if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("glmSparseNet")
library(futile.logger)
library(ggplot2)
library(glmSparseNet)
library(survival)
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- glmSparseNet:::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
data('cancer', package = 'survival')
xdata <- survival::ovarian[,c('age', 'resid.ds')]
ydata <- data.frame(
time = survival::ovarian$futime,
status = survival::ovarian$fustat
)
(group cutoff is median calculated relative risk)
res.age <- separate2GroupsCox(c(age = 1, 0), xdata, ydata)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 13 4 NA 638 NA
## High risk 13 8 464 268 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below or equal the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
res.age.40.60 <-
separate2GroupsCox(c(age = 1, 0),
xdata,
ydata,
probs = c(.4, .6)
)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 11 3 NA 563 NA
## High risk 10 7 359 156 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
This is a special case where you want to use a cutoff that includes some sample on both high and low risks groups.
res.age.60.40 <- separate2GroupsCox(
chosen.btas = c(age = 1, 0),
xdata,
ydata,
probs = c(.6, .4),
stop.when.overlap = FALSE
)
## Warning in separate2GroupsCox(chosen.btas = c(age = 1, 0), xdata, ydata, : The cutoff values given to the function allow for some over samples in both groups, with:
## high risk size (15) + low risk size (16) not equal to xdata/ydata rows (31 != 26)
##
## We are continuing with execution as parameter stop.when.overlap is FALSE.
## note: This adds duplicate samples to ydata and xdata xdata
## Kaplan-Meier results
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 16 5 NA 638 NA
## High risk 15 9 475 353 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
sessionInfo()
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] VennDiagram_1.7.3 reshape2_1.4.4
## [3] forcats_1.0.0 glmSparseNet_1.18.0
## [5] glmnet_4.1-7 Matrix_1.5-4
## [7] TCGAutils_1.20.0 curatedTCGAData_1.21.3
## [9] MultiAssayExperiment_1.26.0 SummarizedExperiment_1.30.0
## [11] Biobase_2.60.0 GenomicRanges_1.52.0
## [13] GenomeInfoDb_1.36.0 IRanges_2.34.0
## [15] S4Vectors_0.38.0 BiocGenerics_0.46.0
## [17] MatrixGenerics_1.12.0 matrixStats_0.63.0
## [19] futile.logger_1.4.3 survival_3.5-5
## [21] ggplot2_3.4.2 dplyr_1.1.2
## [23] BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.4 shape_1.4.6
## [3] magrittr_2.0.3 magick_2.7.4
## [5] GenomicFeatures_1.52.0 farver_2.1.1
## [7] rmarkdown_2.21 BiocIO_1.10.0
## [9] zlibbioc_1.46.0 vctrs_0.6.2
## [11] memoise_2.0.1 Rsamtools_2.16.0
## [13] RCurl_1.98-1.12 rstatix_0.7.2
## [15] htmltools_0.5.5 progress_1.2.2
## [17] AnnotationHub_3.8.0 lambda.r_1.2.4
## [19] curl_5.0.0 broom_1.0.4
## [21] pROC_1.18.0 sass_0.4.5
## [23] bslib_0.4.2 plyr_1.8.8
## [25] zoo_1.8-12 futile.options_1.0.1
## [27] cachem_1.0.7 GenomicAlignments_1.36.0
## [29] mime_0.12 lifecycle_1.0.3
## [31] iterators_1.0.14 pkgconfig_2.0.3
## [33] R6_2.5.1 fastmap_1.1.1
## [35] GenomeInfoDbData_1.2.10 shiny_1.7.4
## [37] digest_0.6.31 colorspace_2.1-0
## [39] AnnotationDbi_1.62.0 ExperimentHub_2.8.0
## [41] RSQLite_2.3.1 ggpubr_0.6.0
## [43] filelock_1.0.2 labeling_0.4.2
## [45] km.ci_0.5-6 fansi_1.0.4
## [47] abind_1.4-5 httr_1.4.5
## [49] compiler_4.3.0 bit64_4.0.5
## [51] withr_2.5.0 backports_1.4.1
## [53] BiocParallel_1.34.0 carData_3.0-5
## [55] DBI_1.1.3 highr_0.10
## [57] ggsignif_0.6.4 biomaRt_2.56.0
## [59] rappdirs_0.3.3 DelayedArray_0.26.0
## [61] rjson_0.2.21 tools_4.3.0
## [63] interactiveDisplayBase_1.38.0 httpuv_1.6.9
## [65] glue_1.6.2 restfulr_0.0.15
## [67] promises_1.2.0.1 generics_0.1.3
## [69] gtable_0.3.3 KMsurv_0.1-5
## [71] tzdb_0.3.0 tidyr_1.3.0
## [73] survminer_0.4.9 data.table_1.14.8
## [75] hms_1.1.3 car_3.1-2
## [77] xml2_1.3.3 utf8_1.2.3
## [79] XVector_0.40.0 BiocVersion_3.17.1
## [81] foreach_1.5.2 pillar_1.9.0
## [83] stringr_1.5.0 later_1.3.0
## [85] splines_4.3.0 BiocFileCache_2.8.0
## [87] lattice_0.21-8 rtracklayer_1.60.0
## [89] bit_4.0.5 tidyselect_1.2.0
## [91] Biostrings_2.68.0 knitr_1.42
## [93] gridExtra_2.3 bookdown_0.33
## [95] xfun_0.39 stringi_1.7.12
## [97] yaml_2.3.7 evaluate_0.20
## [99] codetools_0.2-19 tibble_3.2.1
## [101] BiocManager_1.30.20 cli_3.6.1
## [103] xtable_1.8-4 munsell_0.5.0
## [105] jquerylib_0.1.4 survMisc_0.5.6
## [107] Rcpp_1.0.10 GenomicDataCommons_1.24.0
## [109] dbplyr_2.3.2 png_0.1-8
## [111] XML_3.99-0.14 ellipsis_0.3.2
## [113] readr_2.1.4 blob_1.2.4
## [115] prettyunits_1.1.1 bitops_1.0-7
## [117] scales_1.2.1 purrr_1.0.1
## [119] crayon_1.5.2 rlang_1.1.0
## [121] KEGGREST_1.40.0 rvest_1.0.3
## [123] formatR_1.14