     0      0      0     0     0      1          1           0 

3    1    2     0      0      0     0     0      2          1           0 

4    1    3     0      0      0     0     0      3          1           0 

5    1    4     0      0      0     0     0      4          1           0 

6    1    5     0      0      0     0     0      5          1           0 

7    1    6     0      0      0     0     0      6          1           0 

8    1    7     0      0      0     0     0      7          1           0 

9    1    8     0      0      0     0     0      8          1           0 

10   1    9     0      0      0     0     0      9          1           0 

11   1   10     1      1      0     0     0      9          1           0 

12   1   11     0      1      0     1     0      9          1           0 

13   2    0     0      0      0     0     0      0          3           0 

14   2    1     1      1      0     0     0      0          3           0 

15   2    2     0      1      0     1     0      0          3           0 

16   2    3     0      1      0     2     0      0          3           0 

17   2    4     1      0      1     0     0      0          3           0 

18   2    5     0      0      1     0     1      0          3           0 

19   2    6     1      0      1     0     2      0          3           0 

20   2    7     0      0      1     0     3      0          3           0 

21   2    8     0      0      1     0     4      0          3           0 

22   2    9     0      0      1     0     5      0          3           0 

23   2   10     0      0      1     0     6      0          3           0 

24   2   11     0      0      1     0     7      0          3           0 

 

The output returns a time, time.a, trans1, trans2, post1 and post2 to model the design matrix 

for two events. It also records the total events for each entity (tot.events) and indicates whether 

the first observation was an event.  

Finally, to make use of this design matrix, it would need to be merged with the original data 

and reordered as follows: 
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> tankdat.dgm<-merge(tankdat,OUT,by.x=c("ID","TIME"),by.y=c("grp","time")) 

> tankdat.dgm<-tankdat.dgm[order(tankdat.dgm$ID,tankdat.dgm$TIME),] 

5.5 Testing Emergence by Examining Error Structure 

In most treatments of growth models heteroscedasticity in error structures are considered a 

form of model miss-specification that should be controlled (see section 5.3.4). Variants of 

mixed-effects models, however, have been suggested as a tool to formally test whether patterns 

of change in residual error variance over time have substantive meaning (Lang & Bliese, 2019; 

Lang et al., 2018; Lang et al., 2019). 

For instance, consider the patterns displayed by participants over time in Sherif’s (1935) 

classic experiment on group influence. In the experimental paradigm participants estimated 

movement of a small light (in inches) in a completely dark room. Participants either made initial 

estimates alone or with other group members and Sherif provided a plot of the results over three 

group-based trails. The data set sherifdat contains the values presented in Sherif’s plot.  The 

first set of figures below present the pattern for participants who began making estimates alone 

(and then transitioned to three trails where they made estimates with other group members). The 

second set of figures presents the pattern for participants who began making estimates with other 

group members over three trials. 
 

> data(sherifdat) 

> library(lattice) 

> xyplot(y~time|as.factor(group),sherifdat[sherifdat$condition==1,], 

  groups=person,type=c("p","l"),ylim=c(0,8), 

  main="Started in an Individual Trial") 
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> xyplot(y~time|as.factor(group),sherifdat[sherifdat$condition==0,], 

  groups=person,type=c("p","l"),ylim=c(0,8), 

  main="Started in a Group Trial") 

 

In both cases (either starting as an individual or starting in a group setting), the plots suggest 

that group members influence each other such that consensus emerges. The idea of consensus 

emergence appears stronger in cases where individuals started their first trial as an individual, 

but both conditions appear to show this effect. Lang and Bliese (2019) and Lang et al. (2018)  

provide details on how a three-level mixed-effect model (the census emergence model or CEM) 

can be estimated and how the -2log likelihood values can be contrasted to formally test whether 

emergence is present. Details are beyond the scope of this manual, but the basic formal test of 

emergence is provided below: 
 

> threelevel<-lme(y ~ time,  

  random = list(group=pdLogChol(~time),person=pdIdent(~1)), 

  data=sherifdat,control=lmeControl(opt="optim",maxIter=3000, 

  msMaxIter=3000)) 

  

> threelevelCEM<-update(threelevel,weights=varExp( form = ~ time)) 

  

> anova(threelevel,threelevelCEM) 

              Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

threelevel        1  7 182.3422 198.0817 -84.17112                         

threelevelCEM     2  8 155.8097 173.7977 -69.90485 1 vs 2 28.53253  <.0001 

 

In both models, the random statement is a complex form of a three-level model that allows the 

slope for each group to randomly vary while fixing the time slope for individuals. A summary of 

the model threelevelCEM (not shown) provides the estimate for varExp as -1.017 indicating 
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an overall reduction in residual variance within groups (emergence). Including a variance term 

leads to a significant improvement in model fit suggesting that a significant emergence effect 

exists. Finally, while not demonstrated here, the models can be modified to formally test whether 

the emergence effect is stronger under the two conditions of starting individually or in a group. 

5.6 Empirical Bayes estimates 

While briefly introduced previously, one of the useful aspects of examining repeated 

measures in mixed-effects models is the ability to estimate predicted intercepts and slopes for 

individuals using (a) information about the individual along with (b) information from the rest of 

the sample. For instance, consider the growth modeling data presented in section 5.3. In this 

example, we modify the data so that only those with responses at all three times are included. We 

do so only to show that OLS-based estimates and empirical Bayes estimate differ even when data 

are complete.  
 

> data(univbct) 

> TEMP<-univbct[3*1:495,c(22,1:17)]  #convert to multivariate form 

> TEMP<-na.exclude(TEMP[,c("SUBNUM","JOBSAT1","JOBSAT2","JOBSAT3")]) 

> TEMP.UNIV<-make.univ(TEMP,TEMP[,2:4],outname="JSAT") 

 

> library(lattice) 

> xyplot(JSAT~TIME|as.factor(SUBNUM),data=TEMP.UNIV[1:90,], 

    type=c("p","r","g"),col="blue",col.line="black", 

    xlab="Time",ylab="Job Satisfaction") 
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The figure shows large differences in intercepts and in slopes, yet each panel is estimated 

separately without taking into consideration any of the data from other respondents. An 

alternative would be to estimate a simple growth model and use data from model parameters to 

estimate values for each individual. 
  
>tmod<-lme(JSAT~TIME,random=~TIME|SUBNUM, TEMP.UNIV,    

    na.action=na.omit,control=list(opt="optim")) 

From this model, one can extract the empirical Bayes estimates for both the intercept and the 

slope by using the coef function:  the first 12 values (bottom two rows) are listed. 
 

> coef(tmod)[1:12,] 

   (Intercept)         TIME 

1     1.771548  0.358222009 

2     3.701752  0.069173239 

3     3.868707 -0.002492476 

4     3.368637 -0.039600872 

5     3.654505 -0.054411154 

6     2.629151  0.313791178 

7     3.537183 -0.615478500 

8     2.843353  0.365710056 

10    1.532927  0.496616898 

11    2.892191 -0.014917079 

12    3.773418  0.002444280 

14    3.034727  0.103730558 

The empirical Bayes estimates returned from coef correspond to what is displayed in the 

lattice plot.  Individual 1, for instance, has a low value for satisfaction and a positive slope and 

individual 7 has a moderately high value and a strong negative slope. 

The differences can be more easily visualized by plotting all 30 individuals on a single plot.  

The plot represents the intercept and slope estimates from 30 separate linear regression 

equations. 
 
>tmod3<-lmList(JSAT~TIME|SUBNUM, data=TEMP.UNIV[1:90,]) 

 

>plot(TEMP.UNIV$TIME,TEMP.UNIV$JSAT, xlab="Time", 

     ylab="Job Satisfaction",type="n") 

 

>lmplot<-function(X){ 

   for (i in 1:25){ 

   abline(X[[i]]) 

 }} 

 

>lmplot(tmod3) 
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  The second plot is for the same 30 individuals, but is based off of the empirical Bayes 

estimates. 

 
>plot(TEMP.UNIV$TIME,TEMP.UNIV$JSAT, xlab="Time", 

     ylab="Job Satisfaction",type="n") 

>apply(coef(tmod)[1:12,],1,abline) 
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The fact that each individual’s estimates are partially based on information from the rest of 

the sample adjusts some of the more extreme response (and explains why these are sometimes 

referred to as shrunken estimates).  Empirical Bayes estimates may be particularly useful in 

situations where intercepts and slopes are used to predict other outcomes.  For instance, Chen, 

Ployhart, Thomas, Anderson, & Bliese (2011) used empirical Bayes estimates of slope changes 

in job satisfaction and showed that the nature of the change (increase or decrease) was the 

primary predictor of turnover intentions.  

It may go without saying, but one can also extract empirical Bayes estimates from non-

longitudinal nested models such as those considered in section 4.  In the context of non-

longitudinal models, the values provides estimates of intercepts and slopes for each group 

adjusted for the overall intercept and slope. As a general rule, when ICC(1) values are small, the 

empirical Bayes estimates are more strongly adjusted to the rest of the sample (more shrinkage) 

than when ICC(1) values are large (see Gelman & Pardoe, 2006). 

6 More on lme4  

While the current document has focused on the nlme package for mixed-effects models, the 

lme4 package in R provides additional flexibility in terms of specifying models.  The lme4 

package is particularly valuable in dealing with (a) non-normally distributed outcomes and (b) 

partially crossed data structures.  

6.1 Dichotomous outcomes 

When the dependent variable is dichotomous or otherwise non-normally distributed, it may be 

useful to estimate a generalized linear mixed effects model (glmm) rather than a linear mixed 

effects model.  Below we dichotomize WBEING and use glmer from the lme4 package with a 

binomial link function to estimate a mixed-effects logistic regression model.  
 

>library(multilevel) 
>library(lme4) 

>data(bh1996) 

>tmod<-glmer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP), 

       family="binomial",control=glmerControl(optimizer="bobyqa"),bh1996) 

 

>summary(tmod) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace 

  Approximation) [glmerMod] 

 Family: binomial  ( logit ) 

Formula: ifelse(WBEING > 3.5, 1, 0) ~ HRS + G.HRS + (1 | GRP) 

   Data: bh1996 

Control: glmerControl(optimizer = "bobyqa") 

 

     AIC      BIC   logLik deviance df.resid  

  7572.1   7599.7  -3782.0   7564.1     7378  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9902 -0.5559 -0.4672 -0.3587  4.6130  

 

Random effects: 
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 Groups Name        Variance Std.Dev. 

 GRP    (Intercept) 0.06323  0.2515   

Number of obs: 7382, groups:  GRP, 99 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.80660    0.53504   5.246 1.56e-07 *** 

HRS         -0.09860    0.01465  -6.731 1.69e-11 *** 

G.HRS       -0.26784    0.04923  -5.440 5.31e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) HRS    

HRS   -0.020        

G.HRS -0.954 -0.272 

 

The precision of the model in terms of log likelihood can be improved by including the nAGQ 

option with a value greater than 1 (100 in this case).  Notice the slight change in log likelihood 

values and the minor changes in parameter estimates and standard errors between the model 

based on nAGQ=1 (above) and nAGQ=25 (below). In practice, one would likely want to change 

nAGQ values to (a) verify parameter estimates and standard errors and (b) verity that contrasts of 

-2log likelihood values contrasting models with anova are similar with higher nAGQ values. In 

my experience using values above 100 is rarely useful.  
 

> tmod.r<-glmer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP), 

  family="binomial", control=glmerControl(optimizer="bobyqa"), 

  bh1996,nAGQ=25) 

 

> logLik(tmod) # Original model with nAGQ=1 

'log Lik.' -3782.036 (df=4) 

 

> logLik(tmod.r) # Model with nAGQ = 25 

'log Lik.' -3781.999 (df=4) 

 

> summary(tmod.r)$coef 

               Estimate Std. Error   z value     Pr(>|z|) 

(Intercept)  2.80640657 0.53692297  5.226833 1.724383e-07 

HRS         -0.09861117 0.01466700 -6.723335 1.776112e-11 

G.HRS       -0.26782094 0.04939543 -5.421978 5.894300e-08 

 

6.2 Crossed and partially crossed models 

The second situation in which lme4 is particularly valuable is in cases where data are 

partially or fully crossed.  For instance, in a longitudinal study individuals might be nested 

within groups, but over time some individuals might switch from one group to another.  If no 

participants switched groups, the data would be fully nested with repeated observations nested 

within individuals nested within groups (a three-level model). In lme the three-level nested 

model would be specified as random= ~1|GRP/IND.  If individuals switch groups, though, 

the fully nested structure no longer holds.  In lme4 and the lmer function, however, the 

structure could be specified as (1|GRP)+(1|IND). The lmer specification does not assume 

fully nested data and will provide variance estimates if the data are partially crossed. 
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6.3 Predicting values in lme4 

As illustrated in the text, statistical models can be used to predict levels of an outcome 

variable given specific values of predictors. R has a number of predict functions linked to 

specific models (e.g., lm, glm, lme, lmer, glmer).  The predict functions are 

generally consistent in terms of usage; however, there are minor differences when applied to 

specific models. Recall, for instance, that one must specify level=0 to obtain overall sample 

based predictions when using lme. 

 

In most cases in mixed-effects models, one will be interested in obtaining predictions for the 

overall sample rather than predictions for any specific unit; however, in the lmer and glmer 

functions associated with lme4, the predict command uses the option re.form=NA rather than 

level=0 to indicate that predictions should be made based on the parameter estimates from the 

overall sample. An example is provided below:   
 

> library(multilevel) 

> library(lme4) 

> data(bh1996) 

 

> tmod<-lmer(WBEING~HRS*LEAD+(1|GRP),bh1996) 

 

> TDAT<-data.frame(HRS=c(7,7,12,12),LEAD=c(2.12,2.12,3.66,3.66)) 

> predict(tmod,TDAT,re.form=NA) 

       1        2        3        4  

2.519160 2.519160 3.137911 3.137911 

 

 

As another example, the code below illustrates the use of the type="response" option 

with models that have a dichotomous variable as the outcome.  Notice that one can transform the 

prediction to a percent (-2.377 to 0.085 or 8.5%), but it is often easier to use 

type="response". 

 
> tmod<-glmer(ifelse(WBEING>3.5,1,0)~LEAD+(1|GRP),family="binomial",bh1996, 

  control=glmerControl(optimizer="bobyqa")) 

  

> TDAT<-data.frame(LEAD=c(2.12,3.66)) 

 

> predict(tmod,TDAT,re.form=NA) 

         1          2  

-2.3774501 -0.6565601  

 

> exp(-2.3774501)/(1+exp(-2.3774501)) 

[1] 0.08490848 

 

> predict(tmod,TDAT,re.form=NA,type="response") 

         1          2  

0.08490848 0.34151277  
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7 Miscellaneous Functions and Tips 

The multilevel package has a number of other functions that have either been referenced in 

appendices of published papers, or are of basic utility to applied organizational researchers.  This 

section briefly describes these functions.  Complete help files are available in the multilevel 

package for each of the functions discussed. 

7.1 Scale reliability: cronbach and item.total 

Two functions that are can be particularly useful in estimating the reliability of multi-item 

scales are the cronbach and the item.total functions.  Both functions take a single 

argument, a dataframe with multiple columns where each column represents one item in a multi-

item scale. 

7.2 Random Group Resampling for OLS Regression Models 

The function rgr.OLS allows one to contrast a group-level hierarchical regression model 

with an identically specified model where group identifiers are randomly generated.  This type of 

model was estimated in Bliese and Halverson (2002). 

7.3 Estimating bias in nested regression models:  simbias 

Bliese and Hanges (2004) showed that a failure to model the nested properties of data in 

ordinary least squares regression could lead to a loss of power in terms of detecting effects.  The 

article provided the simbias function to help estimate the degree of power loss in complex 

situations. 

7.4 Detecting mediation effects: sobel 

MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the 

mediation tests used in psychology tend to have low power.  One test that had reasonable power 

was Sobel's (1982) indirect test for mediation.  The sobel function provides a simple way to 

run Sobel's (1982) test for mediation.  Details on the use of the sobel function are available in 

the help files. 
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